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Frequency dependent exchange-correlation kernels for time-dependent density functional theory can be used
to construct approximate exchange-correlation potentials. The resulting potentials are usually not translation-
ally covariant nor do they obey the so-called zero-force condition. These two basic symmetry requirements are
essential for using the potentials in actual applications �even in the linear regime�. We provide two pragmatic
methods for fully imposing these conditions for both linear and nonlinear regimes. As an example, we take the
Gross and Kohn frequency dependent XC functional �Phys. Rev. Lett. 55, 2850 �1985��, correct it, and
numerically test it on a sodium metal cluster. Violation of the basic symmetries causes instabilities or spurious
low frequency modes.
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I. INTRODUCTION

Time-dependent density functional theory �TDDFT�1 is
gaining recognition as a robust, accurate gentle scaling ap-
proach to computing excitation energies molecular systems.2

The idea in TDDFT is almost identical to that of the parent,
namely, density functional theory �DFT�. We replace the
physical electron system �the so-called “interacting system”�
by a system of noninteracting Fermions �the so-called “non-
interacting system”�. While the interacting particles are sub-
ject to an external force derived from the Coulomb potential
of the nucleus and the time-dependent laser field, vext�r , t�,
the noninteracting particles “feel” a force derived from an
effective potential vs�r , t� �we follow here the common prac-
tice of using the index s for quantities in the noninteracting
system�. This potential is a unique functional of the density
and is usually written as a sum,

vs�r,t� = vext�r,t� + vH�n��r,t� + vXC�n��r,t� , �1�

where vH�n��r , t�=�n�r� , t� / �r−r��d3r� is the Hartree poten-
tial. The last term is the exchange-correlation �XC� potential,
which is in general an unknown functional of the density.
The basic approximation of TDDFT is to have vXC�n� equal
to an approximate ground-state functional. This approxima-
tion is valid in the slow weakly time-dependent regime and
is known as the adiabatic functional approximation. The
adiabatic XC potentials are quite successful for calculating
excitation energies of molecules. It seems that their perfor-
mance is robust and they give relatively good results even in
cases beyond their regime of validity. A prototype example is
the adiabatic local density approximation �ALDA�. There are
many cases where ALDA yields good and sometimes excel-
lent results for molecules, clusters, metals, crystals, etc.2

However, in many other cases, ALDA’s functionals are un-
able to capture crucial parts of the dynamics of the given
system. For instance, the line broadening of the strong col-
lective excitations in metal clusters and crystals �and even in
the ideal case of homogeneous electron gas �HEG�� is missed
by ALDA. Such broadening is related to the retardation ef-
fects which are resulted from the electron-electron interac-
tion. Going beyond ALDA, and constructing nonadiabatic

XC functional, is now about a 20 year old important chal-
lenge in TDDFT.

Only few exact properties of the exact XC potential are
known. Therefore, it is a nontrivial task to improve the po-
tential beyond its adiabatic and linear parts. Gross and Kohn
�GK�3 were the first to suggest an XC potential which in the
linear response limit has abides to some exact dynamical
properties of the HEG. However, the direct application of the
GK potential to systems other than the HEG leads to the
violation of some exactly known basic symmetry laws.4,5

These laws are derived from the fundamental notions of clas-
sical mechanical description of space and time since the era
of Galileo and Newton. A complete treatment of this problem
leads one to the realm of time-dependent current-density
functional theory �TDCDFT�.6–9 However, the problems can
also be treated within TDDFT.5,10–12 The pioneering work by
Dobson et al.12 suggested to use the Lagrangian coordinate
frame, which follows the electron fluid elements, instead of
the fixed frame. However, as these authors noted, there are
difficulties with the extension of their theory to three dimen-
sions. Furthermore, we have already addressed the problems
of using the Lagrangian coordinates, practically, in our pre-
vious work.13 Similar problems emerge in the Vignale-Kohn
�VK� theory,6 while using velocity-dependent functionals
rather than the density functionals. Another disadvantage of
the VK theory is its limitation to the linear response regime
only, in both TDDFT and TDCDFT, i.e., the XC functional
preserves basic symmetries �see below� to the first order only
�unless one uses the Lagrangian coordinates�.

In TDDFT, the basic symmetries reduce to two con-
straints, as discussed in Sec. II. This paper centers on the
ways a given potential �such as the Gross-Kohn� can be
implemented in a way that obeys the basic principles, for any
order of approximation, linear as nonlinear. Our previous
work on this issue10 relied on the use of an action functional
which was Galilean invariant14 and is now extended in two
senses. First, we describe methods for adapting the XC po-
tentials which do not depend on an action. Second, we com-
pare the numerical performance of the GK functional with
and without imposing the basic symmetries. We find that the
lack of observance of the symmetries may cause the appear-
ance of spurious modes or instabilities. The two basic prin-
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ciples we address, which must be obeyed in TDDFT, were
first described by Vignale.5 We consider a density distribu-
tion of electrons in two interacting systems starting from its
ground state. One principle results from Galilean covariance
and considers two observers, moving one with respect to the
other, with coordinate system R� and R, respectively �R
=R�+x�t��. Both are watching the same electronic density,
described as n�R , t� by one observer and n��R� , t� by the
second,

n��R�,t� = n�R� + x�t�,t� . �2�

According to Newton, the force −�vext�R , t� measured by
one observer is related to that measured by the second by an
additive inertial force �assuming unit mass�,

− �vext� �R�,t� = − �vext�R� + x�t�,t� + ẍ�t� . �3�

When the two observers consider the noninteracting system,
they find the same rule,

− �vs��R�,t� = − �vs�R� + x�t�,t� + ẍ�t� . �4�

Combining Eqs. �3�, �4�, and �1� gives �up to a purely time-
dependent phase� the “translationally covariance” �TC�
condition5

vXC�n���R�,t� = vXC�n��R + x�t�,t� . �5�

A different kind of constraint arises from the fact that the
electron density n�R , t� is the same in both interacting and
noninteracting systems. The acceleration of the electronic
center of mass is therefore identical in both systems and so
according to Ehrenfest’s theorem,15 the force expectation
value must be equal, too,

−� n�r,t� � vext�r,t�d3r = −� n�r,t� � vs�r,t�d3r . �6�

Using Eq. �1� and the easily shown fact that the Hartree
potential does not contribute to the expectation value of the
force, we find the second, “no XC force condition”5 or, for
brevity, “no force condition,”

EXC�t� � −
1

Ne
� n�R,t� � vXC�R,t�d3R = 0. �7�

Here, we have defined the average XC force per particle,
which must be zero. One point of interest is the behavior of
EXC even in approximate cases when a very weak time-
dependent perturbation is applied. In this case, we are usu-
ally interested only in the linear response. We assume that
the ground-state XC potential already obeys the zero-force
condition. This is indeed the case in all popular potentials. In
this case, it is possible to show that in general EXC is a first
order quantity since

EXC�t� = −
1

Ne
� �n�R,t� � vXC�R�dR

+
1

Ne
� �n�R��vXC�R,t�dR . �8�

One obvious exception is the homogeneous gas case, where

to leading order EXC is already zero. Thus, there is no need to
impose the zero-force condition in this special case.

In TDCDFT, we require that both net torque and net force
vanish. In TDDFT, the XC potential must be TC and comply
to the zero XC force condition in order to satisfy the har-
monic potential theorem �HPT�,4 as detailed in Appendix A.

XC potentials which often go beyond the adiabatic ap-
proximation are often written in the following way:

vXC�n��r,t� = vA�n��r,t� + vM�n��r,t� , �9�

where vA is an approximate adiabatic potential �say, ALDA�
and vM�n� includes memory �nonadiabatic� effects.

II. IMPOSING TRANSLATIONAL COVARIANCE

In this section, we first survey the center of mass method
to impose translational covariance. This method was devel-
oped by Vignale.5 We then implement this method within the
linear response Kernel.

Given a functional VXC�n�, how one can convert it into a
TC functional, in the sense of Eq. �5� in the following
way5,10,14 by using the concept of a “proper density” �i.e., the
density as seen by an observer in the center of mass system�.
A proper density is a density defined with respect to a body
fixed frame. For example, the density defined with respect to
the electronic center of mass �CM�,

D�n��t� �
1

Ne
� n�R�,t�R�d3R�, �10�

where Ne is the number of electrons. In this case, we have
the obvious relation �D�t� /�n�R� , t��=��t− t��R� /Ne. A
proper density is a density defined with respect to D�t�, i.e.,
with respect to a coordinate r in the CM system �CMS�,

r = R − D�n��t� . �11�

Hence, a “proper density” N�r , t� in the CMS is

N�r,t� � n�r + D�n��t�,t� . �12�

The relation between D in the unprimed and primed systems
is clearly given by

D�n���t� = D�n��t� − x�t� . �13�

So, using Eqs. �2�, �12�, and �13�, we show that the coordi-
nate r and the proper density are translationally invariant
�TI� �i.e., both observers will report the same value�,

N�n���r,t� = N�n��r,t� . �14�

Given any VXC�R , t�, we consider it as the potential in the
proper system, and thus in any other system, we can define
the potential

vXC�n��R,t� = VXC�N�n���R − D�n��t�,t� . �15�

Based on Eq. �15�, it is easily verified that this potential is
TC �i.e., obeys Eq. �5��.

In Appendix A, we give the expressions needed to correct
any linear response kernel so that it is TC. Now, we turn to
discuss the zero-force condition
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III. IMPOSING THE NO FORCE CONDITION

In the previous section, we discussed the issue of transla-
tional invariance and surveyed ways of constructing TC po-
tentials. In this section, we discuss the issue of zero XC
force. We find that imposing this condition can be done in
two ways. The first is by introducing a compensating homo-
geneous field. The second is by introducing a nonhomoge-
neous field which is optimized in some sense.

A. Compensating homogeneous field method

Given any ṽXC�n��R , t�, it is straightforward to correct it
to satisfy the zero XC force condition. In our previous ap-
proach to the subject, we used a TI action to derive a poten-
tial which is TC and obeys the no force condition. We found
that besides the TC terms, a compensating TD homogeneous
electric field appears,10

vXC�n��R,t� = ṽXC�R,t� + ẼXC�t� · �R − D�t�� , �16�

where Ne=�n�R , t�d3R is the number of electrons and ẼXC is
the XC force per particle of ṽXC,

ẼXC�t� = −
1

Ne
� �ṽXC�Y�n�Y�d3R , �17�

where we now introduce a new notation, of a space-time
point Y��R , t�, to facilitate the equations. The XC kernel
for the homogeneous field correction is determined by a lin-
ear response analysis of Eq. �16�. We denote the sensitivity
of the force to a density perturbation at Y�= �R� , t�� by

Q�t;Y�� �
�

�n�R�,t��
ẼXC�t� = −

1

Ne
� ṽXC�R�,t����t − t��

+
1

Ne
� f̃XC�R,t;R�,t�� � n�R,t�d3R , �18�

where f̃XC�Y ,Y��=�ṽ�Y� /�n�Y��. Assuming that, thus, the
XC kernel of Eq. �16� by the HF method is

FHFXC�Y;Y�� = f̃XC�Y;Y�� + Q�t;Y�� · �R − D0� , �19�

where D0 is the electronic center of mass in the ground-state
system.

B. Minimal tampering approach

The fix for no-force condition appearing in Eq. �16� in-
volves a linear potential felt all over space. This seems some-
what inconvenient and perhaps artificial. It seems that a local
term is more physical and convenient. To obtain a local po-
tential, we take the following approach. Given an arbitrary
ṽXC�R , t�, we would like to find a potential obeying the zero-
force condition but one which is as similar to it as possible.
We call the new XC potential the minimal tampering XC
�MTXC� potential. We define, therefore, the following func-
tional A�v� to be minimized including a zero-force con-
straint:

A�v� =
1

2
� d3R�v�Y� − ṽXC�Y��2 + �� ·� d3Rn�Y� � v�Y� ,

�20�

where Y��R , t� as before and �� is a 3-vector of Lagrange
multipliers. The stationary point of A�v� ,�A�v� /�v�R , t�=0
yields the minimal tampering potential VMTXC�R , t�,

VMTXC�n��Y� = ṽXC�n��Y� + �� �t� · �n�Y� . �21�

Multiplying both sides of Eq. �21� by �n�R , t�, integrating

over space, and solving for �� give

�� �t� = − MJ −1ẼXC, �22�

where the 3�3 symmetric matrix positive definite MJ is de-
fined by the density gradient, independent of ṽXC,

Mij�t� =
1

Ne
� �in�R,t�� jn�R,t�d3R . �23�

It is straightforward to prove from Eqs. �21� and �22�, that
VMTXC�R , t� is TC, provided that ṽXC�R , t� is so.

One possible difficulty with this method is when the den-
sity is nearly homogeneous, so that M is close to singular. As
discussed above �after Eq. �8��, in a perfectly homogeneous
gas case, the first order correction is zero. So, we need only
to stabilize � so that in the homogeneous case, it gives a zero
result. Therefore, a Tikhonov regularization is in place, re-

placing the inverse of MJ in Eq. �22� by a regularized inverse,

MJ �t�−1 → − �MJ 2 + �I�−1MJ , �24�

where � is a small positive regularization parameter.
What is the XC kernel corresponding to the minimal tam-

pering approach in Eq. �21�? Note that for the nonhomoge-
neous electron distribution, the quantity � is already a first
order quantity so

FMTXC�Y;Y�� = f̃XC�Y;Y�� − MJ −1Q�t;Y�� · �n�R� .

�25�

IV. NUMERICAL APPLICATIONS

By studying simple model cases of sodium ionic clusters,
we now demonstrate some of the application issues involved
in satisfying the basic requirements discussed above. Let us
take an XC functional composed of the ALDA functional
�which obeys these requirements� and add to it a memory
part, vmem�R , t�,

vXC�n��R,t� = vALDA�n�R,t�� + vmem�n��R,t� . �26�

Here, vLDA�n�= �d /dn���LDA�n�n�, where �LDA is the energy
per electron of a homogeneous electron gas. In order to
specify the memory term, we use the linear response kernel

suggested by Gross and Kohn,3 Im f̃GK�n ,��=a� / �1
+b�2�5/4, where a and b depend on the density n, as given in

Refs. 3 and 16. The real part of f̃GK is determined using the
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Kramers-Kronig relations �see Appendix D of Ref. 7 for the
details�. By definition, the linear response around the ground
state of a homogeneous electron gas gives

�vXC�n,t� = �
0

t

fGK�n,t − t���n�t��dt , �27�

where the real-time GK kernel is defined by

fGK�n,t� =
1

2�
�

−	

	

f̃GK�n,��e−i�td�, t 
 0. �28�

In order to get a potential which is valid beyond linear re-
sponse but compatible with the linear response of the homo-
geneous electron gas, we first construct the memory potential

vmem�n��R,t� = �
0

t

FGK�n�R,t�,t − t��ṅ�R,t��dt�, �29�

where FGK�n , t� is defined as

FGK�n,t� = �
0

t

fGK�n,t��dt� − vLDA� �n� . �30�

It is shown in Appendix B that a linear response calculation
around the ground state performed on Eq. �26� using the
definition of Eq. �29� is compatible with the GK linear re-
sponse expression in Eq. �27�. Note that the kernel definition
in Eq. �29� is nonunique, where one may define it as in Ref.
12.

The memory potential in Eq. �29� is still not TC. So, we
must correct it using the method of Sec. II �Eq. �15��, giving
the following memory functional:

vmem-TC�n��R,t� = �
0

t

FGK�n�R,t�,t − t��ṅ�R + D�n��t��

− D�n��t�,t��dt�. �31�

We chose to demonstrate the memory effects on a cluster of
Na21

+ at zero temperature. The choice of this cluster size is
its near spherical shape17 and we have made sure that the
behavior depicted here is typical of other sodium clusters as
well. Experimental absorption measurements of Na21

+ were
published by Schmidt and Haberland;18 however, these mea-
surements are performed in temperatures where inhomoge-
neous effects are non-negligible, and so we defer the com-
parison of our results with these experiments to a future,
more detailed paper.

Two model cases of Na21
+ are studied. One is a jellium

sphere, with almost uniform ionic distribution,

n+�R� =
n0

1 + e�R−rc�/w . �32�

Here, we chose the parameter values w=0.4a0, rc=10.8a0,
and n0=0.004ea0

−3. These parameters ensure a “bulk” density
corresponding to sodium and a total charge of N+=21e. The
second model is more realistic, where the positive charge is
lumped as 21 atomic cores forming a cluster. In this case, a
local pseudopotential �PP� is used19 so that only valence

electrons are considered. The DFT energy of the positive
charge and 20 electrons is written as

E�n� = Ts�n� +� n�R�v+�R�d3R + EH�n� + EXC�n� + Enuc.

�33�

Here, v+�R� is the potential exerted by the positive charge on
the electrons, EH�n�= 1

2 �n�R�vH�n��R�d3R is the Hartree en-
ergy, and vH�n��R�=�n�R�� / �R−R��d3R� is the Hartree po-
tential. The approximation we use for the XC energy is
ELDA�n�=�n�R��hom�n�R��d3R, where �hom�n� is the XC en-
ergy per particle of a homogeneous electron gas at density n,
parametrized by Perdew and Wang.20 Finally, Enuc is the
nuclear repulsion energy. In the case of the atomic cluster,
both v+ and Enuc are explicit functions of the atomic core
positions. The placement of the atomic cores in the cluster is
thus determined by the standard process of minimizing the
total energy E�n� �sum of electronic and nuclear repulsion�.
Specifically, we start from a well-known atomic configura-
tion, reported in Ref. 17, and refined it using our code. This
minimization process caused only a slight rearrangement.

The absorption spectrum is determined by a procedure
similar to the method depicted in Refs. 10 and 21, where
starting from the ground-state orbitals of the optimized struc-
ture, the KS orbitals are propagated in time according to the
nonlinear time-dependent Schrödinger equation �the so-
called time-dependent Kohn-Sham equations�,

i�̇ j�R,t� = −
1

2
�2� j�R,t� + vs�n��R,t�� j�R,t� ,

j = 1, . . . ,Ne/2, �34�

with the density given by the orbital densities according to

n�R,t� = 2 	
j=1

Ne/2

�� j�2 �35�

�closed shell is assumed for simplicity�. The effective poten-
tial vs is written as follows:

vs�n��R,t� = v+�R� + vp�R,t� + vH�n�t���R� + vLDA�n�t���R�

+ vmem�n��R� . �36�

Here, the driving TD perturbation is an impulsive �almost
delta function� dipole-coupled electric field pulse,

vp�R,t� = − E0Ze−�t − t0�2/2�2
, �37�

with parameters

TABLE I. The notation for combinations of the GK memory
potential corrected for TC and/or the zero-force condition.

Zero force
not enforced

Zero force enforced:
Homogeneous field

Zero force enforced:
Minimal tampering

TC TC/0 TC/1 TC/2

Non-TC GK GK/1 GK/2
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E0 = 10−3Eha0
−1, t0 = 8
Eh

−1, � = 2a0. �38�

The memory potential vmem is based on the GK XC kernel
�see Eqs. �29� and �31��, with different combinations of sym-
metry corrections, as described below.

For each of the two Na21
+ models, we compared the time-

dependent dipole obtained from calculations using four dif-
ferent XC potentials. The nomenclature we use for the vari-
ous potentials is shown in Table I.

We first study the dipole spectrum of Na21
+ obtained from

Gross-Kohn based potentials which are translationally cova-
riant. Two models for the Na21

+ cluster are considered: a
spherical jellium model, with results shown in Fig. 1, and a
more realistic atomistic model, with results shown in Fig. 2.
For reference, we include in each figure also the signal from
adiabatic ALDA �that is, with vmem set to zero in Eq. �36��
which does not decay. We consider four types of corrected
potentials. The signal computed by TC and the two zero-
force potentials are stable and decaying. However, when one
neglects to correct for zero force, the resulting signal �TC/0�
exhibits a nonphysical growth. It is difficult to determine if

this is an exponential growth resulting from instability or a
strong but spurious low frequency mode. The results for a
more realistic, atomic model of the Na21

+ cluster are shown
in Fig. 2. In this case, the spurious low-energy mode has
luckily disappeared when the zero-force correction is not ap-
plied. It is interesting to note that the plasmon decay due to
memory is considerably faster when a realistic atomistic po-
tential is used. This is probably due to the fact, arising from
the HPT,4 that there can be no memory effects in perfectly
harmonic external potentials. Inside spherical jellium, the ex-
ternal potential is harmonic and so anharmonicity is weak,
felt only near the surface; thus, memory effects are not large.

Consider now what can happen when TC is not observed.
In Fig. 3, using the jellium model, we see that the hierarchy
is exactly opposite to the previous case. Here, the strongest
decay belongs to the uncorrected potential, vGK �GK line�.
On the other hand, if one corrects for the zero-force condi-
tion, the results are very sensitive to the way one does this,
as clearly seen when comparing the signal for GK/2 �decay-
ing� and GK/1 �growing�.

The situations are once again very different when atomic
clusters are used, as shown in Fig. 4. Here, the decay of all

FIG. 1. �Color online� Time-dependent electronic dipole mo-
ment �polarization in the z direction� for the jellium model of the
Na21

+ cluster calculated with TC potentials.

FIG. 2. �Color online� Time-dependent dipole moment for
atomic Na21

+ calculated with TC potentials.

FIG. 3. �Color online� Time-dependent electronic dipole mo-
ment for the jellium model of Na21

+ calculated with non-TC
potentials.

FIG. 4. �Color online� Time-dependent dipole moment for
atomic Na21

+ calculated with non-TC potentials.
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signals is faster, as before, but the large sensitivity to the
correction of the zero-force condition is smaller. It is clear
that the TC correction is vital and only when TC is enforced
do the results depend weakly on the way the zero force is
enforced.

V. DISCUSSION AND CONCLUSIONS

We have presented the theory for imposing two basic
symmetry constraints: TC and zero force on a given memory
functional. We also gave the expressions for linear response
kernels in these cases. We discussed two ways to impose the
zero-force condition. One is through the imposing of a ho-
mogeneous electric field, resulting in a highly nonlocal po-
tential, and the second method involves imposition of a local
potential depending on the gradients of the density.

We have presented calculations on two �jellium and ato-
mistic� models of the Na21

+ cluster showing the effects the
memory has on the dipole response. Our results show that
enforcing TC and zero-force conditions severely affects the
dynamics of the system. These effects emerge especially in
the case of the jellium sphere, as is shown in Fig. 1, where
the neglect of enforcing the zero-force condition can result in
developing spurious low frequency modes. If we preserve
the zero-force condition but not TC, an unstable mode can
also arise �Fig. 3�. The emergence of a low mode can be
explained by analytical considerations given in Appendix C.

Another interesting point arises while comparing between
the Na21

+ jellium and the atomic clusters. Consistently, for
the corrected TC/1 and TC/2 potentials in Fig. 1, the dipole
decays much faster when the atomic cluster is corrugated by
a local atomic potential. We have explained this striking dif-
ference using as resulting from the near-harmonic potential
existing in the jellium sphere. Perfectly Harmonic potentials
exhibit no decay.4

The methods developed here can be applied to many sug-
gestions existing in the literature of non-TC and non-zero-
force kernels.3,16,22 It can also be used in conjunction with
kernels recently developed by many-body perturbation
theory approaches.23–25

ACKNOWLEDGMENT

We gratefully acknowledge funding by a grant from the
US-Israel Binational Science Foundation.

APPENDIX A: TRANSLATIONALLY COVARIANCE
CORRECTION TO THE RESPONSE KERNEL

In this appendix, we give the form of the correction re-
quired to turn a non-TC kernel into a TC kernel. We start
with a general linear response case and then specialize to the
linear response of the ground state.

We want to know what is the XC kernel, fXC�Y2 ;Y1�
� fXC�R2 , t2 ;R1 , t1�, describing the response of the XC po-
tential at space-time point Y2��R2 , t2� to a small change in
the density at space-time point Y1��R1 , t1�,

�vXC�Y2� = �
0

t2 � fXC�n��Y2;Y1��n�Y1�d4Y1. �A1�

We assume that we are given a non-TC kernel FXC�y2 ,y1�
corresponding to a non-TC potential VXC�n��y� �here, we use
the abbreviation y= �R−D�t� , t��. We use the fact that a
non-TC potential can be corrected, as depicted in Eq. �15�.
Taking the variation of this equation, we have

�vXC�n��Y� = vXC�n + �n��Y� − VXC�n��Y� = VXC�N + �N��y�

− VXC�N��y� − �D · �VXC�y� . �A2�

Working out the variations in detail, it is possible to show
that the TC kernel fXC is constructed from the non-TC kernel
FXC according to

fXC�Y;Y�� = FXC�y,y�� +
1

Ne
R� · K�y,t�� , �A3�

where the correction term is determined by

K�y,t�� =� FXC�r,t;r�,t�� � N�r�,t��dr�

− ��t − t�� � VXC�N��y� . �A4�

We already know that adiabatic potentials are automatically
TC. Let us see if the correction K is indeed zero in this
case. When the potential functional is adiabatic, we have
vXC�n��R , t�=w�n�R , t��=w�N�r , t��, for some function w�n�.
In this case, it is straightforward to show that

FXC�y,y�� = ��t − t����r − r��w��N�y�� . �A5�

Plugging this into Eq. �A4� gives after some manipulations
K=0 in this adiabatic case, as required.

1. Translational covariance correcting the stationary kernel

The correction term in Eq. �A4� can be simplified if the
response of the stationary ground state is considered as a
special but important case. In this case, the kernels depend
only on t− t� so we can set t�=0. Also, the unperturbed CM
is stationary, so we can set D=0 �making r and R identical�.
Thus, from Eq. �15�, we obtain

K�Y� =� FXC
stat�R,R�,t� � ngs�R��dR� − ��t� � VXC,gs�R� .

�A6�

One can Fourier transform the time variable to a frequency
and obtain

f̃XC�R,R�;�� = F̃XC�R,R�;�� +
1

Ne
R� · K̃�y,�� , �A7�

where the correction term is now simpler,
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K̃�Y,�� =� F̃XC
stat�R,R�,�� � ngs�R��dR� − �VXC,gs�R� .

�A8�

Note that the correction term is now dependent nonlocally on
position and on the gradient of the density. This is a direct
and necessary result of memory.

APPENDIX B: MEMORY KERNEL

In this appendix, we study the relation between the XC
kernel and the adiabatic part and nonadiabatic part of the XC
potential in detail.

We construct a memory including the XC potential func-
tional F�n ,�� in the following way:

vXC�R,t� = �
0

t

F�n�R,t�,t − t��ṅ�R,t��dt� + vAD�n�R,t�� .

�B1�

We now associate both the adiabatic part vAD and the kernel
dependent part F�n ,�� with the homogeneous electron gas
XC kernel f�n ,��� fXC

h �n ,�� defined through the linear re-
sponse relation

�vXC�n,t� = �
0

t

f�n,t − t���n�t��dt�. �B2�

As is customary, we use the Fourier transform of f ,

f̃�n,�� = �
0

	

f�n,t�ei�tdt . �B3�

To get the relation between f and F, we take the linear re-
sponse of Eq. �B1� around the ground state, i.e., we assume
n�R , t�=n�R ,0�+�n�R , t� and develop to first order in
�n�R , t�. We then have

�vXC�R,t� = �
0

t

F�n�R�,t − t���ṅ�R,t��dt� + vAD� �R,t��n�R,t� .

�B4�

Since everything is local, we drop henceforth the R notation.
After integration by parts, we obtain

�vXC�t� = �
0

t

Ḟ�n,t − t���n�t��dt� + �F�n,0� + vAD� �n���n�t� .

�B5�

Comparing with Eq. �B2�, we find

f�n,t − t�� = Ḟ�n,t − t����t − t�� + �F�n,0� + vAD� �n����t − t�� .

�B6�

In order for all this to make sense, we must demand two
things,

Ḟ�n,�� = f�n,�� �B7�

and

F�n,0� = − vAD� �n� . �B8�

Another constraint is that we want to have a finite memory,
i.e.,

lim
�→	

F�n,�� = 0. �B9�

From Eq. �B7�, we also write

F�n,�� = F�n,0� + �
0

�

f�n,���d��, � � 0. �B10�

Inserting �→	 and using Eq. �B9�, we find

F�n,0� = − �
0

	

f�n,t��dt�. �B11�

The integral on the right is simply the DC term in the fre-

quency kernel f̃�n ,0�. Thus, a stringent constraint on the
compatibility of vAD with f is

vAD� �n� = f̃�n,0� . �B12�

We note that the GK kernel acknowledges this and constructs

f̃GK to obey Eq. �B12� for the LDA potential. To summarize,
fXC determines both the adiabatic potential vAD through Eq.
�B12� and the memory part of the XC potential through

F�n,�� = ����
�
0

�

fGK�n,���d�� − vAD� �n�� . �B13�

Since all the arguments are valid for the homogeneous elec-
tron gas, we must have in this development vAD�n�
=vLDA�n�. As noted above, the Gross-Kohn XC kernel indeed
satisfies this constraint.3

APPENDIX C: SPURIOUS MODES

In this appendix, we show why spurious modes may arise
when zero force is not enforced. Consider a harmonic poten-

tial vharm�R�= 1
2RTHJR and a homogeneous time-dependent

external field E�t�. Now, apply Ehrenfest’s theorem to the
electronic center of mass D�t� �Eq. �10�� in the time-
dependent Kohn-Sham equations �Eq. �34��. The Hartree and
LDA potentials do not exert a net force so the equation of
motion for D is

D̈�t� = − HJD�t� + E�t� −� n�R,t��� vmem�R,t�d3R .

�C1�

Here, we assume that the memory vmem is TC but does not
obey the zero-force condition. Denote n0�R� the ground-state
density and linearize to the first order density response
n1�r , t�. The dipole moment is a first order quantity, D1

= �1 /Ne��n1�R , t�Rd3R. Then, expanding Eq. �29� to first or-
der,
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vmem�R,t� = ��t��
0

t

FXC�n0�R�,t − t��

��ṅ1�R,t�� + Ḋ1�t�� · �n0�R��dt�. �C2�

We find that the memory potential is itself a first order quan-
tity. Therefore, the half Fourier transformation of Eq. �C1� to
first order is

�2D̃1 = hJ D̃1 − Ẽ +� n0�R� � ṽmem�R,��d3R . �C3�

From Eq. �C2�, the half Fourier transform of vM is

ṽmem�R,�� = i�F̃XC�n0,���ñ1��� + D̃1��� · �n0� . �C4�

Substituting the potential in Eq. �C4� into Eq. �C3�, we ob-
tain the following form:

D̃1 =
Q̃

�HJ + i��J − �2�
, �C5�

where

�J �� F̃XC�n0,����� n0�� n0�d3R ,

Q̃ � Ẽ + i�� F̃XC�n0,���� n0�R�ñ1���d3R . �C6�

Both the tensor �J and the shift Q̃ are zero if the memory
potential obeys the zero-force condition. In this case, the
only poles in D1��� are those due to the eigenvalues of the

harmonic Hessian HJ . This is the content of the harmonic
potential theorem in linear response. However, when the
zero-force condition is not obeyed, we immediately see that
the poles may either shift or even obtain decaying �positive
imaginary poles� or exploding characteristics �negative
imaginary poles�, depending on the tensor �J .
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