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ABSTRACT
We perform all-electron, pure-sampling quantum Monte Carlo (QMC) calculations on ethylene and
bifuran molecules. The orbitals used for importance sampling with a single Slater determinant are
generated from Hartree-Fock and density functional theory (DFT). Their fixed-node energy provides
an upper bound to the exact energy. The best performing density functionals for ethylene are BP86
and M06, which account for 99% of the electron correlation energy. Sampling from the π -electron
distributionwith these orbitals yields a quadrupolemoment comparable to coupled cluster CCSD(T)
calculations. However, these, and all other density functionals, fail to agree with CCSD(T) while sam-
pling fromelectron density in the plane of themolecule. For bifuran, aswell as ethylene, a correlation
is seen between the fixed-node energy and deviance of the QMC quadrupole moment estimates
from those calculated by DFT. This suggests that proximity of DFT andQMC densities correlates with
the quality of the exchange nodes of the DFT wave function for both systems.
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1. Introduction

A recent paper by Medvedev et al. [1] examined root
mean squared deviations of electron densities for several
atomic systems calculated using various density func-
tionals relative to highly accurate wave function calcu-
lations. They found that for more recent, highly param-
eterised density functionals, the density becomes less
accurate while the energy grows more accurate. The
recently developed functionals started producing less
accurate electron densities following early generalised
gradient approximation (GGA) methods. Their paper
has led to much discussion in the literature on whether
or not density functional theory (DFT) has been on the
‘wrong track’ since early 2000, after highly parameterised
density functionals came into prominence.

CONTACT Stuart M. Rothstein srothste@brocku.ca Department of Physics, Brock University, St. Catharines, ON L2S3A1, Canada

The methodology used by Medvedev et al. has been
questioned repeatedly. Kepp [2] points out that their cal-
culationswere performedon very compact 1s2 and 1s22s2

systems favoured by the Hartree-Fock model and irrel-
evant to chemical bonding. Medvedev et al. [3] replied
that nevertheless this does not change the main message
of their work: unconstrained fitting of flexible functional
forms can make the model less widely predictive. In the
same vein, Mezei et al. [4] addressed the same method-
ological bias by preforming a propagation of error anal-
ysis for the density, its gradient, and its Laplacian for
a set of chemically relevant densities. Although the
details of their conclusions are different, they nonethe-
less confirm the broad conclusions stated by Medvedev
et al.
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Some recent papers also question the accuracy of
highly parameterised density functionals. As a follow-
up to her comments in Science [5], Hammes-Schiffer
and co-workers [6] calculated the errors relative to cou-
ple cluster (CCSD) reference calculations in the elec-
tron densities and atomisation energies in the bonding
region for a series of diatomic molecules using 90 dif-
ferent density functionals. They found that these errors
are uncoupled for hybrid GGA functionals developed
since year 2000: the accuracy of the energies remains rela-
tively consistent while the accuracy of the densities varies
significantly. In the analysis of the electron density of
beryllium atom, relative to CCSD reference calculations,
Korth [7] foundM06, one of the recently developed func-
tionals, to be less accurate than PBE0, despite using more
parameters. M06 and M06L (another recently developed
functional) appeared with eleven others in Kepp’s study
of bond enthalpies for systems containing aluminium.
In terms of their ability to reproduce trends in bond
strengths, all methods except M06 and M06L performed
equally well. He concluded that the accuracy of heav-
ily parameterised functionals may suffer when applied
outside of their parametrisation range.

On the other hand, there are impressive results from
benchmarks covering a wide variety of computational
chemistry applications performed with the non-local
members of the M06 suite of functionals [8]. On ther-
mochemistry, barrier heights, non-covalent interaction
energies and (albeit now omitting M06-SCF) transition
metal reaction energies, these functionals outperform
BLYP, B3LYP, PBE, PBE0 and TPSSh, most of the func-
tionals being assessed in the present study.

We add to this discussion by applying all-electron,
pure-sampling quantumMonte Carlo (PSQMC) to ethy-
lene and bifuran. Ethylene, a small molecule of obvi-
ous importance, is amenable to an all-electron approach,
promising acceptably small error bars for quantities of
interest to us. As to be expected, similar calculations on
bifuran, a conducting polymer oligomere, result in larger
error bars. Nevertheless, for our purposes, the statistical
error is sufficiently small for us to draw somemeaningful
conclusions from our results.

For importance sampling, we employ a single-
determinant of molecular orbitals generated using
Hartree-Fock and a variety of density functionals.
Given physically meaningful orbitals, the resulting fixed-
exchange-node energy provides an upper bound on the
exact, non-relativistic, Born-Oppenheimer ground-state
energy. A correlation is seen between the fixed-node
energy and deviance of the PSQMC quadrupole moment
estimates from those calculated by DFT. This suggests
that proximity of the DFT and PSQMC densities corre-
lates with the quality of the exchange-nodes of the Slater

determinental wave function. This gives us an objec-
tive way to assess the quality of the underlying ground-
state electron distributions, as reflected by their electric
quadrupole moments, without relying on a favourable
cancellation of errors inherent in, for example, thermo-
chemistry calculations, reaction barrier heights and bond
energies. Furthermore, our approach does not rest on
such rubrics as clever definitions of bonding regions or
an analysis of electron density along a covalent bond.
Instead, pure-sampling quantum Monte Carlo samples
literally millions of times from the entire, exact, save
for its inexact electron-exchange nodes, electron density
distribution.

2. Methods

2.1. Pure-sampling quantummonte carlo

Pure-sampling algorithms are designed to calculate
electronic properties that are free from importance-
sampling bias. We employ the most recent algorithm
of this type, denoted as pure-sampling quantum Monte
Carlo (PSQMC) [9,10], which uses special techniques
that remove not only the importance-sampling bias,
but also more subtle problems associated with other
approaches, such as fixed-node diffusion Monte Carlo
(FN-DMC) [11–13], reptation quantum Monte Carlo
[14,15] and ‘bounce’ quantum Monte Carlo [16]. For a
detailed review of these methods and their associated
biases and other technical issues, see Reference [17].

All of these algorithms, including PSQMC, rest upon
the fixed-node approximation; described in Section 2.2.
The resulting fixed-node bias is a variationally bound
quantity that is generally believed to be a small percent-
age of the correlation energy. Nevertheless, it could still
lead to difficulties with calculating small energy differ-
ences [18] and spin densities [19].

Most of the literature with applications of density
functional theory in consort with quantum Monte Carlo
calculations utilises FN-DMC. Several of these have
incorporated density functional wave functions for the
importance-sampling [18–34]. However, relatively few
exploit pure-sampling to analyse the performance of den-
sity functionals for properties other than the energy,
either by using extrapolation [23,32,35–37] or reptation-
based algorithms [22,26,38]. Extrapolation has a bias
proportional to the square of the error in the importance-
sampling function [39]. Reptation algorithms, reviewed
in [40], have no such bias, but assume microscopic
reversibility, the failure of which may have adverse con-
sequences for pure-sampling [10]. All-electron calcu-
lations are relatively rare in the literature, for exam-
ple [21,25,27,28,32]. Discussions of the pseudopotential
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approximation and its impact on their FN-DMC results
appear in [18,22,36,41–43].

PSQMC is not affected by these biases and theoretical
limitations, presenting itself as an ideal method to study
the quality of the ground-state electron distributions.

2.2. The algorithm

Pure-sampling quantum Monte Carlo (PSQMC) carries
out a random walk in tiny increments of imaginary
time (time-step), τ , to generate the τ -biased mixed-
distribution of elections, ��0, and their pure distribu-
tion,�2

0. Here� is an inputted antisymmetric wave func-
tion, which is used for importance-sampling, and �0 is
the unknown, ‘exact’ ground-state wave function. �0 is
not truly exact, as its electron-exchange nodes are fixed
to agree with those provided by � . This rubric is the so-
called ‘fixed-node approximation’ [11], which introduces
a positive bias on the calculated energy. (It is impor-
tant for the reader not to confuse the 3N-dimensional
electron-exchange nodes (N electrons) for the spatial
nodes in atomic and molecular orbitals.) Similarly, aver-
aging over the pure distribution of electrons with oper-
ators that commute with the position operator yields
properties like the electrical moments, albeit, still τ - and
fixed-node-biased. These τ -biases are easily eliminated
by regression to zero time-step, but the fixed-node biases
remain.

The calculations startwith a random (or variational, or
other suitably chosen) electron configuration: 3N coordi-
nates of the N electrons, denoted by x0 in Figure 1.

Figure 1. Visual representation of the process used to generate X
and Y in our methodology. Path X is generated from x0. The aux-
iliary path Z is generated starting from x0 as well. Finally, path Y
is generated starting from zL. All the moves are done using drift
and diffusion (Langevin diffusion). For the sake of illustration, the
paths are shown running in either the vertical or horizontal direc-
tion. They canactually go in anydirectionandmayeven cross each
other. Reprinted from [9] with permission of AIP Publishing.

Starting from x0, after employing a series of drift and
diffusion moves:

xi+1 = xi + τ
∇�(xi)
�(xi)

+ √
τχ , (1)

one generates Paths X and Y, each with 2L+1 configura-
tions, and auxiliary Path Z, with L configurations. χ in
Equation (1) is a random draw from a 3N-dimensional
standard normal distribution, performed each time these
mathematical moves (with no physical significance) are
executed. Next, a Metropolis decision,

A(X → Y) = min
{
1, e[S(X)−S(Y)]

}
, (2)

is evoked, where Path Y is considered as a proposed path
and Path X is the current path. S is the sum of local
energies,

Eloc = H�/� , (3)

along the indicated Path, with double counting the local
energy evaluated at the middle of the Path.

S(X) = τ

[
1
2
Eloc(x−L) +

L−1∑
i=−L+1

Eloc(xi)

+Eloc(x0) + 1
2
Eloc(xL)

]
; (4)

S(Y) is analogously defined.
After this procedure has equilibrated, if the proposed

path is accepted, its middle configuration, y0, is a random
sample drawn from the time-step-biased pure distribu-
tion, �0

2, and the proposed path becomes the current
one in the next iteration. Otherwise, the middle of the
current path, x0, is a random draw from this distribu-
tion and retained for the next iteration, when new Paths
Y and Z are generated. The time-step-biased mixed dis-
tribution, ��0, is sampled at the end configurations on
the accepted path.

The local energy, Equation (3), is sampled from
the mixed distribution at every time-step, providing
the fixed-node energy after the extrapolation to zero
time-step. Similarly, the electric quadrupole moment
estimators:

�αβ = 1
2

∑
i
qi

(
3riαriβ − r2i δαβ

)
, (5)

are averaged over the pure distribution, at the middle of
the Metropolis-selected path, and these time-step biased
quantities are also extrapolated to zero τ . The above
sum is taken over all electrons, and the Greek letters are
Cartesian coordinates.

Since they are separated by an auxiliary Path Z, Paths
X and Y are effectively statistically independent of each
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other, and the Metropolis decision, Equation (2), is valid
without approximations. By virtue of this ‘independent
Metropolis’ [10], extrapolating the Monte Carlo estima-
tors to zero τ is easier and more reliable.

2.3. Truncations and path-lengths

We employ τ -dependent truncations to avoid detrimen-
tal numerical issues that arise from singularities affecting
the Langevin diffusion moves, Equation (1), and local
energy, Equation (3). The truncations, which are rarely
evoked in practice and detailed in the literature [9,44], are
unbiased in the limit as τ → 0, where the fixed-node val-
ues of the properties are determined and the underlying
short-time Green’s function is free from bias [45–47].

The calculations are carried out at various time-steps
and path-lengths:

L(τ ) = L0 ×
(τ0

τ

)
, (6)

where L0 is the initial (smallest) path-length and τ0
is the initial (largest) time-step. The path-length (L)
approaches to infinity as τ tends to zero.

2.4. Biases

The algorithm is repeated for a set of τ values, and the
data set is fit by a polynomial (or exponential) variance-
weighted regression. This eliminates the time-step bias in
the simulated quantities. Nevertheless, due to the choice
of regression model, the desired zero-τ intercept is still
biased!

To deal with the regression model bias, several energy
versus τ curves are generated, where the length of PathsX
-Z is systematically increased until the fixed-node energy
and other properties converge to statistically equivalent
values at zero time-step. These are weighted-averaged to
improve the precision of the final determination of these
quantities. At some point, for well-understood reasons,
described in detail in [9], the curves assume an ‘S-shape’
and cannot be fit by any reasonable regression model.
This signals that the paths are too long.

Importance sampling reduces the statistical error that
is inherent in Monte Carlo sampling of configuration
space. In our case, this is provided by � , a single-
determinant wave function with molecular orbitals com-
ing fromHartree-Fock and a variety of density functional
calculations performed by using Amsterdam Density
Functional (ADF) [48,49] software.

Variance reduction is done at the cost of � ’s unopti-
mised and fixed electron-exchange nodes being forced
upon the simulated electron distributions, thereby bias-
ing quantities of interest to us. This so-called fixed-node

approximation [11] introduces a positive bias on the cal-
culated energy. The fixed-node bias is fundamental to
PSQMC and Reptation Quantum Monte Carlo [14,15],
its nearest alternative in the literature.

Biases that are not present in these calculations
include:

(1) pseudopotential approximation: these calculations
are all-electron.

(2) population control bias: present in the well-used,
FN-DMC method , but absent with PSQMC.

(3) finite path-lengths: the path-lengths are infinite at
zero time-step, where the fixed-node energy and
other properties are evaluated; Equation (6).

(4) Metropolis decision: Equation (2) is exact.

Relativity is ignored. The nuclei are clamped at their
experimental (ethylene) or energy-optimised (bifuran)
geometry. Our calculations are subject to the fundamen-
tal fixed-exchange-node bias and limitations of single
reference importance sampling with a finite (yet large)
STO basis set.

3. Application to ethylene

In the first instance, we applied the PSQMC algorithm
to ethylene. UsingAmsterdamDensity Functional (ADF)
[48,49] software, we constructed a Hartree-Fock single-
determinant ofmolecular orbitals. Themolecular orbitals
were expressed in a QZ4P basis set of Slater-type
orbitals (194 atomic orbitals) at the experimental geom-
etry [50]. Next, we determined the effective range of
time-steps and the path-length parameter, L0, at the
largest time-step, τ0, with which to do our calculations.
(The path-length L increases as the time-step decreases,
approaching to infinity as the time-step approaches to
zero; see Equation (6).) The fixed-node values and asso-
ciated error bars for the components of the electric
quadrupole moment and the energy are drawn from the
zero time-step intercept froma variance-weighted regres-
sion of their time-step-biased quantities. These calcula-
tions were repeated as L0 was systematically increased
until the resulting data could not be fit by regression. At
that point, a variance weighted average was taken over
statistically equivalent fixed-node energies and compo-
nents of the electric quadrupole moment. These quan-
tities, with HF importance sampling, comprise the ‘HF’
entry in Table 1.

The following set of density functionals was selected
for importance sampling, againwith a single-determinant
of molecular orbitals expanded in a QZ4P basis set:
BHandH [51,52], TPSS [53], TPSSh [54,55], M06-L [56],
PBE0 [57,58], B3LYP [52,59,60], PBE [61], BLYP [52,62],
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Table 1. Fixed-node energy (EFN) and electric quadrupole moment components for ethylene, generated by pure-sampling quantum
Monte Carlo, with importance sampling provided by a single-determinant of hartree-Fock (HF) and density functional orbitals.

WFN Type (year) %X EFN QFNxx QFNyy QFNzz Tracea

BLYP GGA (1988) 0 −78.574 (4) −2.485 (10) 1.235 (10) 1.256 (11) 0.006
BP86 GGA (1986) 0 −78.585 (3) −2.517 (2) 1.262 (6) 1.261 (10) 0.006
M06-L mGGA (2006) 0 −78.572 (3) −2.429 (2) 1.185 (6) 1.243 (6) −0.001
PBE GGA (1996) 0 −78.578 (3) −2.495 (6) 1.245 (7) 1.254 (8) 0.003
TPSS mGGA (2003) 0 −78.567 (3) −2.481 (10) 1.223 (8) 1.255 (9) −0.003
TPSSh h-mGGA (2003) 10 −78.570 (3) −2.542 (10) 1.251 (8) 1.299 (13) 0.009
B3LYP h-GGA (1994) 20 −78.578 (4) −2.574 (12) 1.271 (13) 1.301 (12) −0.003
PBE0 h-GGA (1995) 25 −78.574 (4) −2.616 (8) 1.293 (7) 1.329 (10) 0.005
M06 h-mGGA (2008) 27 −78.584 (4) −2.527 (9) 1.231 (9) 1.289 (13) −0.007
BHandH h-GGA (1993) 50 −78.566 (3) −2.730 (11) 1.327 (7) 1.394 (9) −0.009
HF 100 −78.570 (3)b −2.832 (7) 1.301 (8) 1.537 (8) 0.007
CCSD (T)c −78.58079 −2.46739 1.39787 1.06952

Note: Energy in hartrees and quadrupolemoment in atomic units. Entries in parentheses reflect statistical error in the last decimal place quoted. For geometry, see
caption of Figure 4.

a Qxx + Qyy + Qzz . Components independently calculated.
b Variational energy equals−78.069 Hartrees (Table 2).
c Reference [66].

M06 [8] and BP86 [62–64]. These calculations were per-
formed in the same manner as the HF case, described
above.

We checked the validity of our trial DFT wave func-
tions by performing a second set of calculations which
used Libxc [65] to evaluate the functionals in conjunction
with ADF. Afterwards, we performed our PSQMC calcu-
lations as usual. Both sets of calculations agreed within
the error bars reported by us.

The fixed-node energy and electric quadrupole
moments are reported in Table 1 and displayed in
Figures 2–6.

Figure 2. Plots of the time-step-biased energy versus time-step
at the largest value of L0 = 50. Path-lengths L increase from L0
as the time-step decreases; Equation (6). Importance sampling
is provided by density functional orbitals, in a Slater determi-
nant, with lower fixed-node energy than Hartree Fock. The fixed-
node energy for a given functional, with this choice of L0, is the
zero time-step intercept of its time-step-biased energies. Subse-
quently, this result is includedwithin a variance-weighted average
taken over statistically equivalent fixed-node energies, calculated
with smaller L0 values.

Figure 3. Fixed-node (FN) energy for ethylene ground-state cal-
culated with importance sampling provided by a single Slater
determinant constructed from Hartree Fock and density func-
tional orbitals. The error bars are a weighted average over statis-
tically equivalent fixed-node energies from curves generated at a
number of L0 values. The dotted lines denote the upper and lower
reaches of the error bars on the Hartree-Fock fixed-node energy.
The couple cluster value (CCSD(T)) was provided by [66], and the
exact, non-relativistic energy is taken from [67].

The quadrupole moment components are calculated
independently. The column labelled ‘trace’ in Table 1
shows that the components obey the tensor’s traceless
requirement comparable to the error bars of its compo-
nents. The dipole moment vanishes by symmetry. The
energy and quadrupolemoments calculated fromdensity
functional theory are reported in Table 2.

In Figure 3, the variationally bound, fixed-node ener-
gies for B3LYP, PBE, M06 and BP86 appear below the
Hartree-Fock error bars. In turn, M06 and BP86 have
better fixed-node energies than B3LYP and PBE. A crit-
ical, albeit not decisive, variable is % HF exchange: the
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Figure 4. Purely sampled Qxx electric quadrupole moment com-
ponent of ground-state ethylene versus fixed-node energy, cal-
culated with importance sampling provided by a single Slater
determinant constructed from Hartree-Fock and density func-
tional orbitals. As the fixed-node energy improves, the values
converge to those calculated from M06/BP86 The experimental
geometry [50] is assumed,where the x-axis is perpendicular to the
plane of the molecule. Coordinate origin is taken at the middle
of the z-axis, which contains the C–C bond. All PSQMC quan-
tities are subject to the fundamental fixed-node (FN) bias. The
couple cluster value (CCSD(T)) is provided by [66], and the exact,
non-relativistic energy is taken from [67].

worst performing, yet still valid, density functionalmodel
is BHandH with 50 % exact exchange.

The quadrupole moments converge to their BP86 and
M06 values as the fixed-node energy decreases (Fig-
ures 4–6). There is a similar convergence for the error in
the density: that which remains by subtracting the fixed-
node quadrupole moment from its DFT-calculated value
(Figures 7–9).

The CCSD(T) electric quadrupole moment determi-
nations, quoted in Table 1 and in Figures 4–6, employed
an aug-cc-pV5Z basis set on hydrogen and an aug-cc-
pCV5Z basis set on carbon, 682 basis functions [66].QFN

xx

Figure 5. Purely sampled Qyy electric quadrupole moment com-
ponent for ethylene ground-state versus fixed-node energy. For
geometry and other details, see caption of Figure 4.

Figure 6. Purely sampled Qzz electric quadrupole moment com-
ponent for ethylene ground-state versus fixed-node energy. For
geometry and other details, see caption of Figure 4.

values calculated from BP86, M06, PBE and to a lesser
extent B3LYP are in reasonable agreement with coupled
cluster. It is important to remember that the π electron

Table 2. ADF-generated energy (EADF) and electric quadrupole moment components for hartree-Fock (HF) and density functional
models for ethylene.

WFN Type (year) %X EADF QDFTxx QDFTyy QDFTzz

BLYP GGA (1988) 0 −78.584 −2.285 1.180 1.105
BP86 GGA (1986) 0 −78.626 −2.362 1.213 1.149
M06-L mGGA (2006) 0 −77.849 −2.236 1.137 1.098
PBE GGA (1996) 0 −78.508 −2.367 1.215 1.152
TPSS mGGA (2003) 0 −77.853 −2.338 1.185 1.153
TPSSh h-mGGA (2003) 10 −76.985 −2.404 1.205 1.199
B3LYP h-GGA (1994) 20 −78.572 −2.460 1.245 1.245
PBE0 h-GGA (1995) 25 −78.521 −2.558 1.278 1.280
M06 h-mGGA (2008) 27 −77.188 −2.391 1.183 1.208
BHandH h-GGA (1993) 50 −77.964 −2.758 1.341 1.417
HF 100 −78.069a −2.849 1.317 1.532

Note: Energy in hartrees and quadrupole moment in atomic units. For geometry see caption of Figure 4.
a Variational energy.
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Figure 7. Fixed-node (FN) energy for ethylene ground-state cal-
culated with importance sampling constructed from the corre-
spondingdensity functional (DFT) versusQDFT

xx −QFNxx . As thefixed-
node energy, and hence, electron distribution improves, the error
in the quadrupolemoment component, based on pure-sampling,
converges to those calculated from M06/BP86. For geometry, see
caption of Figure 4.

Figure 8. Fixed-node (FN) energy for ethylene ground-state cal-
culated with importance sampling constructed from the corre-
sponding density functional (DFT) versus QDFT

yy − QFNyy . For geom-
etry, see caption of Figure 4.

density is distributed above and below the yz-planes that
contain the core and σ -bonded electrons. On the other
hand, none of the density functional models are in good
agreement with coupled cluster for Qyy and Qzz.

4. Application to 2,2’-bifuran

Our next system is bifuran. Its symmetry affords in-
plane sampling similar to ethylene, where we found
discrepancy in the quadrupole moment relative to
CCSD(T) values. This molecule contains hetero-atoms,
and unlike ethylene, bifuran is sufficiently large to present

Figure 9. Fixed-node (FN) energy for ethylene ground-state cal-
culated with importance sampling constructed from the corre-
sponding density functional (DFT) versus QDFT

zz − QFN
zz . For geom-

etry, see caption of Figure 4.

a computational challenge for an all-electron approach to
pure-sampling.

In this application, a single Slater determinant was
again employed for importance-sampling. Here, the
molecular orbitals were expressed in a TZ2P basis set of
Slater-type orbitals with an energy-optimised geometry.
There are 70 electrons, 16 nuclei and 372 atomic orbitals.

Again usingADF [48,49], we constructed importance-
sampling functionswith orbitals calculated fromHartree-
Fock and density functional theory: BHandH [51,52],
PBE0 [57,58], B3LYP [52,59,60], BLYP [52,62], Becke [62]
and BP86 [62–64].

In Table 3, we see the most negative fixed-node ener-
gies are calculated for B3LYP, BLYP, Becke and BP86
wave functions, labelled ‘best set’ in the table, after taking
into account the statistical error. Their weighted mean
provides the fixed-node energy for bifuran to within 8
milli-Hartree precision. For this set of functionals, the
amount of exact exchange does not exceed 20%. The
variance-weighted fixed-node energy for BHandH and
PBE0 is 70 milli-Hartrees more positive than that of the
best performing functionals.

In Table 4, the xx- and zz-components of the elec-
tric quadrupole moment calculated from the best set
differ markedly from their counterparts calculated with
the other functionals. The xy- and yy-components are
less sensitive to the molecule’s nodal structure. The zz-
component, which arises from sampling the π-electron
distribution, consistently has the smallest variance. The
column labelled ‘trace’ shows that the quadrupole
moment components, calculated independently from
each other, obeys the tensor’s traceless requirement to
well within the error bars on its components.
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Table 3. Fixed-node energy (EFN) and purely sampled electric quadrupole moment components for hartree-Fock (HF) and density
functional models for bifuran.

WFN Type (year) %X EFN Qxx Qxy Qyy Qzz Tracea

BLYP GGA (1988) 0 −458.700 (31) 0.37 (14) 1.02 (17) 8.66 (22) −9.05 (12) −0.022
BP86 GGA (1986) 0 −458.679 (11) 0.48 (15) 1.29 (18) 8.83 (23) −9.32 (13) −0.005
Becke GGA (XXX) 0 −458.669 (18) 0.07 (14) 0.82 (19) 8.80 (21) −8.86 (12) 0.006
B3LYP h-GGA (1994) 20 −458.705 (25) 0.26 (13) 0.81 (16) 9.07 (19) −9.35 (11) −0.015
PBE0 h-GGA (1995) 25 −458.633 (15) 0.69 (12) 1.31 (17) 8.79 (17) −9.47 (10) 0.010
BHandH h-GGA (1993) 50 −458.601 (10) 0.83 (14) 1.00 (19) 8.78 (22) −9.63 (13) −0.018
HF 100 −458.494 (49)b 0.83 (15) 1.26 (21) 8.75 (21) −9.58 (12) 0.001
Best setc −458.681 (8) 0.28 (7) 0.98 (9) 8.86 (11) −9.14 (6)
Othersd −458.611 (8) 0.75 (9) 1.17 (12) 8.79 (14) −9.53 (8)

Note: Energy in hartrees and quadrupole moment in atomic units. Energy-optimised geometry, where the molecule rests in the xy-plane. Entries in parentheses
reflect statistical error in the last decimal place quoted.

a Qxx + Qyy + Qzz . Components independently calculated.
b Variational energy:−456.2723 Eh.
c Variance-weighted average: B3LYP, BLYP, Becke and B86.
d Variance-weighted average: BHandH and PBE0.

Table 4. ADF-generated components of electric quadrupole moment for hartree-Fock (HF) and density functional wave functions for
ground-state of bifuran.

WFN Qxx Qxy Qyy Qzz

HF 0.749 1.008 9.433 −10.183
BHandH 0.962 1.206 9.074 −10.036
PBE0 0.819 1.216 8.893 −9.712
B3LYP 0.431 1.043 8.973 −9.403
Becke −0.005 1.072 8.673 −8.668
BP86 0.553 1.282 8.690 −9.244
BLYP 0.198 1.149 8.709 −8.907
Othersa 0.89 [0.75±0.09] 1.21 [1.17±0.12] 8.98 [8.79±0.14] −9.87 [−9.53±0.08]
Bestb 0.29 [0.28±0.07] 1.14 [0.98±0.09] 8.76 [8.86±0.11] −9.06 [−9.14±0.06]

Note: All values are in atomic units. For other details, see caption of Table 3.
aAverage: BHandH and PBE0. Fixed-node average in brackets (Table 3).
bAverage: B3LYP, BLYP, Becke and B86. Fixed-node average in brackets (Table 3).

Figure 10. Fixed-node energy for bifuran ground-state versus
error in the zz-component of the quadrupole moment tensor.
Energy-optimised geometry, where the molecule rests in the xy-
plane, and y is the long axis of the molecule. Coordinate origin
is taken in the molecular plane at the middle of the molecule’s
long and short axes. The z-axis is perpendicular to the molecular
plane. The two furan rings are in the anti confirmation. The dipole
moment vanishes by symmetry (point group C2h).

Upon subtracting the fixed-node zz-component of
the electric quadrupole moment from its DFT-calculated
value, the resulting error in the π-electron density con-
verges to that of the best set of functionals as the fixed-
node energy decreases (Figure 10).

5. Summary and conclusions

As evidenced by the quality of their fixed-node energies,
the best wave functions for ethylene and bifuran have no
more than 27% exact exchange, showing definitely that
lowering exchange is better.

While sampling in ethylene’s molecular plane, all den-
sity functional models fail to agree with quadrupole
moment components calculated by coupled cluster
methods.

DFT wave functions with zero exact exchange are
guaranteed to obey the tiling property [68] (as does the
fully correlated ground state wave function), while the
HF wave function is not. Our best wave function of this
type for ethylene, BP86 (with one parameter), performs
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comparable to M06 (with several parameters), the best
one with non-zero exact exchange. BP86 is also among
the functionals that are accurate both in π-electron den-
sity and energy for bifuran. This gives one hope that
the ‘correct reasons for success’ [5] in the field of den-
sity functional theory rest with this and similar, non-
empirical models.

Except for the fixed-node approximation, which is
believed to be small, our calculations are free from
the biases and approximations inherent in other quan-
tum Monte Carlo approaches. Additionally, they are all-
electron, thereby avoiding pseudo-potential error as well.
Regrettably, calculations performed to this amount of
rigour are a factor of 103 more expensive than standard
quantum chemistry calculations. For this reason, future
work of this nature aimed at choosing suitable density
functionals for large extended π-electron systems would
necessarily require the use of pseudo-potentals.
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