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This Invited Article reports extensions of a recently developed approach to density functional

theory with correct long-range behavior (R. Baer and D. Neuhauser, Phys. Rev. Lett., 2005, 94,

043002). The central quantities are a splitting functional g[n] and a complementary

exchange–correlation functional Eg
XC[n]. We give a practical method for determining the value of

g in molecules, assuming an approximation for Eg
XC is given. The resulting theory shows good

ability to reproduce the ionization potentials for various molecules. However it is not of sufficient

accuracy for forming a satisfactory framework for studying molecular properties. A somewhat

different approach is then adopted, which depends on a density-independent g and an additional

parameter w eliminating part of the local exchange functional. The values of these two parameters

are obtained by best-fitting to experimental atomization energies and bond lengths of the

molecules in the G2(1) database. The optimized values are g = 0.5 a�10 and w = 0.1. We then

examine the performance of this slightly semi-empirical functional for a variety of molecular

properties, comparing to related works and experiment. We show that this approach can be used

for describing in a satisfactory manner a broad range of molecular properties, be they static or

dynamic. Most satisfactory is the ability to describe valence, Rydberg and inter-molecular charge-

transfer excitations.

I. Introduction

In density functional theory (DFT), a system of non-interact-

ing Fermi particles is set up to have the same density as a

system of ‘‘usual’’ electrons, interacting through the Coulomb

repulsion. The non-interacting particles must be subject not

only to the attractive forces of the nuclei of the molecule but

also to artificial forces that are designed to ensure the equality

of densities. These forces include an average (Hartree) mean-

field force and an additional force described by the ‘‘exchan-

ge–correlation (XC) potential’’. The XC potential is derived

from a universal density functional, the Kohn–Sham XC

density functional.1–4 This functional is extremely complicated

and intricate on which barely a handful of exact or nearly

exact properties and sum rules are known (so called ‘‘formal

properties’’5). To build a useful theory based on the density,

humans must rely on simple approximations to the XC func-

tional which abide to as many as possible exact properties.

Any practical density functional strives to, but actually

cannot ever achieve the Platonic ideal of the Kohn–Sham

XC functional. Nevertheless, there has been great success in

developing a series of ‘‘approximate XC functionals’’ which

grow in complexity but allow more formal properties to be

satisfied and offer increasingly greater precision.5 These start

off from local density functionals (LSDA) based on the known

properties of the homogeneous electron gas (HEG),2,6–9 mov-

ing into the realm of inhomogeneous densities, both for

exchange and correlation, described by the density gradi-

ent2,10–15 (gradient expansion and generalized gradient ap-

proximations GEA, GGA, respectively) and then reaching

orbital functionals that include explicit forms of Hartree–Fock

exchange4 and/or the non-interacting kinetic energy density16

(often referred to as meta-GGA). Application of these approx-

imations have had great success in describing the chemical

bond to good accuracy, including the equilibrium structure,

the bond energy and the vibrational–rotational properties of a

broad variety of molecules.5,17–21

However, with increased testing, it has become evident that

whenever quantities other than energy are computed, namely

static or dynamical response properties, many popular ap-

proximations to the functionals lead to unacceptably large

errors or even wrong physical behavior. Examples of such

failures are: (1) static polarizability for example is often greatly

exaggerated in elongated molecules;22 (2) the electronic charge

distribution does not allocate integer electron charge to weakly

interacting subsystems as it should;23,24 (3) excitation energies

to states of charge transfer character, are poorly described;25

(4) Rydberg excitation energies are usually severely under-

estimated; (5) small anions are often erroneously predicted to

be unstable.26

These problems in the popular approximate functionals of

DFT have been studied in the past and were found to be

related to self-interaction errors.13,27,28 They hamper many

potential uses of DFT: studying highly excited electronic

states, charge transfer reactions in biological systems and

photo-harvesting materials and even in molecular electronics,

where DFT based predictions sometime exhibit huge errors in

predicted currents.
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To the practical problems mentioned above, we add the

related issue, namely the failure to reproduce exactly estab-

lished formal consequences of the exact functionals. For

example, (6) the effective Kohn–Sham potential vs(r) must,

in the large r limit be of the form29 const + O(�1/r); (7) for an
N electron system, the electron removal energy Egs[N � 1] �
Egs[N] must be equal exactly to �eHOMO[N], the energy of the

highest occupied molecular orbital (HOMO) in the non-inter-

acting N electron system;30 and (8) the effective Kohn–Sham

potential must have derivative discontinuities31 (these ensure

the integer electron charge in weakly interacting systems). In

many density functionals these exact properties were sacrificed

in order to have the theory reproduce exactly the homo-

geneous electron gas ground-state energy which is known to

high accuracy using quantum Monte Carlo methods.32

Recently, several new approaches that tackle the deficiencies

described above, associated with the long-range self-repulsion,

were developed. One venue is the self-repulsion correction

which is imposed using optimized effective potentials.33–36

These approaches are often numerically demanding. Another

approach is the development of hybrid functionals that ex-

plicitly remove self-repulsion.37–43 These approaches are based

on the long-range corrected (LC) functional of Iikura et al.37

which was found to overcome many of the above deficiencies.

In order to improve the performance of ground-state calcula-

tions, a ‘‘Coulomb attenuation method’’ (CAM) was intro-

duced.38 The best CAM introduces a functional with

outstanding ground-state energy predictions but without the

exact long-range behavior. The advantages of the correct long-

range behavior are however extremely important for produ-

cing a more balanced functional, as is evident in the extremely

successful applications of the LC functional TDDFT44 (here

referred to as TDLC).

The development of a more balanced functional is thus the

purpose of this paper. The only way we could do this is to stick

to the correct long-range behavior, even at the price of

deviating slightly from the exact HEG limit. We thus try to

find a way to improve the LC performance without losing the

property of correct long-range behavior and without introduc-

tion of a large number of parameters. Continuing previous

theoretical work42 where we introduced the splitting density

functional g[n] and the complementary exchange–correlation

functional Eg
XC[n], we now attempt to put these concepts to

work. We first study the nature of the functional g[n]. For this
functional we present some exact results for the HEG.We then

give a practical, general method for determining g[n] for any
general non-homogeneous case, assuming an approximation

to Eg
XC is known. The resulting theory is applied to several

molecules. Despite reasonable success at describing ionization

potentials, we conclude the method is not sufficiently accurate

for general use, mainly because of our lack of knowledge of the

functional Eg
XC[n]. To continue, we abandon the approach of

finding the exact g for each system and instead turn to a semi-

empirical 2-parameter approach. This functional is based on

LYP correlation energy augmented by subtracting a small

amount of the local g-exchange energy14 and a combination of

exact long-range exchange with a local exchange. The para-

meters g and w are determined by a fit to 54 molecules of the

G2(1) set.45 The main feature of the resulting functional is its

balanced applicability, or its well-temperedness: while admit-

tedly it is not highly accurate for any particular electronic

property, it is reasonably accurate for a broad range of such

properties. All calculations reported in this paper were

done using a modified version the quantum chemistry code

Q-CHEM 2.0.46 The necessary modifications were done with a

lot of help and support of Dr Yihan Shao of the Q-CHEM

company.

II. Theory

The theory for removing the self-repulsion effects in DFT is

described in ref. 42. We give a brief overview, changing the

Yukawa descreening with error-function descreening. We start

by considering an expression of the XC energy using an

extension of the well-known adiabatic connection theo-

rem.9,30,47 For this, we consider a family of N particle systems

continuously parameterized by a parameter 0 r g o N,

all having the same ground-state density n but in each system

the particles interact via a different descreened two-body

interaction:

ugðrÞ ¼
erfðgrÞ

r
; ð1Þ

For large inter-particle distances gr c 1, the particles of

system g repel just like electrons, but at short distances the

repulsion is moderated and non-singular. Each system g has a
unique ground-state wave function Cg (assuming v-represent-

ability). The system with g = N is the original Coulomb

interacting system, having the wave function CN. The system

with g = 0 corresponds to non-interacting particles with C0, a

Slater determinant of N spin–orbitals. The adiabatic-connec-

tion theorem states:

EXC½n� ¼
Z 1
0

hCg0 jŴ g0 jCg0 idg0 �
1

2

ZZ
nðrÞnðr0Þ
jr� r0j drdr0; ð2Þ

where Ŵ g ¼ 1
2

P
i 6¼j

wgðr̂ijÞ, wgðrÞ ¼ 2ffiffi
p
p e�g

2r2 . The development in

ref. 42 can be used for expression (2) resulting in the following

expression for the XC energy:

EXC½n� ¼ Kg
X½n� þ Eg

XC½n� ð3Þ

Where the explicit exchange is with respect to a Coulomb tail:

K
g
X½n� ¼ �

1

4

Z
jP½n� r; r0ð Þj2ugðjr� r0jÞd3rd3r0 ð4Þ

P[n](r,r0) is the density matrix of non-interacting particles. The

second term, called the g-XC is given by:

E
g
XC½n� ¼ hCgsjŶ gjCgsi

� 1

2

Z
nðrÞn r0ð Þygðjr� r0jÞd3rd3r0 ð5Þ

Where yg(r) = erfc(gr) is the complementary error-function

screened potential,Yg ¼ 1
2

P
i 6¼j

ygðjri � rj jÞ and Cgs is the exact

ground state wave function of the system. This g-XC energy

functional can also be written as an integral involving the XC
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pair correlation function gXC(r,r
0):

E
g
XC½n� ¼

1

2

Z
nðrÞgXCðr;r0Þygðr� r0Þnðr0Þd3rd3r0 ð6Þ

A. c of homogeneous densities

For the HEG the g-XC energy per particle be separated into

two terms:

~egXCðnÞ ¼ ~egCðnÞ þ egXðnÞ ð7Þ

(here and henceforth we use a superscript tilde to denote

specific quantities pertaining to the HEG), where the Savin’s

exchange energy per particle for the complementary error-

function potential is:48

~egXðnÞ ¼
kF

2p

� q2
2
ffiffiffi
p
p

q
erf

1

q

� �
� 1þ ðq2 � 2Þ 1� e

�1
q2

� �� �
� 3

2

� �

ð8Þ

where q = g/kF and kF is the local Fermi wave-vector at the

density n. In the HEG we only need the energy per particle,

and these can be expressed using the pair correlation function:

~egXC ¼ ~egC þ ~egX ¼
1

2
n

Z
~gXCðrÞygðrÞd3r ð9Þ

Applying (3) to the HEG gives:

~egXC ¼ ~eXC � ð~eX � ~egXÞ ð10Þ

where ~eXC (~eX) is the HEG XC (exchange) energy per electron.

Combining with eqn (9) we find:

~egXC � ~egX ¼ ~eCðnÞ ð11Þ

where ~eC is the correlation energy per particle in the HEG.

Since the HEG pair correlation functionalg̃XC(r) has been

parameterized to high accuracy,49 this equation can be solved

for g, thus enabling the determination of g for the HEG.24 The

result of the calculation is given in Fig. 1, shedding light on the

‘‘mysterious g parameter’’. Evidently, it is strongly density

dependent. In metallic densities (rs usually lies in the range 1o
rs o 5) g takes values from the interval 1

10
; 1

� 	
. We also note

that the function is smooth and monotonic. The value of g for
unpolarized HEG (total spin zero) is higher, but not by much,

than the value for the fully spin-polarized gas.

B c of inhomogeneous densities

What about inhomogeneous densities like in molecules? It is

nearly impossible to compute Eg
XC[n] for a given non-homo-

geneous density, so it is tempting to try and use the results for

the HEG. But in trying to do so, we stumble on a difficulty of

assigning g to the density inhomogeneous n. An attempt is to

use an ‘‘average density’’ or average rs met with difficulties as

described in detail in ref. 24 We have discovered a practical

approach to address this issue as follows. We make use of an

exact relation:50

�eHOMOðNÞ ¼ EgsðNÞ � EgsðN � 1Þ; ð12Þ

Then, using an approximate functional for inhomogeneous

densities Eg
XC, we search for g that obeys:

DEðgÞ � eHOMOðN; gÞ þ ½EgsðN; gÞ � EgsðN � 1; gÞ�
¼ 0 ð13Þ

Besides the use of an approximate XC functional here there is

an additional approximation made, since we use in eqn (13)

the same g for calculating both E[N] and E[N � 1].

The value of g for which DE is zero was calculated by

solving eqn (13) for several molecules. As an example of such a

calculation, we show in Fig. 2 the results of the deviance DE(g)
as a function of g for N2 and its close ions. We should note that

for the many systems in which we applied this approach we

have found only one case where the DE(g) had no root. This

was the cation Na2
+.

Using the scheme given above, we estimated the values of g
for several molecules, as shown in Table 1. We find g in the

same range as those of the homogeneous gas taken at typical

Fig. 1 The parameter g as a function of the density parameter rs for

the fully polarized and unpolarized homogeneous electron gas.

Fig. 2 The deviation DE as a function of g (see eqn (13)), for N2 and

its ions (calculated using cc-pVTZ basis set).
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valence densities of molecules. One noticeable fact is that the

dimers of alkali metal atoms have a low value of g. This is not
unreasonable since these molecules have low valence electron

densities and according to the result for the HEG (Fig. 1),

lower densities are associated with smaller values of g.
To check whether the value of g in Table 1 can lead to a

good description of electronic structure of atoms and mole-

cules, we compared the value of the ionization potential (IP)

obtained at the canonical g against experimental IPs. This too

is shown in Table 1. The calculated vertical IPs agree well with

experimental results, however there are some large deviations

exaggerating the IP by as much as 1.2 eV, occurring at N2, O2

and F2. For other species the deviance is usually considerably

smaller. The root-mean-square (RMS) deviance from experi-

ment is 0.6 eV. In an attempt to lower the RMS error, we

allowed w in eqn (16) to assume a non-zero value, namely

w = 0.1, for which we found significant improvement for the

IP that have the same quality as those of B3LYP. Similar

quality can be seen in related functionals.38,41,51

C. Size consistency problem

The next test of this approach would be to compute atomiza-

tion energies. Here we immediately stumble upon a problem.

Consider an atom A with ground-state density nA(r) denoted

gA = g[nA] and an atom B with density nB(r) and gB = g[nB].
When both atoms are taken together at infinite separation the

density is nA� � �B(r) = nA(r) + nB(R + r), where R is very large.

Evidently, this system too has a parameter gA� � �B. In general,

when we use an approximate functional Eg
XC, there is no

practical way to ensure that size consistency is obeyed:

E
gA���B
XC ½nA���B� ¼ E

gA
XC½nA� þ E

gB
XC½nB� ð14Þ

This is in contrast to the case when g is independent of

the density. Breaking size consistency is usually unacceptable

and it has serious consequences for atomization energy

calculations.

III. A semi-empirical functional

The size consistency problem discussed in the previous section

and also the insufficiently accurate results for atomization

energies prompt us to take a different approach. We try to

determine a single value of g applicable for all systems. This

approach was also taken in previous similar works.37,42 We

also need to establish some form for Eg
XC. Simply taking a

constant value of g and using an LDA approach, namely

Eg
XC½n� �

R
~egXCðnðrÞÞnðrÞdr, as was done in ref. 42 does not

give satisfactory results for description of the chemical bond in

a broad database of molecules. Experimenting with various

options, we found that the inaccuracies could be significantly

reduced when density gradients are added and the Savin

exchange weakened. Thus, we come up with the following

two parameter recipe:

E
g
XC½n� �

Z
½egCðnðrÞ; jrnðrÞjÞ þ ~egXðnðrÞÞ�nðrÞdr ð15Þ

for the g-XC energy. For eC we take a GGA type functional

(the LYP energy14) and we subtract from it a small part of the

Savin exchange energy:

egCðn; jrnjÞ ¼ eLYP
C ðn; jrnjÞ � w~egXðkFðnÞÞ ð16Þ

For homogenous densities the parameter w is zero when the

proper g is used (see below). However, we find in the calcula-

tions described below that for non-homogeneous systems a

non-zero (but small) value of w considerably improves the

overall performance of the functional. We see this already

when considering the IP calculation in Table 1 using a factor

of w = 0.1.

The parameters w and g were determined by fitting to basic

thermochemical (experimental) data in a standard benchmark

list of molecules, such as G2(1), including 54 molecules.45

The following procedure, inspired by other semi-empirical

functionals4 was taken. For each molecule in the G2(1) list we

computed the minimizing nuclear configuration (bond lengths)

Ri(g,w) and the corresponding atomization energy Di(g,w),

Table 1 An estimate of g for various molecules, obtained by satisfying eqn (13). The calculated ionization potential (IP) for two values of w in eqn
(16) and the IP calculated by B3LYP are shown in comparison with experiment (all energies in eV). Basis set used cc-pvtz

Molecule g/a�10 IP experimental52,53/eV
w = 0 w = 0.1 B3LYP
�eHOMO/eV �eHOMO/eV DSCF/eV

Li2 0.3 5.1 �0.1 0.0 �0.2
N2 0.6 15.6 �1.0 �0.6 0.0
O2 0.7 12.1 �1.2 �0.9 �0.7
F2 0.7 15.7 �0.8 �0.4 0.1
Na2 0.4 4.9 �0.2 �0.1 �0.3
P2

a 0.8 10.6 �0.4 �0.3 0.0
S2 0.5 9.4 �0.4 �0.2 �0.2
Cl2 0.5 11.5 �0.3 0.0 0.1
BeHb 0.6 8.2 �0.2 �0.1 �0.2
CO 0.6 14.0 �0.3 �0.1 0.0
HF 0.7 16.0 �0.4 0.0 0.0
HCl 0.5 12.8 0.0 0.3 0.2
NH3 0.5 10.2 �0.6 �0.4 �0.5
PH3 0.4 9.9 �0.6 �0.4 �0.6
Mean �0.5 �0.2 �0.2
RMS 0.6 0.4 0.3

a For P2, g changes from 0.8 to 1 a�10 when the value of w changes from 1 to 0.9. b For BeH, g changes from 0.6 to 0.7 a�10 when the value of w

changes from 0 to 0.1.
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where i = 1,2,. . .,54. This was done for several values of g and
w. The quality of correspondence to experiment is obtained

from the RMS errors:

DDðg;wÞ2 ¼
1

54

X54
i¼1
ðDiðg;wÞ �DiðexpÞÞ2

DRðg;wÞ2 ¼
1

54

X54
i¼1
ðRiðg;wÞ � RiðexpÞÞ2

ð17Þ

A single number summarizing this is the average of relative

errors:

Dðg;wÞ ¼ 1

2

DD

min
i

Di
þ DR

min
i

Ri

0
@

1
A ð18Þ

By minimizing D we found the optimized parameters:

g ¼ 0:5 a�10 w ¼ 0:1 ð19Þ

Using norms other than L2, i.e. L1 norm, max norm and

relative errors gave similar results although the optimal value

of g and w changed a bit, the choice of eqn (19) always led to

almost identical performance. We thus chose the parameter

values of eqn (19) and these will be used throughout the rest of

the paper. The resulting functional will be referred to in this

paper as ‘‘this’’ functional. The performance of this functional

for atomization energies and bond lengths is shown in Table 2.

Since the atomization energy is proportional to the number of

bonds in the molecule and since bond lengths in different

molecules change within a factor of 3 throughout the data-

base, we present here the relative errors. Comparing this

functional with B3LYP, we see that the latter is clearly super-

ior in most cases. The RMS error in bond lengths is 2% for

this functional, considerably larger than in B3LYP (1%) but is

still very useful. The RMS atomization energy of this func-

tional is 7% while that of B3lYP is 5%. Next, consider

harmonic vibrational wavenumbers for several diatomic mo-

lecules shown in Table 3. We compare results derived from this

functional to B3LYP and experiment. The performance of this

functional is much less satisfying than B3LYP. Evidently,

there is a tendency to overestimate the frequencies, by 6%

on the average. The RMS error in this functional is much

larger than B3LYP and reaches 10%. CAM-B3LYP descrip-

tion of vibrational frequencies was recently examined,39 show-

ing a much smaller RMS error than this functional although it

too has a strong tendency to overestimate the frequencies.

We conclude that this functional is obviously inferior to

B3LYP, CAM-B3LYP and other related functionals38,41,51 for

describing the chemical bond (energy, and shape of potentials

surfaces). However, the results do show that this functional is

in fact capable of yielding a reasonably good description of the

chemical bond. Since we aim at a well-tempered approach, we

continue to show that this functional maintains a reasonable

description of molecular properties often better than the other

functionals.

A. Ionization potentials and electron affinity

Equipped with this functional, with 2 parameters that were

determined by considering only atomization energies and

equilibrium bond lengths, we proceed to examine its predictive

power with respect to other properties. First, we check the

issue of IPs. The results of IPs for the molecules also con-

sidered in Table 1 are shown in Table 4. We find that the IP

calculated by the DSCF method in this functional is of similar

quality to B3LYP. However, for calculating molecular proper-

ties, the closeness of the HOMO energy to the IP is more

important. Here this functional is clearly superior to B3LYP,

having a smaller RMS by a factor of 10.

A related test is electron affinity (EA). Here, the methods

which give correct long-range behavior, such as B3LYP, do

not do as well. Once again the EA can be estimated in two

ways: as the energy difference between the anion and the

neutral (DSCF) and as the energy of the HOMO orbital of

the anion, calculated in the stable ionic nuclear configuration.

In Table 5 we show the electron affinity calculated in these two

ways. In this functional, the RMS errors in EA are similar in

magnitude to the errors in IP. The performance is better than

in B3LYP. Like in the case of IPs, the HOMO in B3LYP is a

very bad estimate (usually leading to unstable anion prediction

in this database). For this, both estimates are reasonable,

although the DSCF method has smaller RMS error.

B. Hydrogen bonding

An important class of chemical bonds with importance to

biology and materials science is hydrogen bonds. These in-

volve a relatively weak interaction between a hydrogen (which

is chemically bonded to an electronegative ‘‘donor’’ atom) and

an electronegative ‘‘acceptor’’ atom. In this paper we do not

consider the hydrogen bond in great detail and following

ref. 39 we mainly test the donor–acceptor distance for a few

hydrogen-bonded systems. We used for this the calculation d-

aug-cc-pVTZ basis and the results are shown in Table 6. We

find that this functional predicts shorter bond lengths than

actually measured (opposite to B3LYP ), similar to CAM-

B3LYP39 with errors on the order of 0.02 Å. These errors are

relatively small (less than 1%) and thus quite acceptable.

For the water dimer, we also calculated the equilibrium

dissociation energy using this functional and obtained 5.9 kcal

mol�1 (counterpoise corrected). Compared to experiment54

and high-level ab initio calculations55,56 our result is about

15–20% too high. Unfortunately, the corresponding values

calculated using other functionals (LC, CAM-B3LYP) were

not reported.

C. Static polarizability

One of the most important detrimental effects of self-repulsion

is seen when static polarizability of elongated molecules is

estimated by DFT methods. It was found that in this case local

functionals lead to greatly exaggerated values.57 The work of

van Faassen et al.58 established benchmark systems for this,

examining long linear arrays of various types of oligomer

units. One such case is where the oligomer unit is the H2

molecule and another is polyacetylene where each oligomer is

C2H4. We examined these systems using the geometry of

ref. 58 and a cc-pVDZ basis set. In both cases, it was shown
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that HFT somewhat overestimates polarizability per unit but

gives reasonable results.57,59 The fact that long-range self-

repulsion was involved was discussed in ref. 58 and later by

others.42,60,61 In Fig. 3 we show our results for these two

systems. It is seen that B3LYP suffers from similar ailments as

seen in local functionals, although to a smaller degree. In

contrast this functional gives results which are close to HFT

and are therefore physically correct. Similar quality of results

(but on a conjugated system) were reported for the LC

functional of Iikura et al.37

D. Valence and Rydberg excitations

The use of the DFT functionals as adiabatic functionals for

TDDFT is common practice62–72 (although recently some attem-

pts were made to go beyond the adiabatic functionals73,74). For

valence excitations with a dominant 1-electron excitation char-

acter the results are often of high quality. This will be also seen in

the several examples we show here. However, functionals which

suffer from long-range self-repulsion (LSDA, GGA, B3LYP) will

not correctly describe charge-transfer and Rydberg excitations.

Table 2 Performance on G2(1) database. cc-PVTZ basis was used

Atomization energy Bond length

Exp./kcal mol�1 This (%) B3LYP (%) Exp./Å This (%) B3LYP (%)

H2 �104 1 6 0.741 4 0
LiH �58 �1 0 1.596 1 0
CN �179 �3 �1 1.172 �1 0
N2 �227 2 0 1.098 0 0
F2 �38 23 �1 1.412 �2 �1
Cl2 �57 �10 �7 1.987 1 2
O2 �118 13 4 1.208 �1 0
P2 �116 �10 �2 1.893 �1 0
S2 �98 �5 2 1.889 0 2
Si2 �74 �10 �1 2.246 0 2
BeH �48 16 18 1.343 2 0
Li2 �26 �21 �20 2.673 2 1
CH �84 �4 1 1.120 2 1
3CH2 �189 �1 0 1.085 2 0
CH3 �306 �1 0 1.079 2 0
CH4 �420 �2 �1 1.094 2 0
NH �82 2 6 1.036 3 1
NH2 �182 0 2 1.024 2 1
NH3 �297 �1 0 1.012 2 1
OH �107 0 �1 0.970 3 1
H2O �233 �2 �3 0.958 2 1
HF �142 �2 �4 0.917 3 1
LiF �139 2 �4 1.564 1 1
C2H2 �404 �2 �1 1.203 0 0
C2H4 �562 �2 �1 1.339 �1 �1
C2H6 �711 �1 �1 1.536 0 0
HCN �313 �1 �1 1.064 3 1
CO �261 0 �3 1.128 0 0
HCO �279 1 �1 1.080 6 5
H2CO �376 �1 �2 1.111 2 0
H3COH �513 �1 �2 0.956 3 1
NO �153 6 1 1.151 0 0
N2H4 �437 1 0 1.446 �1 0
H2O2 �268 2 �2 1.475 �3 �1
CO2 �392 1 �2 1.162 1 0
SiH2 �154 �3 �1 1.514 2 1
SiH3 �226 �1 0 1.468 3 2
SiH4 �324 �2 �1 1.480 2 1
PH2 �153 1 2 1.428 1 0
PH3 �241 �1 0 1.421 1 0
SH2 �182 �3 �1 1.328 3 2
HCl �107 �4 �3 1.275 2 1
Na2 �19 �20 �12 3.079 �2 �1
NaCl �99 �8 �9 2.361 1 1
SO �122 2 0 1.481 1 2
SiO �191 �2 �4 1.510 1 1
CS �172 �9 �5 1.535 0 1
ClF �62 2 �7 1.628 0 2
ClO �62 2 1 1.570 1 2
Si2H6 �533 �2 �2 1.470 3 1
H3CSH �473 2 �1 1.329 1 2
H3CCl �395 �2 �2 1.785 0 1
Mean �1 �1 1 0.7
RMS 7 5 2 1
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To check the performance of this functional for describing

excitation energies, we have applied it to several standard

benchmark molecules, comparing the results to experimental

excitation energies, results of TDHF, adiabatic TDB3LYP

and results reported by Tawada et al. (TDLC).44 The deviance

of the different methods from experimental results are shown

in Fig. 4. All the results, except those of Tawada et al. were

calculated using the modified version of Q-CHEM 2.0 dis-

cussed above.46 We used a high quality d-aug-cc-pVTZ basis

set, except for C6H6 where the basis set aug-cc-pVTZ supple-

mented with an additional diffuse set centered on the nuclear

center of mass, as described in ref. 75. The TDLC results

pertain to a Sadlej+ basis,76 which is smaller than ours. We

also performed calculations in the Sadlej+ basis set and

obtained similar, but somewhat less satisfactory results than

shown for the larger more complete basis set.

We now describe briefly the results shown in Fig. 4. As seen,

usually TDHF gives very poor results (except for C2H4). The

TDB3LYP functional allows good description of the valence

states in some molecules but always severely underestimates

Rydberg excitations. Overall, the two theories which correct

for long-range repulsion (TDLC and this functionals) seem to

be much more balanced than TDB3LYP and TDHF: they

allow uniformly reasonably good description of valence and

Rydberg excitations. The present functional seems to slightly

outperform the TDLC functional in most molecules, except

C6H6. Yet in the latter case, when Rydberg states are com-

pared, a Sadlej+ basis is inappropriate, as center-of-mass

orbitals are actually very important.77 A curious result, which

we do not understand, is that this functional also has a large

error for the first triplet state of C6H6. For other valence states

of this molecule it performs well.

Considering that the parameters of this functional were

optimized for the ground state of the G2(1) database, they

perform surprisingly well for excited states.

E. Inter-molecular charge-transfer excitation

Spurious self-interaction can impair the description of charge-

transfer interactions. The benchmark test for such a problem is

the model of Dreuw et al.,25 where C2H4 and C2F4 molecules

are considered at a large distance apart, R. One of the excited

states involves transfer of charge from C2F4 to C2H4 and this

state is of interest. The finite basis set in the model calculation

artificially stabilizes the anionic state of C2H4, so it serves as

an excellent model for charge-transfer benchmarks. The inter-

molecular charge-transfer excitation energy must depend

asymptotically on the distance between the two molecules as:25

lim
R!1

DEðRÞ ¼ EAðC2H4Þ þ IPðC2F4Þ �
1

R
ð20Þ

Indeed, as reported25 TDB3LYP could not reconstruct this

behavior, as seen in Fig. 5, where the TDB3LYP excitation is

too low by many electron volts and clearly deviates from a

straight line in the large-R limit. On the other hand, the results

of this functional follow the straight line very closely and the

infinite R limit yields an excitation energy of 13.1 eV, which is

close to the correct result: in the same basis we calculated the

Table 3 Harmonic vibrational energies and the relative errors for this
and B3LYP functionals

Exp./cm�1 This (%) B3LYP (%)

H2 4401 �3 �1
LiH 1406 4 0
N2 2359 6 3
F2 917 30 10
Cl2 560 7 �6
P2 781 10 2
Li2 351 1 �3
HF 4138 0 �1
LiF 910 1 �1
CO 2170 5 1
Mean 6 0.7
RMS 10 5

Table 4 Ionization potentials of selected species and the deviance of this and B3LYP functionals. Basis set: cc-pVTZ

Molecule IP exp.53/eV
DThis DB3LYP DThis DB3LYP
�eHOMO/eV �eHOMO/eV DSCF/eV DSCF/eV

BeH 8.2 �0.1 �2.8 0.1 0.2
CH 10.6 �0.9 �3.7 �1.3 0.2
NH 13.5 �0.9 �4.5 �0.1 0.0
OH 13.0 �0.9 �4.5 �0.1 0.0
CN 13.6 0.3 �3.2 0.4 0.5
NO 9.3 0.0 �3.4 0.5 0.8
F2 15.7 �1.2 �4.7 �0.2 �0.1
Li2 5.1 0.2 �1.5 0.0 0.2
O2 12.3 �0.5 �3.9 0.2 0.5
H2O 12.6 �0.7 �4.4 �0.2 �0.2
C2H4 10.7 0.0 �3.2 �0.3 �0.2
H 13.6 �1.7 �5.0 �0.5 �0.1
He 24.4 �3.3 �42.0 �0.5 0.4
Li 5.4 �0.1 �1.8 0.1 0.2
B 8.3 �0.2 �3.3 0.2 0.3
Be 9.3 �0.6 �3.1 �0.4 �0.3
C 11.3 �0.7 �4.2 0.0 0.1
N 14.5 �1.4 �5.1 �0.2 �0.1
O 13.6 �1.1 �4.7 0.1 0.3
F 17.4 �1.9 �5.6 0.0 0.1
Mean �0.8 �5.7 �0.1 0.1
RMS 1.0 10.0 0.4 0.3
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EA and IP of the two molecules, obtaining the results shown in

Table 7. The value of EA + IP around 13 eV is completely

consistent with the excited state data.

IV. Summary and discussion

We have developed in this paper a semi-empirical approach to

DFT which makes use of an explicit exchange term (eqn (4))

The functional has two empirical parameters and we used the

G2(1) database to optimize their values. Then we tested the

resulting functional in a variety of other settings, showing that

it is balanced and robust across many types of molecular

properties. Such a functional does a reasonable job at describ-

ing the chemical bond (although it is surely not the best choice

for ground-state chemical dynamics), it is capable of describ-

ing a variety of electronic properties and excited electronic

states. We believe that such a balanced approach to DFT is

possibly very useful for a variety of fields, such as photo-

chemistry and biochemistry, molecular electronics, materials

science.

One point of formal concern is the fact that this functional is

not exactly consistent with the homogeneous electron gas, as

other functionals are.37–43 Our initial approach—that of ad-

justing g—was indeed designed to have this exact property

conserved, without giving up the correct long-range behavior

of the potential. However, we found that in practice that

theory did not give sufficiently good results. The reason is

that we do not have a good approximation for the functional

Eg
XC in non-homogeneous densities (see eqn (5)). The optimal

way to proceed then is to try and improve Eg
XC beyond the

homogeneous case, perhaps by introducing a proper gradient

approximation. Since we have a practical way of determining

g[n] once Eg
XC is given, this may be a viable way to proceed. In

Table 5 Electron affinity of selected species and the deviance of this and B3LYP functionals. Basis set: aug-cc-pVTZ

Molecule EA experimental53/eV
DThis DB3LYP DThis DB3LYP
�eHOMO/eV �eHOMO/eV DSCF/eV DSCF/eV

BeH 0.7 0.1 �1.7 �0.4 �0.2
CH 1.2 0.4 �2.5 �0.1 0.0
NH 0.4 0.6 �2.4 0.0 0.1
OH 1.8 0.5 �2.9 0.0 �0.1
CN 3.9 0.7 �2.7 0.3 0.1
NO 0.0 �0.1 �2.3 �0.3 �0.2
O2 0.5 �0.3 �3.2 �0.6 �0.5
H 0.8 0.7 �1.8 0.0 0.1
F2 3.0 2.5 �1.0 �0.8 3.0
Li 0.6 0.0 �1.2 �0.2 �0.1
B 0.3 0.4 �1.7 �0.1 0.1
C 1.3 0.4 �2.5 �0.1 0.0
O 1.5 0.5 �2.9 0.2 0.1
F 3.4 0.2 �3.6 0.2 0.0
Mean 0.5 �2.3 �0.1 0.2
RMS 0.8 2.4 0.3 0.8

Table 6 Hydrogen bond dimer distances for several species

Ab initioa/Å This/Å B3LYP/Å

(HF)2 2.73 �0.03 0.02
(CO)(HF) 2.95 �0.02 0.06
(OC)(HF) 2.99 �0.01 0.00
(H2O)2 2.93b �0.03 0.01
Mean �0.02 0.02
RMS 0.02 0.03

a Values taken from ref. 39. b Smaller ab initio estimates, of 2.91 Å,

have also been published55.

Fig. 3 Polarizability (a30) as a function of length for a chain of H2

molecules (top) and polyacetylene (bottom).
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the current work, we made drastic approximations that

allowed us to bypass this problem. The generally encouraging

results we obtain allow us to be optimistic that this type of

approach may be the key for better functional development in

the future.
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