PRL 113, 076402 (2014)

PHYSICAL REVIEW LETTERS

week ending
15 AUGUST 2014

£

Breaking the Theoretical Scaling Limit for Predicting Quasiparticle Energies:
The Stochastic GW Approach

Daniel Neuhauser,1 Yi Gao,1 Christopher Arntsen,1 Cyrus Karshenas,1 Eran Rabani,2 and Roi Baer’
'Department of Chemistry, University of California at Los Angeles, California 90095, USA
2School of Chemistry, The Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
3Fritz Haber Center Jfor Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
(Received 19 February 2014; published 11 August 2014)

We develop a formalism to calculate the quasiparticle energy within the GW many-body perturbation
correction to the density functional theory. The occupied and virtual orbitals of the Kohn-Sham
Hamiltonian are replaced by stochastic orbitals used to evaluate the Green function G, the polarization
potential W, and, thereby, the GW self-energy. The stochastic GW (sGW) formalism relies on novel
theoretical concepts such as stochastic time-dependent Hartree propagation, stochastic matrix compression,

and spatial or temporal stochastic decoupling techniques. Beyond the theoretical interest, the formalism
enables linear scaling GW calculations breaking the theoretical scaling limit for GW as well as
circumventing the need for energy cutoff approximations. We illustrate the method for silicon nanocrystals

of varying sizes with N, > 3000 electrons.
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The GW approximation [1,2] to many-body perturbation
theory (MBPT) [3] offers a reliable and accessible theory
for quasiparticles (QPs) and their energies [2,4-18],
enabling estimation of electronic excitations [19-25],
quantum conductance [26-30], and level alignment in
hybrid systems [31,32]. Practical use of the GW approxi-
mation for large systems is severely limited because of the
steep CPU and memory requirements as system size
increases. The most computationally intensive element in
the GW method, the calculation of the polarization poten-
tial (the screened Coulomb interaction), involves an algo-
rithmic complexity that scales as the fourth power of the
system size [33,34]. Various approaches have been devel-
oped to reduce the computational bottlenecks of the GW
approach [8,18,23,33-37]. Despite these advances, GW
calculations are still quite expensive for many of the
intended applications in the fields of materials science,
surface science, and nanoscience.

In this Letter we develop a stochastic, orbital-less,
formalism for the GW theory, unique in that it does not
reference occupied or virtual orbitals and orbital energies of
the Kohn-Sham (KS) Hamiltonian. While the approach is
inspired by recent developments in electronic structure
theory using stochastic orbitals [38—42], it introduces three
powerful and basic notions: Stochastic decoupling, sto-
chastic matrix compression, and stochastic time-dependent
Hartree (sSTDH) propagation. The result is a stochastic
formulation of the GW approximation, where the QP
energies become random variables sampled from a distri-
bution with a mean equal to the exact GW energies and a
statistical error proportional to the inverse square root of the
number of stochastic orbitals (iterations, /gy ).

We illustrate the sGW formalism for silicon nanocrystals
(NCs) with varying sizes and band gaps [43,44] and

0031-9007/14/113(7)/076402(5)

076402-1

PACS numbers: 71.10.-w, 71.15.Qe, 74.25.Jb

demonstrate that the CPU time and memory required by
sGW scales nearly linearly with system size, thereby
providing the means to study QPs excitations in large
systems of experimental and technological interest.

In the reformulation of the GW approach, we treat the
QP energy (eqp = hiwgp) as a perturbative correction to the
KS energy [2,5]:

egp(e) = e + X (wgps €) + TX(e) —=TXC(e). (1)
We view the KS energy ¢ as a variable (rather than an
eigenvalue) and the actual value we use is determined from
the density of states of the KS Hamiltonian available from
the stochastic density functional theory (sDFT) calculation
[41]. For each value of € one needs to evaluate the self-
energy in Eq. (1) given by the sum of the self-energy terms

(1) = s tlfollcs = 8" (0],
T¥(e) = iz lfallics = 28]
EXC(e) = Lt (s — £ vxc). )

QO(e)

The frequency domain polarization self-energy ¥ (w, €) is
given in terms of the Fourier transform of the time domain
counterpart (¢, €). 2X(¢) and IXC(¢) are the exchange
and exchange-correlation self-energies, respectively, and
Q(¢) = tr[f,(hgs — €)*] is a normalization factor. In the
above, vxc(r) is the exchange-correlation potential of the
KS DFT Hamiltonian hyg and f,(¢) = e7¢/2" is an
energy filter function of width o [45]. X(e), ZXC(e),
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and Q(¢) can be calculated using a linear-scaling stochastic
approach [46].

In the GW approximation, the most demanding calcu-
lation involves the polarization self-energy, formally given
by [2]:

2P(ry. 1y, 158) = (020 (5€)|ry)
= ihGy(r|,rp, )W (x|, 10, 158),  (3)
where
ihGo(r.xp,1) = (rie™™ P, (D]ry)  (4)
is the Green function and

WE(ry 1y, t16) = (r|uc @ y(t:¢) @ uclry)  (5)

is the polarization potential. In the above equations, 13” ()=
[0(1)—05(u—hys)], O(r) and O4(E) = %[1 + erf(BE)] are
the Heaviside and smoothed-Heaviside functions, respec-
tively, p is the chemical potential, uc(|r; —r;|) =
(e?/4m)ey|r; —1,| is the bare Coulomb potential, and
x(r, 15, 1; €) is the time-ordered density-density correlation
function [3]. The symbol & represents a space convolution.

Instead of performing the trace operations in Egs. (2)—(5)
using a full basis, which for a large system is prohibitive,
we use real stochastic orbitals ¢(r) [47-50] for which
formally 1 = (|¢)(¢|),, where (- -), denotes a statistical
average over ¢. The choice of ¢(r) satisfying these
requirements is not unique. The form used here assigns
a value of +h=3/2 at each grid point with equal probability,
where / is the grid spacing. This allows us to rewrite the
self-energy in Eq. (2) as

2P(te) = </ ¢e(r1)2P(rlvr27t;8)¢(r2)d3rld3r2> ;
¢

(6)

where |¢.) = f,(hgs — €)|¢) is the corresponding filtered
state at energy &, which can be obtained by a Chebyshev
expansion of the Gaussian function with ¢ chosen as a
small parameter [51,52]. We note in passing that the
Chebyshev method enables to simultaneously obtain
3P (1, €) for several values of & [53].

To obtain XF(r, 1y, t;€) in Eq. (6) we need to calculate
the noninteracting Green function iAG,(r;,r,, 1) in Eq. (4)
and the polarization potential W¥ (r|, r,, #; €) in Eq. (5). For
the former, we introduce an additional set of real stochastic
orbitals, {(r), and describe it as a stochastic average

ihGo(ry, 1y, 1) = (£, (r1, )¢(r2)),, (7)

where (,(r,1) = (r|e"'i1!<5’/hf’ﬂ(t)|§> is a “propagated-
projected” stochastic orbital which can be obtained
by a Chebyshev expansion of the function e~*"/"[0(1)—
Op(e — u)] [51,52]. One appealing advantage of the sto-
chastic form of Eq. (7) is that it provides a compact
representation for Ggy(ry,rp, ), equivalent to matrix

compression, where r; and r, are decoupled. This allows
a drastic simplification of the representation of the polari-
zation self-energy obtained by combining Eqs. (6) and (7):

2P (te) = ((@elu(1) luc ® x(1) @ ucllg))y.  (8)

Next, we employ a temporal decoupling scheme by
introducing an additional set of real stochastic orbitals

w(r):
2P (18) = (9 (1) [w) (Wlue ® x (1) @ uclldh)) yr,r  (9)

which allows us to disassociate the two temporal terms
($:Lu(1)* W) and {wluc @ #(1) ® uclch). Note that the
average (- - -) 4, in Eq. (9) is performed over Iy pairs of
¢ and ¢ stochastic orbitals, and for each such pair we use a
different set of N,, stochastic y's. The term (¢, (1)*|y) is
straightforward to obtain while (w|uc ® y(t) ® uc|lp) is
determined from the time-retarded polarization potential,
(wluc @ ¥"(t) @ uc|Cp), calculated from the linear
response relation:

(wluc ® 1" (1) ® ucllg) = (wluclon(1)). (10)

where 6n(r,t) is the causal density response to the
impulsive perturbation sv(r, 1) = (r|uc|{$)d(t) calculated
by the time-dependent Hartree (TDH) approach [54-56].
Alternatively, a full time-dependent (TD) density functional
theory (DFT) [57] is often found to yield better QP
energies than the TDH propagation [21]. Once the retarded
response  (y|uc|én(t)) is calculated and stored for
each time ¢, the corresponding time-ordered response
(plue ® (1) ® uc|lp) is obtained by a standard trans-
formation [58].

The TDH (or TD DFT) propagation is usually performed
using the full set of occupied KS eigenfunctions, but we
deliberately avoid these in our formulation. Instead, we
introduce, once again, a stochastic way to perform the TDH
or TD DFT propagation, where a new set of N, occupied
projected stochastic orbitals ¢, (r,0) = (r|0(u — hgs)|p)
are used [as before, ¢(r) are real random orbitals for which
1 = (|p)(¢l),]. The so-called sTDH (or sTD DFT) propa-
gation is carried out identically to a TDH propagation,
except that one propagates only the N, stochastic orbitals at
each time step (rather than all occupied orbitals), and the
density is calculated as n(r, 1) = (|p(r, 7)), from which
the Hartree potential is updated in the usual way [59]. We
verified that for a given accuracy the number of propagated
orbitals N, does not increase (and actually somewhat
decreases) with system size [60]. This suggests that the
computational complexity (storage and computational
time) of the STDH (or sTD DFT) step scales linearly with
system size.

We validate our formalism by first applying it to a small
model system where a deterministic GW calculation is
available as a benchmark [61]. In Fig. 1 we show the
estimates for the real part of the polarization self-energy,
obtained by both the deterministic and the stochastic
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FIG. 1 (color online). Comparison of the stochastic (dashed
red) and deterministic (black) estimates of the real part of the
polarization self-energy =” (w, €) for the 14 electron benchmark
model corresponding to the highest quasihole and lowest
quasielectron levels. Frequency scale in atomic units.

methods. The stochastic calculation employed a large
number of iterations (I, = 10000), to achieve small
statistical errors. The agreement between the results of the
two calculations for all relevant frequencies as seen in Fig. 1
is impressive for both the highest quasihole and lowest
quasielectron levels, validating the stochastic formulation.

Next, we performed a set of sGW calculations for a series
of hydrogen passivated silicon NCs as detailed in Table I.
The sDFT method [41] was used to generate the Kohn-
Sham Hamiltonian within the local density approximation
(LDA). The calculations employed a real-space grid of
spacing i = 0.6a, the Troullier-Martins norm-conserving
pseudopotentials [62], and fast Fourier transforms for
implementing the kinetic and Hartree energies. The CPU
time needed to converge the sDFT to a statistical error in
the total energy per electron of about 10 meV was ~ 5000 h
for the entire range of systems studied.

In the lower panel of Fig. 2 we plot the QP energies of
the highest quasihole and lowest quasielectron levels for the
silicon NCs. We have used I,5y = 1000 stochastic iter-
ations, each one involving one pair of random ¢ and ¢
orbitals, and a set of N, = 100 random y orbitals. As can

TABLE I

be seen, the statistical error in the values of the QP energies
is very small (< 0.1 eV) and can be reduced by increasing
I,cw. The quasihole (quasielectron) energy increases
(decreases) with system size due to the quantum confine-
ment effect. The quasiparticle energies tend to plateau and
approach the bulk value as the size of the NC increases. The
onset of the plateau for the quasielectron seems to exceed
the size of the systems studied. This is consistent with the
fact that the effective mass of the electron is smaller than
that of the hole. The middle panel of Fig. 2 shows the QP
energy difference from the KS values for the holes and
electrons. Larger deviations are observed for small NCs in
the strong confinement regime. The corrections for the
holes are larger than that for the electrons. This is rather
surprising, given that for small systems, the error in the
frontier orbital energies in KS DFT within LDA should be
divided equally between the electron and the hole [63,64].

The upper panel of Fig. 2 shows the CPU time scaling
of the entire sGW approach for the combined calculation
of ¥X(¢), XC(¢), and P (t; €). The scaling is nearly linear
with the number of electrons breaking the quadratic
theoretical limit. This near-linear scaling behavior kicks
in already for the smallest system studied and, therefore,
the stochastic method outperforms the ordinary O(N*)
GW approach for all systems studied beyond SiH,. It is
important to note that for almost the entire range of NC
sizes the sGW calculations were cheaper than the sDFT.

We have also tested the sGW performance on phenyl-
C61-butyric acid methyl ester (PCBM), a large nonsym-
metric system. We obtained egp = 7.1 £0.1 eV for the
hole and egp =3.4+0.1 eV for the electron using
I = 600 iterations. These results can be compared to the
experimental results for the ionization potential Ep =
7.17 eV and electron affinity Egs, = 2.63 eV [65,60].
The agreement for the electron affinity can be improved
by replacing the RPA screening with TD DFT screening
[67], which gives eqp = 2.5 0.1 €V for the electron. The
error per iteration is thus similar to that of the symmetric
silicon nanocrystalline systems.

In conclusion, we have reformulated the GW approxi-
mation to MBPT for QP energies as a stochastic process
without directly referring to KS eigenstates (or,

The number of electrons (N,), size of grid (N,), number of sDFT iterations (/;ppr), number of

stochastic orbitals in sSTD DFT (N ), the value of Bty (Ej) in the sGW calculation, and the resulting QP energy gap
(Egal;) compared to GW and self-consistent-field energy differences (ASCF) calculations.

Ey (eV)
System N, N, Lorr N, By sSGW GW, ASCF
SizsHye 176 603 3000 16 0.020 6.2 7.0° 6.2
Sig7Hyg 424 643 1600 16 0.012 4.8
Si;.7H 00 688 703 800 16 0.010 4.1 5.0° 4.1
Sizs3H 06 1608 903 400 16 0.008 3.0 2.9
SizesHa00 3120 1083 200 16 0.007 22 2.4°

“From Ref. [21].
°From Ref. [44].
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FIG. 2 (color online). Lower panel: QP energies for the highest
quasihole (black) and lowest quasielectron (red) levels. Middle
panel: QP energy difference from the KS energy for the highest
quasihole (black) and lowest quasielectron (red) levels. Upper
panel: CPU time versus the number of electrons. The power law
fit (solid line) yields an exponent close to 1.

equivalently, the single-particle density matrix). The sGW
approximation is a fully quantum paradigm shift and
removes the main obstacle for addressing large systems
up to the mesoscopic limit. Indeed, the application to silicon
NCs of size far exceeding the current state-of-the-art
indicates that the complexity is near linear with system
size, breaking the theoretical limit. Some of the concepts
presented here may be applicable to other forms of MBPT,
such as propagator [68] and Green function theories [69].

The sGW method developed here has several appealing
advantages: (i) Representation: It is especially suitable for
real-space-grid and/or plane-wave pseudopotential repre-
sentations for which the Hamiltonian operation on a
stochastic orbital scales linearly. These representations
are natural for large-scale electronic structure computa-
tions. The approach is also useful for periodic systems
with very large super-cells. (ii)) CPU time scaling: The
present method enables a GW calculation that scales near
linearly in CPU time. Existing methods have been able to
reduce the complexity to cubic and it was implicitly
assumed that linear scaling is impossible due to the
complexity of RPA. The present method circumvents this

by developing sTDH. The scaling of our approach is
insensitive to the sparsity of the density matrix and thus
represents a significant improvement over existing GW
implementations. (iii) Storage scaling (matrix compres-
sion): The introduction of the stochastic orbitals circum-
vents the need to store huge matrices of the Green function
and the polarization potential (or the inverse dielectric
matrix !, etc.), thus achieving considerable savings in
memory. The scaling of storage is O(N,), which makes
the sGW calculation applicable to a large system without
recourse to various energy cutoff approximations in the
unoccupied space [13,70,71]. (iv) Parallelization: The
stochastic character of the sGW formalism allows for
straightforward parallelization—self-energies are averaged
over different stochastic orbitals and each processor
performs its own independent contribution to this average.

These features make sGW the method of choice for
studying QP excitations in large complex materials not
accessible by other approaches.
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