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ABSTRACT
Over this past decade, we combined the idea of stochastic resolution of identity with a variety of electronic structure methods. In our
stochastic Kohn-Sham density functional theory (DFT) method, the density is an average over multiple stochastic samples, with stochas-
tic errors that decrease as the inverse square root of the number of sampling orbitals. Here, we develop a stochastic embedding density
functional theory method (se-DFT) that selectively reduces the stochastic error (specifically on the forces) for a selected subsystem(s). The
motivation, similar to that of other quantum embedding methods, is that for many systems of practical interest, the properties are often
determined by only a small subsystem. In stochastic embedding DFT, two sets of orbitals are used: a deterministic one associated with the
embedded subspace and the rest, which is described by a stochastic set. The method agrees exactly with deterministic calculations in the
limit of a large number of stochastic samples. We apply se-DFT to study a p-nitroaniline molecule in water, where the statistical errors
in the forces on the system (the p-nitroaniline molecule) are reduced by an order of magnitude compared with nonembedding stochastic
DFT.
Published under license by AIP Publishing. https://doi.org/10.1063/1.5110226., s

I. INTRODUCTION

DFT (Density Functional Theory) traditionally follows the
Kohn-Sham scheme where a set of one-particle equations is solved
self-consistently. For large systems, the solution of these equations
scales as O(N2

e ) −O(N3
e ) with the number of electrons Ne, so there

is a lot of interest in variants that scale linearly with system size. Such
methods include orbital-free DFT with density-dependent kinetic
energy functionals,1,2 linear-scaling approaches where the system is
split into parts that are woven together via constraints,3 and embed-
ding techniques where an inner part is treated by DFT and an outer
part by orbital-free DFT.4–6

Previously, we developed stochastic DFT (sDFT), a method
that can be viewed as a bridge between Kohn-Sham DFT and

orbital-free DFT.7,8 Instead of computing Kohn-Sham orbitals for
all occupied states, we apply a Chebyshev filter to a few stochas-
tic orbitals7 and extract the density from these filtered orbitals,
circumventing the time-consuming diagonalization step. In the
limit of infinitely many stochastic samples, the stochastic errors
approach zero and the results agree exactly with deterministic
calculations.

In practice, the sample size will be finite, and there will be
stochastic noises associated with the results. There is no prob-
lem with noisy results per se. People use noise to simulate tem-
perature effects. For example, the noisy forces of sDFT have been
used to determine the structure of nanocrystals at finite tempera-
tures by sampling the Boltzmann distribution through the technique
known as Langevin dynamics.9 When the noisy forces have a large
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standard deviation, the friction coefficient in the Langevin equation
must be large and this deteriorates the sampling efficiency. Thus,
there is a great advantage in reducing the fluctuations in the noise.
Hence, our aim in the manuscript is to discover a way to reduce
the noise in the force by a significant factor than in our previous
applications.

In a follow-up work,9–11 we have shown how to reduce the
standard deviation in sDFT (and therefore accelerate the conver-
gence), using a method we label stochastic-fragment DFT (sf-DFT).
Here, instead of sampling stochastically the full density, we sample
stochastically only the difference between the full density and a zero-
order density which is easy to calculate. The difference is generally
small, thereby reducing the fluctuations.

Here, we develop an alternate method whereby a given subre-
gion is embedded. Essentially, this subregion is treated determinis-
tically, while the rest of the system is treated stochastically (this is
a simplifying view, and the more precise methodology is described
later). The motivation for this method is that, for many realistic
systems, only a subsystem is of particular importance. The idea
of embedding was widely adopted to treat such systems. In most
embedding methods, the subsystem of interest is calculated at higher
level theories, while the rest is treated with less accurate but more
efficient methods to reduce computational cost.4,5,12–23 Our stochas-
tic density functional theory embedding method adopts an analo-
gous strategy, except that here the larger stochastic region embeds
the smaller deterministic part.

An attractive feature of the stochastic embedding method is
that the errors due to the embedding are numerically controlled
since in the limit of infinitely many stochastic samplings, the method
is exact. As such, there is no residual arbitrariness due to the choice
of an embedding potential.

This paper is organized as follows. Sec. I presents the theory,
and the practical algorithm is reviewed in Sec. II. In Sec. III, a
practical system is studied, embedding of a dye (p-nitroaniline) in
216 water molecules. Discussion and possible extensions follow in
Sec. IV.

II. THEORY
A. Stochastic DFT

We first review stochastic DFT as developed in our previous
works.7,10–12

In DFT, the key component is the electron density ρ(r), which
we express as the trace of a Heaviside step function,

ρ(r)
2
= ⟨r∣Θ(μ −H)∣r⟩, (1)

where we assume spin-unpolarized DFT. Here, μ is the electron
chemical potential, determined by ensuring the correct total number
of electrons,

Ne = ∫ ρ(r)dr, (2)

and the one-body Hamiltonian is H = − 1
2∇

2 + v(r), where
we introduced the effective one-electron potential due to the
nuclear (vN) electron-electron Coulomb interaction (vH) and
exchange-correlation (vXC) parts. We assume for simplicity that

the exchange-correlation (and therefore the total effective) potential
depends on the local density, v = v[ρ].

In the usual deterministic formulations of Kohn-Sham DFT,
the electron density is expressed as the sum over one-electron states,
and the total number of electrons is determined by the occupation
number of each state. Thus, the Heaviside filter becomes a projection
to the occupied subspace,

Θ(μ −H) = ∑
i≤Nocc

∣ψi⟩⟨ψi∣, (3)

where we introduced the number of occupied orbitals (Nocc = Ne/2).
The one-electron orbitals ψi are obtained by diagonalization of the
effective one-electron Hamiltonian matrix, resulting in a nominal
N3

e scaling of Kohn-Sham DFT. Expectation values of one-electron
operators are obtained from the occupied states,

⟨A⟩ = ∑
i≤Nocc

⟨ψi∣A∣ψi⟩. (4)

In stochastic Kohn-Sham DFT, on the other hand, we use a set
of stochastic orbitals, ξ(r), with the property that

{∣ξ⟩⟨ξ∣}ξ = I, (5)

where the curly brackets stand for averaging over all stochastic
orbitals. Inserting the identity operator in the expression for ρ(r),
the electron density is thus expressible as

ρ(r) = {⟨r∣Θ
1
2 ∣ξ⟩⟨ξ∣Θ

1
2 ∣r⟩}

ξ
= {∣ξμ(r)∣2}ξ , (6)

where we abbreviate Θ
1
2 ≡ Θ 1

2 (μ −H) and ξμ ≡ Θ
1
2 ξ.

The filtered stochastic orbitals are linear combinations of all
occupied states with random coefficients,

ξμ(r) = ∑
i≤Nocc

ciϕi(r), (7)

where ci = ⟨ϕi|ξ⟩, so

{c∗i cj} = δij. (8)

Similarly, the expectation values of any one-particle operator D
is

⟨D⟩ = {⟨ξμ∣D∣ξμ⟩}ξ ≈
1
Ns
∑
ξ
⟨ξμ∣D∣ξμ⟩. (9)

Here, Ns is the number of stochastic orbitals used in practice. As
in any stochastic method, the expectation value, obtained as the
average of a finite number of samples, will have an associated
stochastic error which is proportional to 1/

√
Ns. The actual num-

ber of stochastic orbitals is chosen based on the required level of
precision.

In practice, the method relies on the fact that the calcu-
lation of each stochastic vector scales only linearly with system
size. Specifically, we use a smooth Heaviside function, Θ(μ − H)
= 1

2 erfc(β(μ −H)), where β needs to be much larger than the inverse
band gap. The smooth theta function is then expressed as a finite
sum of Chebyshev polynomials, Θ

1
2 = ∑n an(μ)Tn(Hscaled), where

Hscaled is a scaled Hamiltonian with eigenvalues in the range [−1, 1]
and an(μ) are the Chebyshev coefficients of ( 1

2 erfc(β(μ −H)))
1
2 .

Therefore,
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∣ξμ⟩ =∑
n
an(μ)∣ξn⟩, (10)

where the Chebyshev vectors are obtained recursively,
|ξn⟩ = 2Hscaled|ξn−1⟩ − |ξn−2⟩, and |ξn=0⟩ ≡ |ξ⟩.

The Chebyshev expansion makes it possible to analyt-
ically determine the chemical potential. Specifically, expand
Θ =∑nbn(μ)Tn(Hscaled), where bn(μ) are the Chebyshev coefficients
of 1

2 erfc(β(μ −H)). Then, using Eq. (2) gives

Ne

2
= 1
Ns
∑
ξ
⟨ξμ∣Θ(μ −H)∣ξμ⟩ =∑

n
bn(μ)Rn, (11)

where Rn = N−1
s ∑ξ⟨ξ∣Tn(Hscaled)∣ξ⟩. Therefore, μ is varied until

Eq. (11) is fulfilled.
Next, we turn to embedding, first traditional and then

stochastic.

B. DFT embedding
As in other embedding methods, the motivation for stochastic

DFT embedding is that in many practical applications, the properties
of a system depend on much smaller subsystem(s), such as defects in
semiconductors or active sites of proteins. Often, we do not even
care for the rest of the system except the embedded part. Even when
a quantum-mechanical treatment of the rest of the system (the envi-
ronment) is necessary, the level of precision required is usually not
as high as that of the subsystem(s) of interest.

A key component in all types of embedding methods is the
specific quantity through which the properties of the environment
are conveyed to the subsystem(s). In DFT embedding, the quan-
tity is the electron density of the entire system.18 Specifically, sub-
set A denotes the subsystem of interest, and subset B is associated
with the environment (the precise meaning of these two subsets
would be flexible). The total electron density is therefore partitioned
ρ = ρA + ρB.

In traditional deterministic DFT embedding, one then derives
an approximate functional for the two regions that captures the
energy of the environment as well as its interaction with the sub-
system(s) of interest. Solving this equation for orbitals in subset
A is equivalent to solving an ordinary Kohn-Sham equation with
an extra external potential due to the embedding. Following Kohn
Sham formulation, the external potential can be written as

vA =
δ
δρA
(Ts[ρ] − Ts[ρA]) + VH[ρB] +

δ
δρA
(Exc[ρ] − Exc[ρA]).

Of all the three terms to the right, the first term is referred to
as the nonadditive kinetic potential, which usually has the dominat-
ing contribution. Heuristically, the term can be thought of arising
from the requirement that the orbitals of the subsystems(s) should
be orthogonal to the orbitals of the environment.

In practice, this term can either be derived from its functional
form,4,18 or the orthogonality can be imposed.12–15,24,25

In our stochastic embedding DFT (se-DFT), there is the same
loose overall goal as in deterministic embedding, i.e., the differ-
ent treatment of a smaller system and the environment. However,
the methods are quite different. In our approach, the embedded
space is treated deterministically and the other (environment) is
treated stochastically but at the same level of computational meth-
ods. Therefore, the only sense in which embedding is approximate

here is numerical, i.e., if we use enough stochastic orbitals, the results
will agree exactly with fully deterministic calculations. The two
spaces (system and environment) see the same overall Hamiltonian,
and there is no uncontrolled ansatz.

Specifically, using the same language of partitioning space to
parts, we separate the total electron density into two parts, abbrevi-
ating

ρ(r)
2
= ⟨r∣Θ

1
2 Θ

1
2 ∣r⟩

= ⟨r∣Θ
1
2 PΘ

1
2 ∣r⟩ + ⟨r∣Θ

1
2 QΘ

1
2 ∥r⟩

≡ ρA(r)
2

+
ρB(r)

2
. (12)

The first term in the splitting projects onto the “A” subspace,
defined by its basis

P̂ =∑
i∈A
∣χi⟩⟨χi∣, ⟨χi∣χj⟩ = δij. (13)

Therefore,

1
2
ρA(r) =∑

i∈A
⟨r∣Θ

1
2 ∣χi⟩⟨χi∣Θ

1
2 ∣r⟩ =∑

i∈A
∣χi,μ(r)∣2, (14)

where χi,μ = Θ
1
2 (μ−H)χi. Note that the χi(r) basis does not have to be

related directly to the molecular orbitals but would typically be from
a set of atomic orbitals in a given region although there is a lot of
freedom in the definition. For example, in the example studied later,
we choose a set of local Gaussian atomic orbitals on each atom in the
embedded subsystem [labeled ϕi(r), i ∈ A] and then orthogonalize
them, to produce χi(r) = ∑j(S−

1
2 )ijϕj(r), where Sij = ⟨ϕi|ϕj⟩ is the

overlap matrix of the embedded-part atomic orbitals.
The second term in the splitting is associated with Q ≡ I − P,

the orthogonal projection to the other (“B”) subspace. Since Q2 = Q
and inserting the identity operator I = {∣ξ⟩⟨ξ∣}ξ , we get

1
2
ρB(r) = ⟨r∣Θ

1
2 QQΘ

1
2 ∣r⟩

= {⟨r∣Θ
1
2 Q∣ξ⟩⟨ξ∣QΘ

1
2 ∣r⟩}

ξ

= {[∣ξ̄μ(r)∣2}
ξ
, (15)

where

∣ξ̄μ⟩ ≡ Θ
1
2 (μ −H)Q∣ξ⟩ (16)

is obtained by two consecutive projections: first a random orbital is
projected to the space orthogonal to the embedded P part, and the
result is then projected to the occupied space of the full system.

Thus, we reach the main embedding expression, the separation
of the density into two parts,

1
2
ρ(r) =∑

i∈A
∣χi,μ(r)∣2 +

1
Ns
∑
ξ
∣ξ̄μ(r)∣2, (17)

one associated with the deterministic subspace and one with an
orthogonal stochastic part. The two parts are connected through
the application of the density matrix operator, Θ(μ −H), since the
potential in the Hamiltonian depends on the density, v = v[ρ], and
the density is a mixture of stochastic and deterministic parts.
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An important feature of the algorithm is that the deterministic
and stochastic orbitals, χiμ and ξ̄μ, that make up the density [Eq. (17)]
are not orthogonal—neither among themselves nor to each other.
The orthogonality of the P and Q spaces reflects in the orthogo-
nality of the original χi and Qξ functions, but that orthogonality is
lost when we act on χi and on Qξ with Θ

1
2 (μ − H) in Eqs. (14) and

(16). Further note that, as mentioned, the same overall Hamiltonian
[and therefore the same Θ

1
2 (μ − H)] is used in preparing both the

stochastic and deterministic orbitals, i.e., they are treated on equal
footing.

The procedure described above serves to introduce a gen-
eral and novel paradigm of embedding deterministic and stochas-
tic descriptions together. The paradigm is not limited to DFT and
would be generally applicable to other techniques, for example, time-
dependent density functional theory (TDDFT), so that the inner
region would be described by deterministically propagated orbitals,
or other methods.

We also note that the approximation in this approach, i.e., the
stochastic part, is numerically controllable. With more stochastic
orbitals, the error decreases. It does present a fully quantum alterna-
tive to other embedding methods, where one needs to increase the
size of the embedded part to ensure convergence. Furthermore, the
method scales well for a large method. The main cost is proportional
to NstochNembed

2, so it is very manageable even for very large regions
with thousands of basis set functions in the embedded region. Like
all stochastic methods, the aim is giant systems, where the gentle
scaling of the method enables a calculation.

III. ALGORITHM
The overall stochastic embedding DFT method is then quite

similar to the stochastic DFT algorithm:

1. Generate Ns stochastic orbitals: ξ(r) = ±1/
√
d3r, where d3r

is the volume element associated with the grid. Also create a
reasonable initial density ρ(r), which integrates to the correct
number of valence electrons.

2. Determine the one-particle effective potential and Hamilto-
nian H = T + v[ρ].

3. For each stochastic orbital, project out the components along
the atomic basis functions, i.e., prepare ξ̄ = Qξ,

ξ̄(r) = ξ(r) −∑
i
ciχi(k),

where

ci = ∫ χi(r)ξ(r)dr.

4. Determine the correct chemical potential μ as the one that
integrates correctly the total density, i.e., from Eq. (11) where
now

Rn =∑
i∈A
⟨χi∣Tn(Hscaled)∣χi⟩ +

1
Ns
∑
ξ
⟨ξ̄∣Tn(Hscaled)∣ξ̄⟩, (18)

i.e., the residues and therefore the constraint on the inte-
grated density include both the deterministic and stochastic
parts.

5. Chebyshev filter the orthogonalized atomic basis functions as
well as the projected stochastic functions,

∣χi,μ⟩ = Θ
1
2 (μ −H)∣χi⟩,

∣ξ̄μ⟩ = Θ
1
2 (μ −H)∣ξ̄⟩,

6. Calculate the charge densities for this μ from Eq. (17).
7. Reiterate steps 2–6 until the density does not vary, i.e., SCF

convergence is reached.

With the filtered atomic basis functions and filtered stochas-
tic orbitals, the expectation value of any one-particle operator
D is

⟨D⟩ =∑
i
⟨χi,μ∣D∣χi,μ⟩ +

1
Ns
⟨ξ̄μ∣D∣ξ̄μ⟩. (19)

The algorithm is therefore very similar to the original stochas-
tic DFT approach. The only differences are that (i) in addition to
the stochastic functions, one also needs to project the density matrix
[or more precisely Θ

1
2 (μ −H)] on the deterministic basis making

the embedded part, and (ii) for the stochastic part, we now project
out the deterministic part (i.e., apply Q) before filtering with the
Chebyshev expansion of Θ

1
2 (μ −H).

IV. COMPUTATIONAL DETAILS
We applied the stochastic density functional embedding

method to study a realistic case of embedding, i.e., a dye in water.
The dye was a p-nitroaniline molecule, and it was embedded in 216
water molecules.

A. Structure preparation
The configuration of the system was obtained from snap-

shots of molecular dynamic (MD) simulations with Gromacs 5.26

The dynamics simulations used a generalized amber force field
with charges from AM1-BCC for p-nitroaniline27 and TIP4P with
allowed flexibility of bond/bend for water.28

The simulation steps for the preparation of the configuration
were standard, involving first high temperature equilibrations of
the p-nitroaniline, followed by NVT simulations at room tempera-
ture, and then NPT equilibration at room temperature and pressure.
We then ran the MD simulation and sampled a specific configu-
ration after several nanoseconds. This configuration was used for
subsequent DFT calculations and is shown in Fig. 1.

We note that in a comprehensive study of the solvent effect, the
molecular properties should be averaged over multiple configura-
tions. However, as the purpose of the current study is to demonstrate
the capacity of the stochastic embedding DFT method, we used sin-
gle configuration instead. The restriction also allows us to focus on
the difference in results obtained from the embedding method and
purely stochastic method.

B. Stochastic embedding DFT details
For the DFT calculation, we imposed periodic boundary

conditions. A plane wave expansion was used, with atomic norm-
conserving Troullier-Martins pseudopotentials replacing the core-
valence interaction. A local-density approximation (LDA) func-
tional was used. An 883 grid with a spacing of 0.402 atomic
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FIG. 1. Configuration of the p-nitroaniline/water system used in DFT calculation.
The p-nitroaniline molecule is represented by balls and sticks, and water molecules
are represented by wire-frames.

units was used, while the plane wave kinetic-energy cutoff was 15
hartree. The inverse-temperature-like parameter β in the Heaviside
function erfc(β(μ −H))was set at β = 0.03 hartree−1, requiring 1173
Chebyshev propagations in acting with Θ

1
2 (μ −H).

For the basis functions {|χi⟩}, we used a Gaussian double-zeta
basis optimized for pseudopotentials, as given in the Quickstep29

data set.30

Three sets of calculations were carried out. The first used
Ns = 96 stochastic orbitals, without embedding. The second used
the same Ns = 96 stochastic functions but supplemented them with
the double zeta atomic basis set for all 16 atoms belonging to the
p-nitroaniline molecule. This deterministic basis set for the dye con-
tained 160 functions (an average of 10 functions per atom). The
atomic functions were orthogonalized, giving rise to 160 orthogonal
χi(r) functions. Therefore, a total of 256 functions were employed
(160 deterministic and 96 stochastic).

Since the number of deterministic functions in the second,
embedded, set of calculations was quite large, we also compared the
second set with a third set where all functions were stochastic, and
where 256 functions were used, i.e., the same overall number as in
the second set. Thus, the numerical effort, mostly associated with
the Chebyshev application of Θ

1
2 , is similar in the second and third

sets.

Each set of calculations was repeated ten times, with different
random seeds for generating the stochastic orbitals, to obtain the
standard deviation of the stochastic approaches.

To benchmark our results, we also performed a conven-
tional deterministic Kohn-Sham DFT calculation which matches the
results of Quantum-Espresso.31

V. RESULTS
The most time-consuming step in the stochastic DFT formula-

tion is the application of the Chebyshev filter. Therefore, as men-
tioned, the time required to perform calculation with embedding
and Ns = 96 (second set) is comparable to that with no embedding
and Ns = 256 (third set) and is about 2.5 times the time required
to perform calculation with no embedding and Ns = 96 (first set).
Indeed, in practice, about 14 core hours per SCF iteration (on a
cluster with 2.5 GHz nodes) were needed for the second and third
sets, with about 6 core hours for the first set. The deterministic set
required about 11 core hours per iterations. In all cases, 30 direct
inversion of the iterative subspace iterations were used for full SCF
convergence.

Next, we compared the total energy per electron obtained
from the three sets of calculations with that obtained from the
deterministic calculation, as well as the individual contribution
from Hartree and exchange-correlation energies. The comparison is
shown in Table I. The results show good overall agreement between
the stochastic and deterministic calculations. In the table, we also
included standard deviations of the various results. The first observa-
tion is that results obtained from stochastic embedding calculations
are consistent with purely stochastic calculations of the same NS.
This observation is expected because the various terms contribut-
ing to total energies are dominated by the 216 water molecules.
Another observation is that the standard deviation can be made
smaller by increasing NS. In fact, the standard deviation is expected
to be proportional to 1/

√
NS.

The effect of embedding comes to play in quantities relating
to the embedded region, and such a main quantity is the force
on each atom. Figure 2 shows the overall forces and their stan-
dard deviations for 60 out of the 644 atoms in the sample; the first
16 are the embedded dye, and the other 44 are from the water
molecules. The figure clearly shows that, with embedding, the forces
on the embedded atoms have much higher accuracy (much smaller
standard deviation) than the forces on the water molecule.

As a side remark note that the forces on the nonembed-
ded atoms have the same overall statistical fluctuations as without
embedding. We know from previous studies that for large systems

TABLE I. DFT energies per electron, in Hartree. For the stochastic calculations, the energies were obtained as average of ten calculations, and the standard deviation is included.
As seen in the table, results obtained from stochastic embedding calculations agree well with stochastic calculations of the same NS.

Ns = 96 without Ns = 96 with Ns = 256 without
embedding embedding embedding Deterministic

Total energy per electron −2.115 ± 0.0015 −2.115 ± 0.0016 −2.117 ± 0.0008 −2.117
Hartree energy per electron 1.098 ± 0.0023 1.098 ± 0.0025 1.100 ± 0.0016 1.103
Exchange-correlation energy per electron −0.521 ± 0.0004 −0.521 ± 0.0004 −0.521 ± 0.0002 −0.522
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FIG. 2. Forces and their standard deviations for 60 (out of the 664 overall) atoms,
in eV/Å. The first 16 atoms in the plot are the p-nitroaniline molecule, and the other
44 are from water molecules. In the second set, the atoms of the p-nitroaniline
are embedded, and in the first and third set, they are not. The blue circles denote
the forces calculated by deterministic DFT, while the center of each bar refers to
the average stochastic force. Red error bars are associated with the atoms of the
p-nitroaniline molecule, and green bars are used for the standard deviation of the
forces on the water atoms. Plot a) shows the results of using 96 stochastic orbitals
without embedding; plot b) shows the results of using 96 stochastic orbitals, plus
160 basis functions used for the embedded p-nitroaniline molecule; while plot c)
shows the results of using 256 stochastic orbitals, without embedding.

TABLE II. Average standard deviations of the atomic force magnitudes, in eV/Å.

Ns = 96 without Ns = 96 with Ns = 256 without
embedding embedding embedding

Average over 1.92 0.20 1.54
embedded atoms
Average over 2.23 2.22 1.47
other atoms

such as the present one, the stochastic errors are independent of
size and depend only on the number of stochastic samples. Thus,
the approach presented here would not deteriorate with the overall
size of the full system.

Coming back to the embedded system (the dye), the higher
accuracy on the dye forces is shown more quantitatively in Table II,
where the standard deviations of the forces on the dye are an order
of magnitude smaller than for water molecules.

The results show that embedding significantly reduces the
stochastic error of the accelerations for the selected (i.e., embed-
ded) atoms. As expected, when the same number of stochastic
orbitals is used, the standard deviation averaged over the nonem-
bedded atoms remains the same. Meanwhile, due to the good
description of the embedded atoms by the deterministic atomic
basis, the standard deviations of the forces for those atoms decrease
by one order of magnitude relative to the no-embedding case.
To achieve without embedding the same level of accuracy in the
forces, we will need 10 000 stochastic orbitals, which would be
very time-consuming.

VI. SUMMARY AND PROSPECTS
In summary, we presented a stochastic embedding DFT

method (se-DFT) that significantly reduces the statistical errors in
the forces for the selected subgroup of atoms (i.e., the embedded
atoms). Combined with the favorable linear scaling of stochastic
DFT, the method can be applied to large systems of practical inter-
ests. Of course, as it stands, the method is not efficient for overall
MD of the full system, due to the large stochastic errors on the envi-
ronment (i.e., nonembedded) atoms; rather, it is suitable for appli-
cations where information on a selected region is desired. Results
showed that the stochastic embedding method can indeed selectively
reduce the stochastic errors associated with quantities on a specific
subsystem. In the current work, we focused on the forces on embed-
ded atoms, and we expect the same to hold for other quantities as
well.

The embedding approach presented here is very general and
can be extended in several directions. First, here we used an embed-
ded space made from low-level atomic basis functions; we can
replace it by a more general higher level basis. Furthermore, we
could economize and choose in the P basis only occupied eigen-
functions of the embedded part in a dielectric medium. There
will be occasions where the best basis would be energy selec-
tive, i.e., a few energy-selective molecular eigenfunctions or a few
energy selective eigenfunctions from a large cluster would be best
used.
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A second direction is a combination of embedding with our
previous overlapping fragment technique (sf-DFT). This method
reduces the statistical error of stochastic DFT calculations9,10 for all
atoms, typically by up to an order of magnitude; specifically, instead
of stochastically sampling the full density, we sample the difference
between the full density and a zeroth-order density, ρ(r), which is
a solution of a simple zeroth-order Hamiltonian H0 (e.g., that of
overlapping fragments). Specifically,

ρ(r) = ρ0(r) + {∣⟨r∣Θ
1
2 ∣ξ⟩∣2 − ∣⟨r∣Θ

1
2
0 ∣ξ⟩∣

2}
ξ
, (20)

where Θ0 ≡ Θ(μ0 − H0) and μ0 is arbitrary. It is clear that this
overlapping-fragment definition can be further extended by insert-
ing projection operators as done earlier in the paper for the original
stochastic DFT method. In a future paper, we will examine whether
a combination of overlapping fragments with embedding (i.e., com-
bining se-DFT with sf-DFT) reduces the errors in the forces of the
embedded part even further than either method alone.

A third direction is for methods other than DFT. For exam-
ple, embedding is applicable for the sublinear scaling stochastic
TDDFT method developed by us.32 It is straightforward to see
that the main embedding equation, Eq. (17), follows straightfor-
wardly to TDDFT except that now all quantities (the density and
the deterministic and stochastic orbitals) are time dependent. Such
a time-dependent method has the desired property that the same
Hamiltonian guides both the deterministic and stochastic functions.
An embedding-TDDFT method would be applicable to study the
change in optical properties of chromophores due to the presence of
solvent molecules, where we can use only a few stochastic orbitals
to sample the solvent molecules, while the chromophore will be
treated with embedding. This direction would be explored in a future
paper.
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APPENDIX: PROOF THAT EMBEDDING SHOULD
REDUCE THE STOCHASTIC ERROR

Here, we give a simple demonstration of why embedding
should improve the statistics. Say that the overall problem has two
spaces that are essentially separate, so each eigenstate ϕi belongs to
either the A or B subspaces. We choose the P subspace spanned
by {χi : i ∈ A} such that it is close to the subspace spanned by
states in A,

P∣ϕi⟩ ≃ coi ∣ϕi⟩, (A1)

where

coi ≈ {
1, i ∈ A,
0, i ∈ B.

(A2)

The projected filtered stochastic orbital ξ̄μ(r) is then given by a
linear combination,

ξ̄μ(r) = ∑
i≤NOcc

(ci − coi )ϕi(r). (A3)

For states belonging to A, instead of sampling ci, we are sam-
pling (ci− coi )with average (1− coi ) ≈ 0 and a much smaller standard
deviation.
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