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ABSTRACT: A fast method is developed for calculating the random phase
approximation (RPA) correlation energy for density functional theory. The
correlation energy is given by a trace over a projected RPA response matrix,
and the trace is taken by a stochastic approach using random perturbation
vectors. For a fixed statistical error in the total energy per electron, the
method scales, at most, quadratically with the system size; however, in
practice, due to self-averaging, it requires less statistical sampling as the
system grows, and the performance is close to linear scaling. We
demonstrate the method by calculating the RPA correlation energy for
cadmium selenide and silicon nanocrystals with over 1500 electrons. We
find that the RPA correlation energies per electron are largely independent
of the nanocrystal size. In addition, we show that a correlated sampling
technique enables calculation of the energy difference between two slightly
distorted configurations with scaling and a statistical error similar to that of
the total energy per electron.
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Local and semilocal correlation functionals of Kohn−Sham
(KS) density functional theory (DFT) fail to describe

long-range van der Waals interactions and other types of
dynamical screening effects.1,2 One route for overcoming these
deficiencies is random phase appriximation (RPA) theory1,3−6

based on the KS-DFT adiabatic connection formalism7−9 in
combination with the fluctuation dissipation theorem.10 In
recent years, this approach, especially when combined with
exact exchange, was used successfully for treating various
ailments of KS-DFT in molecular and condensed matter
systems.5,6,11−18

The greatest hurdle facing widespread use of RPA is its
exceedingly high computational cost. Several approaches have
been developed5,6,13,19,20 for reducing the naiv̈e O(Ñ6) RPA
scaling to O(Ñ4), (Ñ is a measure of system size); however, this
is still expensive. The problem is aggravated when plane-waves
or real-space grids are used, suffering from the huge number of
unoccupied states and the strong reliance of the RPA energy on
the unoccupied energies.21−23

In the present Letter, we develop a stochastic sampling
method for estimating the RPA correlation energy. Related
sampling techniques have been recently developed by us for
estimating the rate of multiexciton generation in nanocrystals
(NCs),24 for a linear scaling calculation of the exchange
energy,25 and for overcoming the computational bottleneck in
Møller−Plesset second-order perturbation theory (MP2).26

RPA, applied on top of a grid or plane-waves calculation,
starts from the KS or generalized KS Hamiltonian Ĥ0, which
can be applied to any wave function in linear scaling numerical
effort.27 For a closed-shell system of 2N electrons on a grid/
basis of size M, the N lowest KS orbitals ϕi(r) of Ĥ0 are
occupied and M−N are unoccupied.28 The RPA correlation
energy can be written as5 EC

RPA = (1/2)Σia,Ω̃ia>0(Ω̃ia − Aia,ia),
where Ω̃ia are eigenvalues of “L̃” defined by
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where Wpq,st = λ∫ (ϕp(r)ϕs(r′)ϕt(r′)ϕq(r)/|r − r′|)d3r d3r′ are
the Coulomb integrals, λ is a coupling strength parameter (λ =
1 is full-strength Coulomb coupling and λ = 0 is the
noninteracting limit), and ωst = εs − εt is the difference of
eigenvalues of Ĥ0. Note that the eigenvalues Ω̃ak are real, even
though L̃, although having pure imaginary eigenvalues, is a real
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An alternative formulation starts from the expression5
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where R̃(λ) ≈ (1/2)Σia,Ω̃ia>0(λ). However, the calculation of
R̃(λ) is still prohibitive for large systems because of the high
cost of diagonalization of the 2N(M − N) × 2N(M − N) L̃
matrix (in grid representations, M and N easily reach 106 and
104, respectively).
Our formulation is based on a linear-response time-

dependent Hartree approach.29,30 EC
RPA is still given by eq 3,

but R̃(λ) is replaced by the following trace:29,30

λ λ≡ Ω ̂+R tr L( ) [ ( ( ))] (4)

Here Ω+(x) = xθ(x), where θ(x) is the Heaviside step
function, which we approximate as θ(x) ≈ (1/2)erfc(−βx); L̂ is
a linear operator, revealed when linearizing the time-dependent
KS equations (see refs 14 and 30 for details):
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χk(r) and Yk(r) are functions, originally describing the time-
dependent Hartree response of the kth KS orbital ϕk(r), but are
used here as stochastic perturbations as detailed below.
vH[Δρ](r) = λ∫ (Δρ(r′)/|r − r′|)d3r′ is the Hartree
perturbation potential depending linearly on the χ’s via
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=
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One can expand L̂ in the basis of the KS orbitals and obtain
its 2NM × 2NM matrix Lpq,st having NM positive imaginary
eigenvalues iΩst and an equivalent negative set. N(M − N)
eigenvalues can be classified as “occupied−unoccupied”
transitions Ωka, and N2 eigenvalues are occupied−occupied
transitions Ωkj. Obviously, the dimensions of L and L̃ differ, as
the latter describes only occupied−unoccupied transitions.
Nonetheless, within the occupied−unoccupied space, the
matrices and eigenvalues are identical:31

= ̃ Ω = Ω̃L L ,ka jb ka jb ka ka, , (7)

R(λ) in eq 4 is computed in three principal steps:

(1) The trace is replaced by an average (denoted by curly
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⎠⎟ is shorthand notation for the entire set of χk’s and Yk’s.

(2) The selection of the random vector χk and Yk is done by
generating two vectors composed of random complex
phases at each grid point rg: ζ1,2(rg) = (1/h3/2)eiθ1,2(rg),

where h is the grid spacing and θ1,2(rg) is a random
number between 0 and 2π. Then one sets:
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expansion approach, so that
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Note that L̂ is a real operator (eq 5), so all calculations are
done on real functions. Δ = (1/2)(lmax − lmin) is half the
eigenvalue range of iL̂. The cm are numerical coefficients
obtained as follows: First, prepare a series of length 4nc, dn =
Ω+(Δ cos((π/2nc)n)), n = 0, ..., 4nc − 1, and then set cm = (d ̃m/
(4nc(1 + δm0))) (for m = 0, ..., nc), where {d ̃} are the discrete
Fourier transform of {d}. The series length nc is chosen large
enough so that the sum in eq 10 converges, i.e., |cnc| is smaller
than a prescribed tolerance.
We rely on correlated sampling to reduce the statistical error

in computing EC
RPA . R is computed for three values of λ = 1, +η,

and −η (with η = 10−3) using the same random number seeds,
and then the RPA energy is estimated by
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We now demonstrate the performance of the stochastic
method by applying it to calculate the RPA correlation energies
of spherical cadmium-selenide (CdSe) and hydrogen passivated
silicon NCs, where the Hamiltonian Ĥ0 is constructed from a
semiempirical pseudopotential model.32,33 The N occupied
states of the NCs were obtained using the filter diagonalization
technique34 with the implementation described in refs 32 and
35. We used β = 30Eh

−1 for approximating the step function
Ω+(x), nc = 1024 (see discussion of Figure 4), and Δ ≈ 12Eh,
slightly larger than half the maximal eigenvalue range for both
NCs. Various features of the NCs are summarized in Tables 1
and 2.
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As a test, we compared the stochastic estimate and a full
summation calculation of the RPA energy for SiH4 on a 8 × 8 ×
8 point grid (see Figure 1). The deviation of the stochastic

approach from the exact value is within the statistical variance
for nearly all stochastic iterations. We found that for 10 000
stochastic iterations, the stochastic estimate deviates by ∼10
meV from the full summation value. As explained below, the
number of required stochastic iterations decreases considerably
(for a fixed error per electron) as the size of the system
increases.
Figure 2 shows the RPA correlation energies for CdSe and

silicon NCs up to ≈1600 electrons along with a comparison to
MP2 energies obtained using the Neuhauser−Rabani−Baer
(NRB) method.26 The RPA correlation energy is much less
sensitive to the NC size when compared to MP2. This is
because the NC gaps decrease with system size, and MP2
energies are sensitive to small gaps (diverging for metals). The
RPA energy of silicon is somewhat above that of CdSe, and is
within the LDA bulk limit21 range of 1 − 1.5 eV.
The insets of Figure 2 show the corresponding statistical

errors normalized to 1000 stochastic iterations. The errors
decrease when the number of electrons in the system increases.

This shows that the algorithm profits from statistical self-
averaging. The statistical error of the CdSe NCs is
approximately twice smaller than that for silicon despite having
similar gaps for the same NC size. This suggests that the
statistical errors are not trivially correlated with the gap.
Figure 3 shows the total CPU time for calculations that yield

a statistical error of ≈10 meV per electron. The method scales,

at most, quadratically with system size but in practice, due to
self-averaging, requires considerably less statistical sampling as
the system grows, and the resulting performance is close to
linear scaling. Furthermore, in comparison, the RPA CPU time
for the same statistical error is an order of magnitude smaller
than the CPU time required for the MP2 calculations.
Regarding memory requirements, for the RPA scales quadrati-
cally with system size (17 GB for the largest silicon NC) and
linearly for MP2.
In some cases, the Chebyshev interpolation suffers from

instabilities. This is shown in the Figure 4 for the Si353H196 NC,

Table 1. Parameters for the CdSe NCsa

NCd NSe Ne D (nm) NL Eg (eV)

20 19 152 1.4 2 490 368 3.8
83 81 648 2.1 35 831 808 2.9
151 147 1176 2.5 154 140 672 2.7

aShown are the number of Cd (NCd) and Se (NSe) atoms, electrons
(Ne), NC diameter (D), the numerical effort involved in operating
with L on a perturbation vector NL = (1/2)Ne × Ng, where Ng is the
number of grid-points and Eg is the occupied−unoccupied energy gap.

Table 2. Same as Table 1, but for Hydrogen Passivated
Silicon NCs

NSi NH Ne D (nm) NL Eg (eV)

1 4 8 6912 10.7
35 36 176 1.3 2 883 584 3.9
87 76 424 1.6 23 445 504 3.2
353 196 1608 2.4 210 763 776 2.2

Figure 1. The error of the stochastic estimate for the RPA energy per
electron with respect to the exact value (black curve) and the variance
(red curve) as function of stochastic iterations for SiH4.

Figure 2. RPA (blue) and MP2 (red) correlation energies per electron
vs the number of electrons Ne, for silicon (top) and CdSe (bottom)
NCs. Insets show the statistical errors in the RPA energies, normalized
to 1000 stochastic iterations.

Figure 3. The CPU times for achieving a statistical error of ≈10 meV
per electron for the RPA and MP2 calculations of CdSe NCs.
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where we plot the RPA energy estimate as a function of the
length of the Chebyshev expansion. The results (dashed line)
clearly diverge as the Chebyshev expansion length grows. To

alleviate this problem, we follow each operation of L̂ on (Yk
(m+1)

χk
(m+1)

)
by a projecting out the operands the “close by” occupied
orbitals ψj, j = k − np, ..., k + np where np is a small system-
dependent integer.
Figure 4 shows the RPA correlation energy as a function of

the Chebyshev interpolation order (nc). For Si35H36 the RPA
energy with (np = 0) and without projection are nearly identical
(to within statistical error). For higher interpolation orders than
shown, the RPA correlation energy without projection diverges
while the projected one remains stable. For Si353H196, the
Chebyshev polynomial visibly diverges already when the order
is larger than 300 but becomes stable when projection is used
with np = 10. Here too, the difference between the projected
and nonprojected correlation energies (before divergence) is
smaller than the statistical fluctuations, which is large in the
diverged result due to the small number of stochastic iterations
done.
The present method is not only useful to calculate the RPA

energy per electron. In fact, it can also be used to obtain, for
example, the RPA corrections to chemical reaction energy
profiles or to adsorption energies. In this respect, we have
developed an approach, based on a combination of adiabatic
evolution and correlated sampling to calculate energy differ-
ences between two structural configurations.36 Preliminary
results for SiH4 (enabling comparison to the full summation
result) and Si35H36, moving one atom by 0.01a0, indicate that
the statistical error of the energy gradient (i.e., the force due the
RPA energy) is comparable to the statistical error of the total
RPA energy per electron (much smaller than the statistical
error in the total energy). For SiH4 and Si35H36, the statistical
error per stochastic iteration37 in the RPA energy is 0.016 and
0.05 eV, respectively, compared to the statistical error in the
RPA energy per electron 0.25 and 0.15 eV, respectively.
Summarizing, we have presented a new stochastic approach

for calculating RPA energies for large electronic systems of
exceptional size. The method scales formally as O(Ñ2) in terms
of memory and CPU time but due to self-averaging has a near-
linear scaling CPU time performance. We calculated the RPA

correlation energy for CdSe and silicon NCs up to diameters of
2.5 nm with over 1500 electrons. The stochastic approach
developed here bloats, by orders of magnitude, the size of
systems that can be treated using RPA theory.
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