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ABSTRACT:We address the conundrum posed by the well-known failure of time-dependent DFT (TDDFT) with conventional
functionals for “charge-transfer-like” excitations in oligoacenes. We show that this failure is due to a small spatial overlap in orbitals
obtained from the underlying single-electron orbitals by means of a unitary transformation. We further show that, as in true charge-
transfer excitations, this necessarily results in failure of linear-response TDDFT with standard functionals. Range-separated hybrid
functionals have been previously shown tomitigate such errors but at the cost of an empirically adjusted range-separation parameter.
Here, we explain why this approach should succeed where conventional functionals fail. Furthermore, we show that optimal tuning
of a range-separated hybrid functional, so as to enforce the DFT version of Koopmans’ theorem, restores the predictive power of
TDDFT even for such difficult cases, without any external reference data and without any adjustable parameters. We demonstrate
the success of this approach on the oligoacene series and on related hydrocarbons. This resolves a long-standing question in TDDFT
and extends the scope of molecules and systems to which TDDFT can be applied in a predictive manner.

I. INTRODUCTION

Time-dependent density functional theory (TDDFT) is an
approach for the calculations of excited-state properties that is
based on mapping the time-dependent Schr€odinger equation
into an equivalent set of Schr€odinger-like equations for fictitious,
noninteracting electrons.1�5 In principle, TDDFT is an exact
theory. In practice, the above-mentioned mapping relies on an
exchange�correlation potential, which is a functional of the
electron density, but whose exact dependence on the density is
unknown. The success or failure of TDDFT therefore hinges
entirely on the availability of practical and reliable approximate
forms for the exchange�correlation potential.

Almost all practical TDDFT calculations are performed using
the adiabatic approximation, i.e., assuming that at each moment
in time the exchange�correlation potential depends only on the
contemporaneous density. In local or semilocal approximations,
such as the local density approximation (LDA)6 or the general-
ized gradient approximation (GGA),7 it is further assumed that
at each point in space the exchange�correlation potential
depends only on the density at this point (in LDA) or also on
its gradient (in GGA). In hybrid functionals (e.g., B3LYP,8,9 a
functional of great popularity in organic chemistry), a fraction of
a nonlocal Fock-exchange operator is also used. Linear-response
TDDFT calculations with these standard approximations have
proven to be a remarkably accurate tool for first principles
calculations of valence excitations in broad classes of molecular
and nanoscale systems.2,4,10�13 Despite this impressive success,
lingering doubts about the true predictive power of TDDFT
using these approximations remain, because failures are some-
times encountered in simple and seemingly straightforward
scenarios.

Perhaps the best-known example of a failure without an
obvious root in the underlying formalism is the prediction of
πfπ* singlet excitation energies in the oligoacene series,

C2+4nH4+2n (n = 2�6).14 The two lowest such excitations,
usually labeled 1La and

1Lb, a notation due to Platt,15 differ in
character. 1La is dominated by the highest occupied molecular
orbital (HOMO)�lowest unoccupied molecular orbital
(LUMO) transition and is short-axis polarized. 1Lb is dominated
by a mixture of two transitions, usually the HOMO-1�LUMO
and HOMO�LUMO+1 ones, and is long-axis polarized.
Grimme and Parac noticed that whereas the 1Lb excitation energy
is reasonably well-predicted by TDDFT using a GGA functional
(BP86)16,17 and very-well predicted by using a hybrid functional
(B3LYP)8,9, the 1La excitation energy is consistently and sub-
stantially underestimated by either functional. These conclusions
have been confirmed since by numerous additional studies and
also extended to related systems exhibiting πfπ* excitations,
notably nonlinear polyaromatic hydrocarbons (see, e.g., refs 5
and 18�23). They are underscored in Figure 1, where TDDFT
with both BP86 and B3LYP are compared to the approximate
coupled-cluster singles and doubles method (CC2) results of
Grimme and Parac,14 which we take as a reference.24 For the 1Lb
excitation energy, the mean error between the TDDFT-B3LYP
and the CC2 results across the naphthalene to hexacene series is a
satisfactory 0.04 eV. But for the 1La excitation energy, TDDFT-
B3LYP consistently underestimates the CC2 results, with an
unsatisfactory mean error of 0.47 eV.

A different arena where linear-response TDDFT calculations
with the same approximate functionals are known to fail is the
prediction of charge-transfer excitation energies.25�27 These
excitations are characterized by a small spatial overlap between
the initial and the final orbital of the excited electron. Here
and throughout, we define the spatial overlap between two
orbitals, O12, as the inner product of the moduli of two orbitals
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ψ1 and ψ2,
28 namely

O12 � Æjψ1jjjψ2jæ ð1Þ
One perspective for this failure, given by Dreuw and Head-
Gordon,25 is that it is a direct consequence of the above-defined
small spatial overlap. For such a case, exact (Fock) exchange
would yield the correct electron�hole attraction term, but Fock
exchange is completely absent in semilocal functionals and only
a fraction of it is present in standard hybrid functionals. There-
fore, at least within adiabatic linear response theory,29 they cannot
be expected to yield the correct result.

In the past few years, many studies30�42 have shown that the
charge-transfer excitation problem can be remedied with the aid
of a novel class of hybrid functionals known as range-separated
hybrid (RSH) functionals.43�49 In this class of functionals, the
repulsive Coulomb potential is split into a long-range (LR) and
short-range (SR) term, e.g., via r�1 = r�1 erf(γr) + r�1erfc(γr).
The components are treated differently in the generation of the
exchange term. The SR exchange is represented by a local
potential, typically derived from a GGA expression, whereas
the LR part is treated via an “explicit” or “exact” exchange term.
This affords a natural way for providing themissing Fock term for

long-ranged interactions between nonspatially overlapping orbi-
tals while maintaining the compatibility between exchange and
correlation for short-ranged interactions.

Very recently, Wong and Hsieh50 have shown that use of a
RSH functional also cures the above-discussed underestimate of
1La excitation energies in oligoacenes and still performs well for
1Lb excitations energies. Subsequently, Richard and Herbert51

have confirmed these findings and extended them to a wide range
of nonlinear polyaromatic hydrocarbons. This success is not at all
trivial because 1La excitations are certainly not charge-transfer
excitations in the sense of eq 1, and even more refined quanti-
tative measures of the nature of the excitation28 clearly identify
them as regular valence excitations.19,50�52 This has led Richard
andHerbert51 to postulate that such excitations possess a “charge-
transfer character in disguise” and to pose two important and
related questions, which we paraphrase as follows: (1) How can
this charge-transfer-like character be detected a priori? and (2) In
the absence of accurate (ab initio or experimental) reference
data, can we really trust TDDFT to have predictive power in
such cases?

In this article, we propose a solution to this conundrum. First,
we show that the elusive charge-transfer-like characteristics are
due to a small spatial overlap in orbitals obtained from the
underlying single-electron orbitals by means of a unitary trans-
formation. Second, we show that the optimally tuned RSH
functional, which we have previously established for charge-
transfer excitations,53,54 restores the predictive power of TDDFT
even for such difficult cases without any external reference data
and without any adjustable parameters. The success of this
approach is demonstrated on the oligoacene series as well as
on related molecules.

II. THEORY OF CHARGE-TRANSFER-LIKE EXCITATIONS

To understand what is a “charge-transfer-like” excitation and
how it may arise, consider the general form of the linear-response
TDDFT equations based on a RSH functional of the type des-
cribed above. By straightforward extension of the formalism of ref
55 from a conventional hybrid functional to anRSHone, we obtain

C D
�D �C

 !
X
Y

 !
¼ pω

X
Y

 !
ð2Þ

Where X, Y are the electron�hole and hole�electron compo-
nents, respectively, of the eigenvector in the molecular orbital
representation with

Cksσ, jtσ0 ¼ ðkσsσjr�1
12 jjσ0 tσ0 Þ + ðkσsσjf γσσ0 jjσ0 tσ0 Þ

� δσσ0 ðkσjσ0 juγðr12Þjsσtσ0 Þ + ðEsσ � EkσÞδstδkjδσσ0 ð3Þ
and

Dksσ, jtσ0 ¼ ðkσsσjr�1
12 jjσ0 tσ0 Þ + ðkσsσjf γσσ0 jjσ0 tσ0 Þ

� δσσ0 ðkσtσ0 juγðr12Þjjσ0 sσÞ ð4Þ
where σ, σ0 are spin indices, k,j and s,t are, respectively, indices for
occupied and unoccupiedmolecular orbitals,ψ, and eigenvalues, ε,
and

ðkσsσjr�1
12 jjσ0 tσ0 Þ ¼

ZZ ψσ
k ðrÞψσ

s ðrÞψσ0
j ðr0Þψσ0

t ðr0Þ
jr� r0j d3rd3r0 ð5Þ

Figure 1. Excitations energies of the 1La (a) and
1Lb (b) transitions in

the oligoacene series, C2+4nH4+2n (n = 2 to 6). TDDFT data obtained
with the BP86 GGA functional (red squares), the B3LYP standard
hybrid functional (blue diamonds), and the optimally tuned BNL range-
separated hybrid functional (green triangles) are compared to reference
CC2 values, taken from ref 14 (black ‘�’ signs).
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ðkσsσjf γσσ0 jjσ0 tσ0 Þ ¼
Z

ψσ
k ðrÞψσ

s ðrÞf γXCðr; σ, σ0Þψσ0
j ðrÞψσ0

t ðrÞd3r
ð6Þ

ðkσjσ0 juγðr12Þjsσtσ0 Þ ¼
ZZ

ψσ
k ðrÞψσ0

j ðrÞuγðjr� r0jÞψσ
s ðr0Þψσ0

t ðr0Þd3rd3r0

ð7Þ
where for simplicity all orbitals are assumed to be real and finally,
where:

uγðr12Þ ¼ erf ðγr12Þ
r

u̅γðrÞ ¼ erfcðγr12Þ
r

ð8Þ

and f XC
γ (r;σ,σ0) is the (semi-)local exchange�correlation kernel

arising from the combination of the (semi-)local exchange corre-
sponding to the short-range potential, uγ(r), and the (semi-)local
correlation. For the simple case of an excitation dominated
by a singletHOMO�LUMOtransition, such that the contribution
of all other transitions can be neglected, eq 2 reduces to a 2 � 2
matrix equation involving only the HOMO (H) and LUMO (L)
orbitals:

c d
�d �c

 !
x
y

 !
¼ pω

x
y

 !
ð9Þ

where, using H(L) for the HOMO (LUMO) index, both of same
spin, and ɛLH = ɛL � ɛH, we have

c ¼ ELH + d + ðHLjuγðr12ÞjHLÞ � ðHHjuγðr12ÞjLLÞ
d ¼ ðHLju̅γðr12Þ + f γσσjHLÞ ð10Þ

which, after straightforward algebra yields

ðpωÞ2 ¼ c2 � d2 ¼ EcgðEcg + 2dÞ ð11Þ
where we defined a “corrected gap”, ɛcg, as

Ecg ¼ c� d
¼ ELH � ðHHjuγðr12ÞjLLÞ + ðHLjuγðr12ÞjHLÞ ð12Þ

In the “extreme CT excitation case” the HOMO and LUMO
orbitals are separate, i.e., their spatial overlap is vanishingly
small and |ψH (r)||ψL (r)| ≈ 0 for all r. In this case, d = 0, and
the excitation energy equals the corrected gap: pω = ɛcg = ɛLH �
(HH|uγ(r12)|LL), i.e., the HOMO�LUMO gap corrected by
subtracting the long-range Coulomb energy between the electron
density and the hole density. When the underlying functional is
GGA the correction term is zero, and the excitation energy is equal
to the KS HOMO�LUMO gap. This should be compared to the
exact optical excitation energy, which in the extreme charge-
transfer case is given by the Mulliken limit,56 IP � EA � 1/R,
where IP is the ionization potential of the donor, EA is the electron
affinity of the acceptor, and R is the (large) distance between the
electron and the hole. The quantity IP� EA is often referred to as
the fundamental gap.43 Because ɛLHobtained from a local potential
is much smaller than the fundamental gap43 and because it is
independent of R for large R, the charge-transfer excitation energy
predicted from TDDFT based on GGA is usually much too low
when compared to the experimental gap. We stress that this is a
fundamental limitation of the formalism (as opposed to, e.g., an
insufficiently accurate choice of parameters). The GGA functional
possesses no mechanism that would allow for either increasing the
fundamental gap value or including the 1/R dependence. With

B3LYP the problem is somewhat mitigated, but ɛLH is still
significantly smaller than the fundamental gap and, owing to the
fraction of exact exchange, only a fraction of the 1/R term is cap-
tured. With RSH, ɛLH can be quantitatively close to the funda-
mental gap,57 and the electron�hole binding energy is close to 1/R
for large R, which immediately explains why charge-transfer exci-
tations are described realistically.

The above explanation of the failure of conventional func-
tionals in describing charge-transfer excitations within linear-
response TDDFT cannot be carried over, as is, to a similar phenom-
enon concerning La excitations in oligoacenes, because the
HOMO and LUMO spatially overlap strongly, and so there is
no charge-transfer to begin with. For example, using B3LYP for
anthracene, the spatial overlap between the HOMO and the
LUMO orbitals, as defined in eq 1, is 0.88. Thus a different ex-
planation is needed.

There are many cases in the analysis of molecular orbitals
where improved intuitive understanding as well as further quanti-
tative analysis is possible with the aid of auxiliary orbitals ob-
tained from the original ones via a unitary transformation. An
important and well-known example is the effect of unitary
transformations on the degree of orbital localization.58�61 It is
therefore interesting to examine the effect of such transforma-
tions on the degree of spatial overlap. As a first step, consider two
auxiliary orbitals, ψ1 and ψ2, which are obtained from the
HOMO and LUMO orbitals via the following simple unitary
transformation:

ψ1 ¼ ðψH +ψLÞ=
ffiffiffi
2

p
, ψ2 ¼ ðψH �ψLÞ=

ffiffiffi
2

p ð13Þ
In terms of these auxiliary orbitals, eqs 10 and 12 yield

Ecg ¼ ELH � ð11juγðr12Þj22Þ + ð12juγðr12Þj12Þ
d ¼ 1

4
½ð11ju̅γðr12Þ + f γσσj11Þ + ð22ju̅γðr12Þ + f γσσj22Þ

� 2ð11ju̅γðr12Þ + f γσσj22Þ� ð14Þ
and ɛLH can be expressed as

ELH ¼ ÆψLjĤDFT jψLæ� ÆψHjĤDFT jψHæ

¼ � 2Æψ1jĤDFT jψ2æ ð15Þ
where ĤDFT is the ground-state single-electron Hamiltonian
corresponding to the approximate exchange�correlation func-
tional chosen.

Importantly, the GGA-based linear-response TDDFT equa-
tions are obtained from eq 9 by considering the limit γ f 0, in
which uγ f 0 and uγ f 1/r. In this limit, eq 14 shows that the
corrected gap is equal to the HOMO�LUMO gap, and so the
excitation energy is given by

ðpωÞ2 ¼ ELHðELH + 2dÞ ð16Þ
Just as we defined the “extreme charge-transfer excitation

case” to correspond to completely nonspatialy overlapping
HOMO and LUMO orbitals, let us now define the “extreme
charge-transfer-like excitation case” to correspond to completely
nonspatially overlapping auxiliary orbitals, i.e., |ψ1 (r)||ψ2 (r)| = 0
for every r. In practice, in oligoacenes one does not have an
extreme charge-transfer-like case, but as shown in Figure 2 for the
representative case of anthracene, this scenario is approximately
obeyed—the spatial overlap, O12, is 0.30 with B3LYP (0.29 with
BNL), compared to 0.88 between the original HOMO and
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LUMO. In fact within a simple H€uckel picture the zero overlap
scenario is fully obeyed. Now, because the GGA Hamiltonian
contains no long-range components, we find from eqs 15 and 16
that in this limit, perhaps counterintuitively, both the HOMO�
LUMO gap, ɛLH, and the optical excitation energy, pω, become
vanishingly small! Therefore, the GGA-based calculation neces-
sarily yields very small excitation energies. Just like in the true
charge-transfer case, GGA is flawed here. The small spatial
overlap of the auxiliary orbitals is a necessity of symmetry and
thus inevitably leads to very small gaps, an error for which GGA
fundamentally offers no “mechanism” of correction and therefore
fails to produce realistic optical gaps. At the same time, the RSH-
based calculation, where γ 6¼ 0, is saved from such failure because
the long-range exchange terms in ĤDFT of eq 15 prevent the
HOMO�LUMO gap from vanishing. Furthermore, similar
to the CT case, the corrected gap in eq 14 is: ɛcg = ɛLH �
(11|uγ(r12)|22), which differs from the HOMO�LUMO gap
precisely by an “exciton binding energy”, but between the
auxiliary orbital charge distributions, |ψ1 (r)|

2 and |ψ2 (r)|
2.

The similarities and differences between a charge-transfer-like
and a true charge-transfer excitation are now clear: In both types
of excitations, the serious errors that GGA-based calculationsmay
arise from the presence of weakly spatially overlapping orbitals
and the absence of nonlocality in the exchange�correlation
kernel. And in both types of excitations, use of a Fock exchange
term results in excitonic terms that correctly describe the physics of
the transition. But in charge-transfer-like excitations, unlike in true
charge-transfer ones, all this does not involve the orbitals obtained
directly from the ground-state DFT calculation but rather a unitary
transformation thereof. Consequently, the charge-transfer-like char-
acter cannot be exposed by considering only the untransformed
orbitals or the density difference induced by the excitation.

We note that the above-scenario is clearly just one out of an
entire family of charge-transfer-like scenarios, in which weakly
spatially overlapping orbitals are obtained via a unitary transfor-
mation of the molecular ones. For example, the pertinent unitary
transformation does not have to be one of a 45� rotation in the

orbital space. In this sense, the true charge-transfer excitation is
simply the one obtained with the trivial (identity) unitary trans-
formation. Furthermore, if the transition is dominated by more
than one pair of orbitals, the requisite unitary matrix will be larger.
An interesting special case of the latter scenario, analyzed in detail
by Hieringer and G€orling,62�64 is that of excitations in a spatially
separated homodimer. There, the transition is dominated by four
orbitals, two corresponding to a linear combination of theHOMO
of eachmonomer and two corresponding to a linear combination
of the LUMO of each monomer. Also in this case the excitation
does not involve charge-transfer that can be deduced from
density differences, and yet linear-response TDDFT based on
GGA fails. But a 4 � 4 unitary transformation exposes the
absence of spatial overlap between the HOMO of one monomer
and the LUMO of the other as the true source of this failure.65

Determining whether, and which, unitary transformation min-
imizes the spatial overlap of pertinent orbitals and whether
weakly spatially overlapping orbitals can be obtained, then emerges
as a path to deciding a priori whether a TDDFT failure associated
with charge-transfer-like excitations may occur, thus answering
the first challenge posted by Richard and Herbert.51

We further note that Peach et al.28 introduced a “spatial
overlap measure”, Λ, to be used as a diagnostic tool in a general
scenario involving multiple molecular orbitals:

Λ ¼
∑
ia
k2iaOia

∑
ia
k2ia

ð17Þ

where kia = Xia + Yia (X and Y are the vector solutions of the
linear-response TDDFT equations defined in eq 2 and Oia is the
spatial overlaps defined in eq 1 with ψ1 the i

th (occupied) mole-
cular orbital and ψ2 the ath (unoccupied) molecular orbital. A
value of Λ that is too small indicates a charge-transfer situation,
warning the user not to rely on standard functionals. The above
discussion immediately explains the observation50,51 thatΛ does
not “sound the alarm” when a charge-transfer-like situation

Figure 2. Orbital maps of the HOMO and LUMO orbitals (top) and their normalized sum and difference (bottom) for anthracene, as obtained from
the optimally tuned BNL functional.
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arises, because the spatial overlap between the original orbitals is
not small. However, the present work suggests that a relatively
straightforward remedy is to seek the unitary transformation that
minimizes a spatial overlap criterion such as that of Peach et al.,
then use as a diagnostic warning tool the value computed using
the orbitals obtained with this unitary transformation.

III. PREDICTING CHARGE-TRANSFER-LIKE EXCITATIONS
FROM AN OPTIMALLY TUNED RANGE-SEPARATED
HYBRID FUNCTIONAL

Having laid out the general principles of charge-transfer-like
excitations in the previous section, we make no attempt here at
creating a comprehensive catalogue of charge-transfer-like sce-
narios. Instead, we move to the second and practically more
pertinent challenge raised by Richard and Herbert:51 How can
the predictive power of TDDFT, even in the presence of such
“difficult cases”, be restored? eq 14 and its associated analysis,
together with the excellent numerical results of Wong and
Hsieh50 and of Richard and Herbert,51 clearly suggest the use
of an RSH functional. However, a serious difficulty remains,
which is the choice of the range separation parameter, γ. The
above-mentioned previous TDDFT studies of oligoacenes with
RSH functionals have deduced appropriate values for γ from
either coupled cluster or experimental data. While this is a
perfectly valid approach, it limits the application of the method
to new and unknown systems, especially given that the best
choice of γ is known to generally vary with system.30,54,57,66,67

In previous work on inter- and intramolecular charge-transfer
excitations,53,54 we have shown that full predictive power can be
obtained by optimally tuning the range-separation parameter, γ.
The suggested tuning procedure has been discussed in detail
elsewhere.53,54,57 Briefly, as mentioned above, in the limit of an
infinite donor�acceptor separation, the lowest excitation energy
of true charge-transfer systems reduces to the difference between
the ionization potential of the donor and the electron affinity of
the acceptor. Therefore, these quantities must be well predicted
by ground-state DFT eigenvalues if the computation is to reduce
to the correct limit. If the exact exchange�correlation functional
is used, then the DFT version of Koopmans’ theorem establishes
that the highest-occupied eigenvalue is equal and opposite to
the ionization potential.68�70 This implies that an optimal choice
for obtaining the correct ionization potential of an N electron
system from the highest occupied RSH eigenvalue is to enforce
Koopmans’ theorem, i.e., to find γ such that

� EγHðNÞ ¼ IγðNÞ � EgsðN � 1; γÞ � EgsðN; γÞ ð18Þ
where Iγ(M) is the ionization potential of anM electron system,
calculated as a ground-state energy difference, ɛH

γ (M) is the
HOMO energy, and Egs(M;γ) is the ground-state energy of anM
electron system. For determining the electron affinity, we employ
Koopmans’ theorem also for the ionization potential of the nega-
tively charged system, which, barring relaxation effects, is the
same as electron affinity of the original system. Because there is
one parameter but two conditions, we seek the γ that minimizes
the overall deviation expressed in the target function:

J2ðγÞ ¼ ðEγHðNÞ + IγðNÞÞ2 + ðEγHðN + 1Þ + IγðN + 1ÞÞ2
ð19Þ

The down-side of using eq 19 is that the optimal value of γ needs
to be determined for each system of interest separately. Among

other things, this does not allow for size consistency of the
functional. But a crucial observation as far as predictive power is
concerned is that using eq 19 to choose the optimal γ does not
require any empirical input and that the procedure contains
no adjustable parameters. In other words, eq 19 is a tuning
procedure but not a fitting procedure. Furthermore, it is based
on upholding a physical criterion (enforcing a known and
pertinent limit the exact functional must obey) rather than on
semiempirical considerations. In the following, we examine
whether the same approach is also useful for charge-transfer-
like scenarios.

All RSH calculations presented in this work were performed
using the Baer, Neuhauser, and Livshits (BNL) functional,30,47 as
implemented in version 3.2 of Q-CHEM.71 In this functional, the
long-range exchange term is a Fock-like term based on the
r�1 erf(γr) potential, whereas the short-range exchange is a local
expression, due to Toulouse et al,72 which is based on the
r�1 erfc(γr) potential. The correlation term is the standard Lee,
Yang, and Parr (LYP) expression.73 All BNL calculations were
performed using the correlation-consistent triple-ζ basis set,
cc-PVTZ,74 which was carefully tested for convergence. All ground-
state structures were optimized within a B3LYP calculation. For
the oligoacenes, we used the coordinates provided by Wong
and Hsieh.50 For other molecules, we performed our own
optimization.

For oligoacenes, we have previously shown57 that optimal
tuning using eq 19 (or using eq 18 for molecules without a
positive electron affinity) does yield a quantitatively accurate pre-
diction for the fundamental gaps (i.e., differences between the
ionization potential and the electron affinity) throughout the
series. Importantly, we found that the optimally tuned γ values
decrease monotonically with system size; for naphthalene, the
optimal value is 0.28, whereas for hexacene it is a significantly
smaller 0.19. We have interpreted this physically as being due to
the increase of electron delocalization with increasing size of this
conjugated system, which renders the necessary weight of exact
exchange smaller.

The TDDFT results obtained from the optimally tuned BNL
calculations for the 1La and

1Lb excitation energies are shown in
Figure 1, along with the previously discussed GGA and B3LYP
results and the reference CC2 values. Unlike the GGA or B3LYP
results, the optimally tuned BNL calculations are on par with
those of the CC2 reference results for the 1La excitation energy.
Specifically, the GGA and B3LYP results significantly under-
estimate the CC2 ones by a mean value of 0.74 and 0.47 eV,
respectively. But the optimally tuned BNL results only

Figure 3. Schematic representation of benzene, azulene, phenanthrene,
and biphenylene.
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underestimate the CC2 ones by 0.15 eV, which is within the
accepted error margin of either approach.54,75 Exactly as in true
charge-transfer excitations, the fact that B3LYP contains a
fraction of exact exchange has mitigated, but not solved, the
quantitative failure resulting from the charge-transfer-like char-
acter of the excitation. We note that in refs 50 and 51 a smaller
mean average error between RSH-based and CC2 results, of
∼0.05 eV, was obtained with some of the RSH-based functionals
used. Some of this difference is likely due to details of the local
exchange and correlation used. However, given the limits of
accuracy of the CC2 reference data themselves, our results are on
par with the previous ones, without recourse to empirical
parameters.

Equally importantly, the transition from B3LYP to optimally
tuned BNL functional does not compromise accuracy for the 1Lb
excitation energies, where the mean error with B3LYP and BNL
is 0.04 and 0.09 eV, respectively (GGA produces a less satisfac-
tory, but perhaps tolerable, mean error of 0.28 eV). In other
words, one obtains quantitative agreement with experiment
(∼0.1�0.2 eV), irrespective of the presence or absence of charge-
transfer-like characteristics. Again, this is on par with the previous
RSH-based results of refs 50 and 51 without recourse to empiri-
cism. Thus, the second challenge raised by Richard and Herbert—
achieving true predictive power—can be met even without going
through themathematical tedium of identifying the unitary trans-
formationwhichminimizes the spatial overlap of pertinent orbitals,
from which the nature of the failure of standard functionals be-
comes apparent.

For further confirmation of our computational approach, we
performed similar calculations for four additional molecules:
benzene, azulene, phenanthrene, and biphenylene, shown in
Figure 3. These four molecules were chosen for several reasons.
First, these molecules represent scenarios that are more general
than that afforded by the oligacene series. Benzene is of higher

symmetry, azulene is a nonalternant hydrocarbon, phenanthrene
is a nonlinear hydrocarbon, and biphenylene exhibits antiaroma-
ticity. Second, Falden et al. recently provided wave function-
based reference values for these molecules (of which we use the
CC2 results for consistency).76 Third, as summarized in Table 1,
when using B3LYP each molecule exhibits both “well-predicted”
low-lying excitation energies (i.e., showing differences of∼0.1�
0.2 eV from the CC2 values) and “poorly-predicted” low-lying
excitation energies (i.e., showing differences of ∼0.3�0.5 eV
from the CC2 values).

Table 1 shows that the optimized BNL results provide for a
balanced and satisfactory level of accuracy (a mean error of
∼0.15 eV for both types of excitations), despite the different
nature of both the problematic and the nonproblematic transi-
tions. Furthermore, as also shown in Table 1, each molecule
possesses its own different optimally tuned range-separation
parameter, underscoring the importance of optimal, molecule-
specific tuning. They also lend further support our above pre-
sented theory of charge-transfer-like excitation: For azulene,
unlike its alternant analogue, naphthalene, the HOMO�LU-
MO dominated transition is well-described by B3LYP. And
indeed, for azulene no unitary transformation of the HOMO
and LUMO orbitals was found to result in weakly spatially
overlapping orbitals. The minimal spatial overlap was found
to be 0.55 with B3LYP (0.57 with BNL), for the original
HOMO and LUMO, and any 2� 2 unitary transformation of
the HOMO and LUMO orbitals was found to merely increase
this number. This again underscores the diagnostic role unitary
transformations play in uncovering whether, and which, excita-
tions may be prone to charge-transfer-like errors. At the same
time, it shows that with an optimally tuned RSH functional, such
diagnostics are not essential to obtaining quantitatively predic-
tive results.

Table 1. Lowest Singlet Excitations for Benzene, Azulene, Phenanthrene, and Biphenylenea

molecule BP86 B3LYP BNL* CC276 dominant transition optimal γ transition dipole moment

“Well-Predicted” Excitation
benzene 5.32 5.47 5.50 5.27 HfL

H-1fL+1

0.310 0.00

azulene 2.34 2.41 2.35 2.31 HfL 0.262 0.37 (short axis)

phenanthrene 3.66 3.98 4.19 4.04 H-1fL

HfL+1

0.247 0.10 (short axis)

biphenylene 3.67 3.93 4.11 3.88 H-1fL

HfL+1

0.253 1.08 (long axis)

“Poorly Predicted” Excitation

benzene 6.07 6.16 6.40 6.56 HfL+1

H-1fL

0.310 0.00

azulene 3.49 3.64 3.79 3.95 H-1fL

HfL+1

0.262 0.19 (long axis)

phenanthrene 3.92 4.22 4.57 4.70 HfL

H-1fL+1

0.247 0.85 (long axis)

biphenylene 3.14 3.32 3.57 3.69 HfL 0.253 0.00
a Excitation energies, in eV, obtained fromTDDFT calculations with the BP86GGA functional, the B3LYP standard hybrid functional, and the optimally
tuned BNL range-separated hybrid functional are compared to reference CC2 values, taken from ref 71. Transitions where TDDFT with B3LYP
provides satisfactory agreement with CC2 results (“well-predicted” excitations) are grouped separately from transitions where agreement was not
satisfactory (“poorly predicted” excitations). Also given are the dominating transitions (where “H” stands for HOMO and “L” for LUMO) as well the
optimal range-separation parameter, γ, and the resulting dipole moment (in atomic units) for the optimally tuned BNL calculations.
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IV. CONCLUSIONS

In conclusion, we have addressed the conundrum posed by
“charge-transfer excitations in disguise”. We have shown that
such excitations are due to a small spatial overlap in orbitals ob-
tained from the underlying single-electron orbitals by means of a
unitary transformation. Furthermore, we have shown that, as in
true charge-transfer excitations, this necessarily results in failure
of linear-response TDDFT with standard functionals. Second,
we show that with optimal tuning of a range-separated hybrid
functional, so as to enforce the DFT version of Koopmans’
theorem, the predictive power of TDDFT is restored even for
such difficult cases without any external reference data and
without any adjustable parameters. We demonstrated the success
of this approach on the oligoacene series and on related hydro-
carbons. This resolves a long-standing question in TDDFT and
extends the scope of molecules and systems to which TDDFT
can be applied in a predictive manner.
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