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Abstract An ab initio variational grand-canonical elec-

tronic structure mean-field method, based on the Gibbs–

Peierls–Bogoliubov minimum principle for the Gibbs free

energy, is applied to the di-lithium (Li?Li) system at

temperatures around T & 104 K and electronic chemical

potential of l & -0.1Eh. The method is an extension of

the Hartree–Fock approach to finite temperatures. We first

study the Li2 molecule at a frozen inter-nuclear distance of

R = 3 Å as a function of temperature. The mean-field

electronic structure changes smoothly as temperature

increases, up to 104 K, where a sharp spontaneous spin-

polarization emerges as the variational mean-field solution.

Further increase in the temperature extinguishes this

polarization. We analyze the mean-field behavior using a

correlated single-site Hubbard model and show it arises

from an attempt of the mean-field to mimic the polarization

of the spin–spin correlation function of the exact solution.

Next, we keep constant the temperature at 104 K and

examine the electronic structure as a function of inter-

nuclear distance R. At R = 3.7 Å, a crossing between two

free energy states occurs: One state is ‘‘spin-unpolarized’’

(becomes lower in energy when R [ 3.7 Å), while the

other is ‘‘spin polarized’’. This crossing causes near-dis-

continuous jumps in calculated properties of the system

and is associated with using the noninteracting electron

character of our mean-field approach. Such problems will

likely plague FT-DFT calculations as well. We use second-

order perturbation theory (PT2) to study effects of electron

correlation on the potential of mean force between the two

colliding Li atoms. We find that PT2 correlation free

energy at *104 K is larger than at 0 K and tends to restore

the spin-polarized state as the lowest free energy solution.
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1 Introduction

The theoretical description of the detailed electronic struc-

ture of atomic gas plasma at high temperatures is of interest

in strong laser interaction with matter, nuclear and shock-

wave physics, astrophysics, and liquid metals [1–10]. Sys-

tems such as these involve mixtures of molecules and atoms

in various charge states undergoing repeated collisions. For

high-density plasma, one needs to use on-the-fly ab initio

dynamics. Because of the complexity of such calculations,

this can only be done in the context of finite temperature (FT)

density functional theory (DFT) [11] using local/semi local

exchange–correlation potentials ‘‘borrowed’’ from ground

state DFT [6, 9, 10, 12–14]. The problem with this approach

is that truly grand-canonical exchange–correlation density

functionals are not available at present while use of ground

state DFT is questionable [15].

For low-density plasma, one can simplify the problem

considerably and use molecular dynamics based on a bin-

ary two-body potential of mean force obtained from elec-

tronic thermal ensemble calculations. This latter approach

furnishes the motivation of the present study using as a

specific example the Li?Li system. We do not use FT-DFT

but instead resort to a grand-canonical variational method

[16]. This approach is the natural extension of the Hartree–

Fock theory for the grand-canonical ensemble and
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formally, the two theories become identical in the zero-

temperature limit.

We study here several questions concerning treatment of

electronic structure at high temperatures. For example, do

we really need the variational approach or can we just use

Hartree–Fock orbitals and orbital energies for the ensemble

calculation? Another question is the importance of corre-

lation effects: How important are they at medium tem-

peratures? Finally, we would like to know what effects to

expect in this mean-field theory. For example, mean-field

theories often break symmetry in an attempt to mimic

correlation effects; does this happen in the present system?

What happens when we consider electron correlation

beyond the mean field?

The application of this theory to the specific Li?Li

system will enable us to address some of these issues, test

potential pitfalls of the approach, and study the role of

correlation energy using second-order perturbation theory.

The structure of the paper is as follows: In Sect. 2, we

review the variational approach; in Sect. 3, we will study

the dependence of orbital energies as a function of tem-

perature for a fixed inter-nuclear distance; Section 4 stud-

ies the free energy and the orbital energies as a function of

temperature and inter-nuclear distance. In Section 5, we

will discuss correlation free energy effects using second-

order perturbation theory, and we finally summarize and

discuss the results and conclusions in Sect. 6.

2 Background

We described the details concerning our implementation of

the variational approach in Ref. [16], and we sketch out the

essentials here. We consider the second-quantized Hamil-

tonian written as:

Ĥ ¼ ttq̂þ 1

2
q̂T Vq: ð1Þ

where the density matrix is

q̂ij ¼
X

s

ĉ
y
siĉsj: ð2Þ

Here, ĉ
y
si ĉsið Þ is the creation (destruction) operator of a spin

s electron in orbital wis. As shorthand notation, we define

the composite index I : (ij) (K : (kl)) and use the

mathematical notation: AT B : RIAIBI. The symmetric

one-body tI (tij = tji) and two-body VIK (Vijkl = Vklij =

Vijlketc.) matrices are obtained as the integrals of the cor-

responding operators within the basis of the molecular

orbitals and are defined in more detail in Ref. [16].

The Gibbs–Peierls–Bogoliubov variational principle

[17–20] relates the Gibbs free energy G0 = -b-1 ln Z0,

where Z0ðb; lÞ ¼ Tr e�b ĥ�lN̂ð Þ
h i

, of a noninteracting

electron system, with Hamiltonian ĥ ¼ hT q̂; and the Gibbs

free energy of the fully interacting electron system G =

-b-1 ln Z, with Zðb; lÞ ¼ Tr e�b Ĥ�lN̂ð Þ
h i

as the following

inequality:

Gðb; lÞ�Cðb; lÞ � G0ðb; lÞ þ hĤ � ĥi0: ð3Þ

Here, we define the grand-canonical averaging with

respect to ĥ:

hÔi0 ¼
1

Z0

Tr e�b ĥ�lN̂ð ÞÔ
h i

ð4Þ

In these equations, the trace operations reference the

space of all N-particle states ðN ¼ 1; 2. . .Þ:
The right-hand side of the inequality in (3) is a func-

tional C[u] of the potential u = h-t, and one can minimize

this functional to obtain the optimal potential u* and the

optimized approximation C*(b, l) to G(b, l). The optimal

potential u* defines the optimal one-body effective single-

particle Hamiltonian ĥ�, spin-dependent eigenstates wsi(r)

and eigenvalues esi playing an analogous role to those of

HF theory. The density matrix of the system depicts each

orbital wsi as partially occupied according to its energy esi

with the Fermi–Dirac weights fsi ¼ 1

1þeb 2si�lð Þ :

One can compare C*(b, l) with the HF free energy,

based on the HF Hamiltonian ĥHF ¼ hT
HFq̂ :

CHFðb; lÞ � GHFðb; lÞ þ hĤ � ĥHFiĥHF
: ð5Þ

where hÔiĥHF is the grand-canonical average with respect

to ĥHF. We will study such a comparison below for the case

where the chemical potential obeys the zero-temperature

neutral system condition, namely: -IP \ l\- EA, where

IP is the ionization potential (approximated in HF theory

by the highest occupied molecular orbital energy -eH) and

EA is the electron affinity (approximated by the lowest

unoccupied molecular orbital energy -eL). CHF(b, l)

should be a reasonable approximation to C*(b, l) at low

temperatures (kBT \ eL - eH). However, as temperatures

grow, a full variational solution should become important.

3 Detailed temperature-dependent electronic structure

at R 5 3 Å

In this section, we single out an inter-nuclei distance,

namely R = 3 Å, which is close to the HF bond length of

Li2, and study the predicted electronic structure as a

function of temperature. This serves as a case study for

studying the properties of the variational approach and for

demonstrating that the minimization of C with respect to u,
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instead of, for example, using the HF potential uHF, is

essential.

Figure 1 shows the spin orbital energies and the total

spin component in the z direction of the system as a

function of temperature. At the temperature range consid-

ered here, the 1r and 1r* core orbitals are relatively

unperturbed and remain fully populated. Naturally, the

most important orbitals in this temperature range are the

valence 2r spin orbitals. Our approach is ‘‘open-shell’’, not

forcing 2r"
� �

and 2r#
� �

orbitals to be spatially equal.

When the population of the : spin orbital becomes different

from that of the corresponding ; spin orbital, we say that

‘‘spontaneous spin-polarization’’ has occurred. In Fig. 1

one sees that at R = 3 Å spontaneous spin-polarization

indeed sets in, quiet abruptly, once the temperature exceeds

a critical value, namely *11,000 K. The Fermi–Dirac

distribution determines the orbital occupancy, so spin-

polarization is a direct result of the spin-up spin-down

orbital energy differences (right panel). For all tempera-

tures, these orbitals are inversion images of each other,

namely î 2r"
� �

¼ 2r#
� �

and î 2r#
� �

¼ 2r"
� �

, where î is the

inversion operator through the middle point on the line

joining the two Li nuclei. At low temperatures, a stronger

condition holds, namely that the two orbitals have identical

structure and therefore they are invariant to inversion:

î 2r"
� �

¼ 2r#
� �

¼ 2r"
� �

; at higher temperature, the first

equality continues to hold but the second does not. Thus,

the orbital population loss is more significant on one of the

two nuclei: The temperature-induced hole partially local-

izes. The orbital energy of 2r in the 0 K (Hartree–Fock)

calculation is -5.1 eV close to -I, where I = 5.2 eV is the

experimental ionization potential of Li2 [21]. The unoc-

cupied orbital energies in Hartree–Fock theory are known

to deviate considerably from the experimental electron

affinity [22] EA = 0.4 eV. The energy of these orbitals,

however, decreases rapidly as temperature rises, and they

become partially populated. One can interpret this in two

ways, either as appearance of molecular excitations, that is,

creation of electron–hole pairs, or the mixing-in of cation

and anion states. Because our density matrix is constrained

to describe noninteracting electrons, we are unable to dis-

cern these two physically distinct states. The orbital energy

of the lowest ‘‘unoccupied’’ orbital, becoming partially

occupied at temperatures above 10,000 K, dips to

-0.65 eV, which is close to -EA. This stabilization of the

electron affinity levels, when needed, is a welcome prop-

erty of the present mean-field approach and deserves fur-

ther investigation in a separate study. As the temperature

grows, however, the importance of the anionic contribution

diminishes since the cationic (ionization) contribution

grows.

We now consider the reasons of appearance and sub-

sequent disappearance of spontaneous spin-polarization in

the 2r orbitals discussed above. Under the chemical

potential, we chose, the 2r orbitals are fully occupied at

zero temperature and there is no spin-polarization. As

temperature increases, the population of these orbitals

drops, due to ionization and in intermediate temperatures,

above 10,000 K, spontaneous ‘‘spin-polarization’’, that is,

nonzero value of the expectation value of Sz, appears

because of this ionization. Let us explain this qualitatively.

Suppose the system has to release one electron. It can do so

by emptying one of the spin orbitals, say 2r: completely

leaving the 2r; fully occupied or by taking ‘‘half an

electron’’ from each of these orbitals. The first choice,

leading to spin-polarization, minimizes electron repulsion

but the second maximizes entropy. At sufficiently high

temperatures, entropy maximization always ‘‘wins’’; but, at

lower temperatures, electron repulsion may be strong

enough, and spin-polarization occurs. A more detailed

description of these considerations appears in Appendix 1,

where we analyze a single-site Hubbard model and

Fig. 1 Left the average z-component of spin on the Li?Li system as

a function of temperature. Right the orbital energies of the variation-

ally determined effective Hamiltonian ĥ as a function of temperature

for chemical potential l = -2.7 eV at Li-Li inter-nuclear distance

of R = 3 Å. At low temperature, the valence 2r: and 2r; energies

are degenerate. Once T exceeds 11,000 K these energies split, and

become degenerate again when T [ 22,000 K
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demonstrate analytically that conditions exist (Eq. 18) for

which the spin-unpolarized solution is unstable with

respect to a spin-polarization breaking perturbation

(described by the parameter D = 0). In Fig. 2, we show a

regime supporting spin-polarization in the Hubbard model.

The left panel of the figure displays the orbital occupation

predicted by the variational method, compared with the

exact occupation, where there is no polarization. In the

exact calculation, there is no explicit spin-polarization

anywhere because of symmetry. Yet, it does exist, although

not in orbital populations; the two-electron density matrix

reveals spin-polarization as a superposition of two spin-

polarized states. In other words, the system displays

quantum fluctuations between the two spin-polarized

states. To expose these fluctuations, we consider the cross-

correlation function C ¼ h n" � hn"i
� �

n# � hn#i
� �

i: We

plot this quantity against temperature for the exact (Eq. 14)

and the variational (Eq. 15) cases. Note that the value of C

is negative because of electron repulsion. Without spin-

polarization (D = 0), the variational result has C = 0 and

it is only through spin-polarization (D = 0) that a nonzero

negative cross-correlation can be built (see Appendix 1 for

a more comprehensive explanation). The spin-polarization

in the variational treatment yields a negative value for C

which is, however, much smaller than the exact value. This

is due, mainly, to the very large value of the on-site

repulsion parameter namely U = 1Eh (smaller values of U

do not result in spin-polarization (for l = -0.1Eh)). The

variational treatment deviates from the exact result as the

two-electron interaction strength U increases. In the mol-

ecule Li2, the on-site repulsion U is about 0.2Eh and the

fact that this is sufficient to cause spin-polarization is due

to the existence of additional orbitals (sites).

We return to the question posed in the beginning of this

section: do we really need the variational procedure? Per-

haps the procedure of plugging uHF into C is accurate

enough. We expect, that for low temperatures, up to around

10,000 K this is a reasonable approach. This is because the

orbital occupations and energies of the full variational

treatment seem to change little with temperature in this

range. However, at temperatures higher than 10,000 K, the

orbital energies change dramatically. Previously unoccu-

pied orbital energies are lowered (obtaining negative val-

ues) and become rapidly occupied while spin-polarization

sets in. In this temperature regime, it is essential to use the

full variational procedure.

4 Mean forces and their potentials

In this section, we study the force exerted by one Li atom

on the other Li atom as a function of their distance R. The

free energy C(T, l; R) acts as a potential of mean force for

the given temperature T and chemical potential l. In the

previous section, we showed that strong temperature

effects set in around T = 11,000 K. We therefore, as a first

step, study the electronic structure, namely the orbital

energies, as a function of R at this temperature as shown in

Fig. 2 Temperature-dependent spin-polarization in the single-site

Hubbard model (with U = 1.02Eh, h = -1.2Eh, l = -0.1) varia-

tional approximation versus exact results: Left orbital populations

(n: and n;). Right The cross-correlation C ¼ hn"n#i � hn"ihn#i
Fig. 3 The orbital energies as a function of Li-Li distance at

T = 11,000 K
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Fig. 3. It is evident that the spontaneous spin-polarization,

discussed in the previous section for R = 3 Å, exists at

lower and larger values of R as well. We see that, there is

no spin-polarization at distances smaller than Rc & 2.4 Å.

However, as R increases beyond Rc, the polarization grows

significantly: One 2r orbital is significantly stabilized and

populated while the other is destabilized and depopulated.

The system seems to be either losing an electron to the

electron bath (ionization) at this regime or getting elec-

tronically excited (since the lowest unoccupied orbital

energy decreases and becomes negative). Most likely, the

density matrix is trying to describe a mixture of both

processes. We notice a dramatic loss of spin-polarization at

R [ 3.7 Å. This effect is very sudden and in fact is a

numerical artifact. What actually happens at this inter-

nuclear distance is orbital degeneracy. Thus, there are two

fields here: u1 responsible for breaking spin-polarization

when R [ 3.7 Å, yielding the minimal C, and u2 giving a

slightly larger value of C but preserving spin-polarization.

We return to this issue below, when discussing electron

correlation.

In Fig. 4 (top panel), we show the free energy, that is,

potential of mean force, as a function of R for several

temperatures. Comparing the potentials of mean force (top

panel) for different temperatures, one sees that the shape is

similar although the absolute value of the free energy

decreases with temperature. Thus, it is better to compare

their derivative, the curves of mean force (bottom panel).

The curve of the lowest temperature considered (3,500 K)

is very similar to that of zero temperature, and minimal

energy is obtained at R = 3.0 Å, considerably larger than

the experimental bond length of 2.6 Å. The depth of the HF

potential (atomization energy) is 0.18 eV, which is an

order of magnitude smaller than the experimental Li2
atomization energy, of 1.1 eV. Clearly, the present

approximation at low temperature, which is very close to

the Hartree–Fock calculation, suffers considerably from

lack of correlation energy. We will discuss correlation

energy below.

For T = 11,000 K, we plot in Fig. 4 two curves, one

corresponding to the lowest free energy, where spin-

polarization is suddenly quenched and the other for the

constrained spin-polarization case. The two curves, differ

only slightly for R [ 3.5 Å, despite their very different

underlying electronic state origin.

The variational treatment predicts that the Li-Li

potential has a basin of attraction at relatively large inter-

nuclear distances. However, the ‘‘bond length’’ (the inter-

nuclear separation minimizing the potential energy) is

pushed to larger values as temperature increases. We shall

see below that the attractive potential at T [ 104 K dis-

appears when allowing for electron correlation.

5 Correlation effects using second-order perturbation

theory

As discussed above, the variational approach lacks

correlation energy. At zero temperature, the method is

equivalent to the Hartree–Fock method and severely

underestimates the binding energy of Li2 (0.18e V vs. the

experimental 1.1 eV); it also overestimates the bond length

(3 Å vs. the experimental 2.6 Å). In order to take into

account correlation, we use second-order perturbation

theory (PT2) correction to the free energy, given by the

following expression:

dGð2Þ ¼ � b
4

X

ijkl

fifj �fk �flh b �i � �l þ �j � �l

� �� �
Viljk � Vijkl

� �2

ð6Þ

where fi ¼ 1

1þeb �i�lð Þ ;
�fi ¼ 1� fi; hðyÞ ¼ ey�ð1þyÞ

y2 and

hð0Þ ¼ 1
2
: In the zero temperature limit b!1ð Þ fi

�fj

� �
is 1

Fig. 4 Top panel Curves of potential of mean force for the Li-Li

system at selected temperatures. At 11,000 K there are two nearly

degenerate mean-field solutions. An asterisk depicts the higher energy

curve. Bottom panel The mean forces derived from the potentials
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(0) for HF occupied (unoccupied) spin orbitals. In this case,

this expression reduces to the familiar Møller–Plesset

perturbation theory [23].

At low temperatures, PT2 improves the HF bond length

prediction from 3 to 2.7 Å very close to the experimental

value of 2.6 Å. The potential-well depth predicted by PT2

theory is 0.45 eV, considerably deeper than that of HF

theory (0.18 eV) but still too shallow relative to the

experiment (1.1 eV). Moving to higher temperatures, we

show in Fig. 5, the PT2 corrected potential of mean force at

temperature of 11,000 K. Notice that the PT2 correction

grows sharply with distance, showing that correlation

effects become more significant as the atoms move away.

The correction erases the small minima in the variational

free energy curve resulting in a complete repulsive poten-

tial. As mentioned above, at R C 3.7 Å, there are two

nearly degenerate mean-field solutions: u1 that is not spin

polarized and lower in free energy, and u2 that preserves

spin-polarization. One can see that by using the PT2-cor-

rected free energy based on u1 a discontinuous jump is

obtained in the total curve when R crosses 3.7 Å. On the

other hand, if we base the PT2 correction on the higher

metastable free energy solution u2, a smooth and more

physically reasonable curve results. In addition, the total

free energy is lower in this latter case, leading to the

conclusion that this curve is the preferred estimate for the

free energy. The fact that the two mean-field solutions are

nearly identical in energy explains the unorthodox choice.

6 Summary and discussion

In this paper, we studied the electronic structure of the

Li?Li system at temperatures of around 10,000 K and

chemical potential l = -0.1Eh as predicted by the varia-

tional approach to the grand-canonical free energy. We

showed that orbital energies and their populations change

rapidly with temperature; spontaneous spin-polarization

occurs, explained using a simple single-site Hubbard

model. Spin-polarization can occur in the model once the

electron repulsion is strong enough and temperature is not

too high (as Coulomb repulsion tends to polarize while

entropy to depolarize). A similar phenomenon also occurs

for the LiH system (see Fig. 6) at higher temperatures

(16,000 K for inter-nuclear distance of 2 Å), because of the

lower energy of the frontier orbitals.

We further studied the mean force and its potential

between two Li atoms in the ensemble. The free energy

correlation correction, estimated using second-order per-

turbation theory, is significant, especially at medium Li-Li

distances, making the potential of mean force substantially

more repulsive than estimated using mean-field theory

alone. It is interesting to ask which of the exchange and

correlation energies is dominant here. In ground state

electronic, structure correlation energy is often smaller

than exchange. However, here at 11,000 K, we see a case

where the two energies are similar. The exchange energy is

responsible for the spin-splitting of the orbital energies

(actually, this split is caused mainly by that part of

exchange that corrects the Hartree energy for self-interac-

tion; thus calling this ‘‘exchange energy’’ may be mis-

leading). The perturbative correction then restores the

correct minimum by largely negating the effect of the

exchange. From the correspondence principle, at high

temperatures exchange energy eventually dies out as the

system becomes more classical (spin-polarization also

disappears). Correlation energy will still be there as mean

field is not exact even in classical statistical mechanics.

Fig. 5 The potential of mean force for the Li-Li system at

11,000 K: using the mean-field 1 (field that minimizes C), mean-

field 1 ? PT2 correction, and mean-field 2 ? PT2 (mean-field 2

yields free energy slightly larger than that of mean-field 1, see Fig. 4)

Fig. 6 The variational orbital energies as a function of temperature

for the Li?H system at inter-nuclear separation of R = 2 Å
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One can imagine that correlations might be introduced

by the finite temperature Hartree–Fock–Bogoliubov (HFB)

[24]. This method violates particle conservation but

restores it on the average using a chemical potential, sim-

ilar to the ensemble approach adopted here. However, for

electrons, interacting via the purely repulsive Coulomb

force, finite temperature HFB collapses to the present

mean-field approach, giving nothing new (this is also true

for ground state calculations) [25]. Perhaps a related but

different approach to insert pair correlations, such as

Scuseria’s constrained pairing mean-field theory can be

useful here [26, 27]. We leave this issue for future research.

Some of the conclusions inferred from this study are

likely to impact future treatment of molecular systems at

high temperatures. It seems that inclusion of correlation is

of great importance, to no less degree than in zero-tem-

perature calculations, at least for not too high temperatures.

Moreover, the variational treatment encounters severe

problems when frontier orbitals of different symmetry

become degenerate and cross, causing discontinuities in the

force of mean potential and orbital occupations. This

complication results from the inherent noninteracting-

electron nature of our variational mean field and is likely a

general adverse feature of the approach: As temperature

grows, the dense manifold of states representing the con-

tinuum becomes populated and orbital energy crossings are

bound to occur.

One way, to insert correlation energy into this type of

calculation is to use the FT-DFT approach [2, 3, 7, 9, 10,

12–14]. While this has the potential to improve perfor-

mance with respect to correlation energy, [15] problems

associated with frontier orbital-degeneracies, leading to

multiple SCF solutions and discontinuities in observables,

may still plague FT-DFT calculations as well.
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Appendix 1

In this appendix, we construct a single-site model dem-

onstrating spontaneous spin-symmetry breaking. If only a

single site exists, there are four states: Site is empty; site

has one electron, and there are two such options: Either a

spin-up electron or a spin-down electron; and site has two

electrons of opposite spins (Pauli’s principle). The Ham-

iltonian of such a system is as follows:

Ĥ ¼ h n̂" þ n̂#
� �

þ Un̂"n̂#; ð7Þ

where h is the site energy, n̂" and n̂# are the number

operators of : and ; electrons, and U [ 0 the repulsion

energy between the two electrons occupying the site. At

chemical potential l and temperature T = (kB b)-1, the

free energy is G(l, b) = -b-1ln Z where the partition

function is as follows:

Zðb; lÞ ¼ 1þ 2xþ e�bUx2 ð8Þ

where x = eb(l-h). The exact density matrix (DM) of the

system is as follows:

q̂# ¼
1

Z
q̂0 þ x q̂" þ q̂#

� �
þ e�bUx2q̂"#

� �
: ð9Þ

Where, q̂0 is the DM of ‘‘no electrons’’ and

q̂" ¼ â
y
" q̂0â"; q̂# ¼ â

y
# q̂0â#; q̂"# ¼ â

y
" â
y
# q̂0â#â": ð10Þ

With â
y
" â
y
#

� �
the creation operator for an electron in the

spin-up (spin-down) site. The average up or down spin

orbital occupation of the site is hn"i ¼ hn#i ¼ x
Z 1þ xe�bU
� �

and the average double occupation is hn"n#i ¼ xe�bU

Z :

Our variational approach locates the noninteracting

system, with Hamiltonian ĥ ¼ h n̂" þ n̂#
� �

þ u"n̂" þ u#n̂#
and free energy G0 = b-1ln Z0, where Z0 ¼ 1þ
x e�bu" þ e�bu#
� �

þ x2e�b u"þu#ð Þ, for which the functional

C ¼ G0 þ Uhn#n"i � u"hn"i þ u#hn#i
� �

is minimal and

thus the closest approximation of its kind to G. The fields ui

(i = ;, :) are variational parameters that minimize this

functional. It is more convenient to define u: = u?D and

u; = u-D and y = xe-bu. We write the partition function

in terms of these quantities as:

Z0 b; y;Dð Þ ¼ 1þ 2y cosh bDþ y2; ð11Þ

in addition, the orbital occupations are hn"i0 ¼
y

Z0
e�bD þ y
� �

; hn#i0 ¼
y

Z0
ebD þ y
� �

; finally, the joined

occupation is hn#n"i0 ¼
y2

Z0
: Now, C U; b; x; u;Dð Þ must be

minimized with respect to u and D. If D = 0, the DM is

spin broken, and there are two variational solutions:

r̂� ¼
1

Z0

q̂0 þ y e�bDq̂" þ e�bDq̂#
� �

þ y2q̂"#
� �

; ð12Þ

The numerical calculation singles out arbitrarily any one

of these two solutions. One can also consider the

‘‘symmetrized’’ DM:

r̂S ¼
1

2
r̂þ þ r̂�ð Þ

¼ 1

Z0

q̂0 þ y cosh bD q̂" þ q̂#
� �

þ y2q̂"#
� �

: ð13Þ

While r̂S has the same partition function as r�; it has a

larger free energy C. One way to describe spin-polarization

in the system is by considering the cross-correlation

function C ¼ hn"n#i � hn"ihn#i: In the exact treatment,

this function is as follows:
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C ¼ � x2

Z2
1� e�bU
� �

: ð14Þ

For repelling particles (U [ 0), the cross-correlation is

negative, since repulsion reduces the probability of double

occupation. In the variational treatment, using r̂"# leads to

identically vanishing of the cross-correlation, namely

C0 = 0. However, under rS we have hn"n#i ¼ y2=Z0 and

hn"i ¼ hn#i ¼ y2 þ y cosh bDð Þ=Z0 so

C0 ¼ �
y sinh bD

Z0

� �2

: ð15Þ

When D = 0 the cross-correlation is zero but once spin-

polarization occurs this cross-correlation becomes

negative. Under this interpretation of the variational

treatment, the spontaneous spin-polarization builds up as

an attempt to mimic the underlying spin-polarization in the

exact system.

We now examine the conditions under which sponta-

neous spin-polarization (D = 0) can develop in the single-

site model. Consider first a constrained variational

treatment, namely setting D = 0 and minimizing C(U, b, x,

u, D) with respect to u only. The minimizing u, denoted u*

is then a solution of the following equation:

xe�bu� U � u�ð Þ ¼ u�: ð16Þ

Once b, U and x are given, this equation needs to be

solved numerically for u* and then y� ¼ xe�bu� : Next, we

ask, what happens if we release the constraint D = 0? We

can test this by considering the derivatives of C with

respect to D. Because of spin symmetry, the first order

change oC=oD must be zero (since if C goes down when D
is positive it must go up when it is negative, which is

impossible because of spin symmetry). Therefore, we need

to examine the second derivative:

o2C

oD2

����
D¼0

¼ 2 1þ y� � bu�ð Þ
1þ y�ð Þ3

; ð17Þ

when positive D = 0 is a stable minimum, while when

negative symmetry spontaneously breaks. Clearly, spin

symmetry D = 0 is unstable when:

1þ y�\bu�: ð18Þ

At high enough temperatures, the spin symmetric

solution is always stable, because then the right-hand

side vanishes. But, at lower temperatures, spin-polarization

is plausible.

Surprisingly, it is not that easy to find a symmetry-

breaking regime in the model. First, one needs to set up the

system to ensure double occupancy of the site at 0 K. For a

given chemical potential, say l = -0.1Eh (as we took for

the Li2 molecule), we ensure this by taking the ionization

energy h ? U smaller than l. Next, one has to increase

U so that e–e repulsion is important. Simultaneously, we

must decrease h so that U ? h\l continues to hold. We

find that spontaneous spin-polarization does not occur

when U \ 1Eh (and so h is of the order of -1Eh too). Only

at around U & 1Eh do we notice spin-polarization. These

conditions are far from those in the Li2 molecule (where h

and U are typically a factor 5 smaller). Clearly, the mol-

ecule is not a single-site system and thus spin-polarization

occurs at much smaller repulsion strengths. In Fig. 2, we

show the spin-symmetry break under these conditions. The

populations of the spin-up and spin-down change consid-

erably. The spin-down population decreases and approa-

ches that of the exact model while the spin-up population is

much closer to 1. Clearly, the variational treatment exhibits

reduced ionization relative to the exact result. The right

panel of Fig. 2 shows the cross-correlation functions of the

exact and variational models as a function of temperature.

The exact cross-correlation increases (in absolute value) as

temperature increases in the regime shown. The variational

cross-correlation value is zero up to the spin-polarization

transition, where it dips to negative values. At high tem-

peratures, spin ceases to polarize and the cross-correlation

function quickly drops to zero again.
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