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We study the photodissociation of the H +
2 molecule by ultrashort Fock-state electromagnetic pulses (EMPs).

We use the Born-Oppenheimer treatment combined with an explicit photon number representation via diabatic
electrophoton potential surfaces for simplification of the basic equations. We discuss the issue of the number of
photon states required and show that six photon states enable good accuracy for photoproduct kinetic energies
of up to 3 eV. We calculate photodissociation probabilities and nuclear kinetic-energy (KE) distributions of the
photodissociation products for 800-nm, 50-TW/cm2 pulses. We show that KE distributions depend on three
pulse durations of 10, 20, and 45 fs and on various initial vibrational states of the molecule. We compare the
Fock-state results to those obtained by “conventional,” i.e., coherent-state, laser pulses of equivalent electric
fields and durations. The effects of the quantum state of EMPs on the photodissociation dynamics are especially
strong for high initial vibrational states of H +

2 . While coherent-state pulses suppress photodissociation for the
high initial vibrational states of H +

2 , the Fock-state pulses enhance it.
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I. INTRODUCTION

The interaction of molecular systems and laser pulses has
been drawing much attention for many years and has a variety
of applications in atomic physics [1], molecular physics [2],
laser cooling [3], laser technology [4], coherent control [5–9],
and the study of basic quantum mechanics. Of these, ultrashort
pulses of high intensity (>10 TW/cm2), are of special interest
[10–12]. These processes are invariably associated with a
delicate interplay of electronic and nuclear dynamics, a topic
forming the focus of numerous experimental [13–23] and
theoretical studies [9,24–40].

Light produced in standard laser cavities is in a coherent
state, which has several characteristics similar to a classical
electromagnetic field. The coherent state is a specific linear
combination of Fock states |N〉 (where N is the number of
photons) having the minimal allowed uncertainty �N�φ =
h̄
2 (where φ is the photon phase) [41]. The “semiclassical”
treatment of a laser-molecule interaction relies on the fact that
light is in a coherent state. This leads to a Schrödinger equation
for the charges of the molecule which are affected only through
the expectation value of the electric field �E. This approach
forms the basis for almost all published treatments of strong
laser-molecule interactions. The effects of the more exotic
nonclassical, i.e., quantum, states of light on photochemistry
and molecular spectroscopy is recently drawing increasing
attention [42,43] as the techniques for controlling quantum
electromagnetic states evolve [44–54].

The effect of deviations from light coherency on molecular
dynamics has recently been studied theoretically in the
case of the photodissociation dynamics of H +

2 following a
600 nm, 100 TW/cm2 pulse [55]. That study established
the basic method and covered a limited amount of results.
This paper presents more detailed results concerning the
comparison of coherent and Fock-state calculations and their
dependence on pulse width and on the initial quantum state
of the molecule. We first review the theory (Sec. II) and then
use a 790 nm, 50 TW/cm2 pulse to study the convergence

properties of the calculations with respect to the number of
Fock states (Sec. III). We then give detailed results of the H2

+

photodissociation in Sec. IV and a summary and discussion
in Sec. V.

II. THEORY

A detailed account of the theory is presented in Ref.
[55]; here we only summarize the essential approach. The
Schrödinger equation describing the time-dependent develop-
ment of a molecule-photon system is given by

ih̄
∂

∂t
�n(r, t) = (ĤM + nh̄ω)�n(r, t)

+ i

2
E(t)µ̂[�n−1(r, t) − �n+1(r, t)]. (1)

Where ĤM is the molecular field-free Hamiltonian, de-
scribing M particles of charge qm and three-dimensional
vectors rm, m = 1, . . . ,M , of x-direction dipole moment
µ̂ = ∑M

m=1 qmx̂m, and

E(t) =
{

E0 sin2
(

π
τp

t
)

t ∈ [
0, τp

]
0 otherwise

(2)

is the time-dependent electric field envelope pulse, assumed
linearly polarized in the x direction, and E0 is the pulse
amplitude and τP its duration. ω is the photon frequency. The
underlying molecular-photon wave function is assumed to be

�(t) =
∑

n

�n(r, t)|n〉, (3)

where |n〉 is the Fock state of the light describing exactly N̄ + n

photons, and N̄ is the average number of photons related to
E0 by [41]

1

2
E0 = E0

√
N̄ . (4)
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In Eq. (4), E0 =
√

h̄ω
2εo


, where 
 is the volume of the cavity

and ε0 is the permittivity of the vacuum. We further assume
that at t = 0, the initial state is a matter-light product state:

�(t = 0) = �int(r)
∑

n

γn|n〉, (5)

where γn are complex superposition coefficients defining the
initial quantum state of the light. We will consider below two
cases for the set γn. First, a standard coherent state laser source,
in which the light state is a superposition of different photon-
number states, with γn of Eq. (5) given by

γn = e− 1
2 |α|2 αN̄+n√

(N̄ + n)!
α =

√
N̄eiθ , (6)

where θ is a constant phase. With this choice of initial wave
function, �(t) remains at all times a matter-light product
state (no entanglement), and the matter wave function obeys
the “semiclassical” time-dependent Schrödinger equation
(see Ref. [55])

ih̄
∂

∂t
�(r, t) = [ĤM + E(t)µ̂ sin(ωt − θ )]�(r, t) (7)

with �(r, t = 0) = �ini(r). If the initial light state is not
coherent, the light-matter state does not remain a product state,
and entanglement quickly develops. Such will be the second
case we consider, the canonical conjugate of a coherent state,
namely, the “Fock state,” characterized by a sharp photon
number:

γn = δn,0. (8)

In Ref. [55], we showed that within the Born-Oppenheimer
treatment, neglecting non-adiabatic couplings, one can obtain
a “nuclear Schrödinger equation.” For the coherent state case,
this is the familiar equation

ih̄
∂

∂t
φ̃j (R, t)

= [T̂N + uj (R)]φ̃j (R, t) + V̄jj ′ (t) sin(ωt − θ )φ̃j ′ (R, t),

(9)

with V̄jj ′(R, t) = E(t)µ̂jj ′(R) and

µjj ′ (R) =
∫

ζj (R, s)†µe(s)ζj ′(R, s) d3s + δjj ′µN (R) (10)

are the total dipole moment electronic matrix elements, with
µ̂e and µ̂N the electronic and nuclear dipole moment oper-
ators, respectively, and ζj (R, s) are the electronic (adiabatic)
eigenfunctions at position R of the nuclei and uj (R) are the
adiabatic potential surfaces.

In the Fock state, a similar Born-Oppenheimer treatment
would give (details are provided in Ref. [55])

ih̄
∂

∂t
ψnj (R, t)

= [T̂N+uj (R)−nh̄ω]ψnj (R, t) + [Vjj ′(R, t)ψn−1,j ′ (R, t)

+V ∗
jj ′ (R, t)ψn+1,j ′ (R, t)]. (11)

Here, and in Eq. (9) a summation over the repeated index j ′ is
implied (Einstein’s convention), Vjj ′ = i

2E(t)µ̂jj ′(R).

TABLE I. Parameters of the photodissociation EM pulse.

Parameter Symbol Eq. Value

Photon energy h̄ω (1) 1.57 eV
Maximal Electric field E0 (2) 0.038Eh (e a0)−1

Pulse duration τp (2) 10, 20, 45 fs
Power flux 50 TW cm−2

Photon wavelength 790 nm
Polarization Linear along molecular axis

III. APPLICATION: PHOTODISSOCIATION OF H +
2

In this section, we discuss application of the formalism to
the photodissociation of H +

2 , where the products are a proton
and a ground-state hydrogen atom. We summarize the pulse
parameters in Table I.

We assume alignment of the H +
2 molecular axis with the

direction of light polarization and treat dynamically only the
internuclear distance R. As we are interested in photoproducts
at their ground states, we limit our study to the two basic
adiabatic potential curves u0(R) and u1(R) corresponding to
the bonding 1σg and antibonding 1σu states, shown as full
line curves in Fig. 1. We have also performed a few pilot runs
referring to an additional four excited states of H +

2 . We found
that the presence of these states did not significantly affect the
results.

The adiabatic surfaces and transition dipole moments µ01

for this calculation were obtained from ab initio calcula-
tions employing the 6-311++G(3df, 3pd) basis set using the
Hartree-Fock option of MOLPRO [56]. The calculated potentials
compare well with the analytical results of Ref. [57]. They
are depicted in Fig. 1. At large internuclear distance R, the
two curves coalesce as they both describe a proton and a
H atom in its ground state. The H +

2 is assumed to be initially
in the vth (v = 0, 1, 2, . . .) vibrational eigenstate of u0(R).
The difference u1(R0) − u0(R0), where R0 is the minimum
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FIG. 1. (Color online) The full lines correspond to the ground
u0(R) and the excited u1(R) adiabatic potentials. The dashed lines
are first potentials on the diagonal of the potentials matrix W (R)
of Eq. (14) formed from photon-displaced adiabatic potentials
u0 and u1.
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of u0(R), is much larger than the photon energy (h̄ω ∼
2.1 eV), so photodissociation via transitions into the disso-
ciative surface is efficient only for intense pulses.

A. Simplification of the equations

The index n can be either positive (emission of photons)
or negative (absorption of photons); we only treat negative
values of n. We neglect the possibility of total stimulated
emission, i.e., we neglect the case where n is positive. This
assumption is fully justified for v < 7. For v > 7, the emission
is still negligible, since u1 − u0 is very large when the nuclear
separation R is small.

The coupling matrix Vjj ′ has only nondiagonal elements.
The state ψ00 will thus couple only to ψ−1,1. Similarly,
ψ−11 will couple to ψ00 and to ψ−20. Further consideration
shows that ψ−20 couples to ψ−11 and ψ−31. The emerging
pattern is ψ−n,j couples to ψ−n′j ′ only if j − n and j ′ − n′
are both even or both odd. Thus, there are two uncoupled
manifolds. Since our initial condition is the state ψ00, the
“odd” manifold is never occupied and can be discarded.
Under these conditions, it is only necessary to consider the
equation

ih̄
∂

∂t
�(R, t) = T̂N�(R, t) + W (R, t)�(R, t), (12)

where � is the “even” column vector given by

� = ( ψ0,0 ψ−1,1 ψ−2,0 ψ−3,1 · · · )T (13)

(note that in ψnj we consider only the negative values of n

since we address only photon absorption, as discussed above),
and Wjj ′(R, t) is given by

W =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u0 V01

V ∗
10 u1 − h̄ω V01

V ∗
10 u0 − 2h̄ω V01

V ∗
10 u1 − 3h̄ω V01

V ∗
10

. . .
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (14)

This simplifies the treatment of the equations. Note the
interesting structure of the equations: for the system to be
in the σg electronic state (u0 potential), it must have absorbed
an even (including zero) number of photons; while for it to
be in the σu electronic state (u1), it must have absorbed an
odd number of them. We show several of the first potentials
on the diagonal of the W matrix in Fig. 1. It is seen that
the u0 curve is intercepted by several (in principle infinite)
u1 + nh̄ω curves, n = −1,−3,−5, . . . . We denote the first
interception by a hexagon. This interception is direct, since
the u0 and u1 − h̄ω curves are directly coupled by V01. The
next interception, denoted by a circle, is between the u0

and u1 − 3h̄ω curves. These two curves are only indirectly
coupled: u0 is coupled to u1 − h̄ω, which is coupled to
u0 − 2h̄ω, which finally couples to u1 − 3h̄ω. This is a
“second-order coupling.” It is natural to assume that this
coupling is weaker than the direct coupling, and we will see
below that indeed this is the case. The next two interceptions

are between u0 and either u1 − 5h̄ω (denoted by a square)
or u1 − 7h̄ω (denoted by a triangle). These intersections will
describe even weaker interactions, since they are fourth- and
sixth-order interactions. In the Fock-state calculation, the wave
packet starts at time t = 0 on the u0 surface. It is thus
clear that only a small finite number of photonic states are
required, because the coupling becomes smaller as the number
of states grows. We shall see this is indeed so in the next
section.

The time propagation method and the details of the kinetic
energy distribution analysis were discussed in Ref. [55] and
will not be repeated here. We mention that for the numerical
calculation, we use a grid consisting of 4096 points spanning
the range 0.3 < R < 12 Å. We placed at the asymptote
an absorbing potential, guaranteeing efficient absorption
of the photodissociated amplitude before reflection off the
grid boundaries [58–61]. We included in all calculations six
photonic states (i.e., there were 12 electrophoton states
altogether). The propagation of the vector-wave equation uses
a combination of the fast Fourier transform (FFT) [62–64]
and by the Lanczos short-time iteration techniques [65–69].

The kinetic energy (KE), or Ek , distribution as was
determined from the amplitude of the time-dependent (TD)
wave packets [55] is

Knj (Ek|vi, nj ) =
√

2Ek

h2µH

∣∣∣∣
∫ ∞

0
ψnj (Ra, t

′|vi)

× ei(Ek−nh̄ω)t ′/h̄ dt ′
∣∣∣2

, (15)

where the prefactor is the normalization constant, ensuring
that the integral of Knj over all values of the KE is equal to the
total photodissociation probability

Pnj (t → ∞|vi) =
∫ ∞

0
Knj (Ek|vi, nj ) dEk. (16)

B. Adiabatic electrophotonic potentials

One basic question concerns the number of photon states,
or electrophotonic potentials, that have to be included in the
calculation. It is evident from the explicit form of the matrix
W in Eq. (14) that as its dimension M increases, the high j

diagonal terms Wj,j become dominated by −jh̄ω, while the
off-diagonal terms are independent of j but are proportional
to the amplitude of the electric field envelope E0. For the
coupling to be ineffective, the diagonal term must be much
larger than the coupling:

Mh̄ω 	 E0µ01. (17)

In the H2
+ photodissociation considered here, the field

intensity is E0 ≈ 0.038 a.u., corresponding to a pulse maximal
intensity of 50 TW/cm2, and the transition dipole moment
is of the order of 1a0 e. Thus, for a photon of 1.7 eV,
we obtain that the number M must be larger than unity.
We demonstrate this by comparing the calculated kinetic
energy distribution of the proton in the H +

2 photodissociation
starting in the v = 6 vibrational state, using M = 2, 4, and
6 electrophotonic potentials, shown in Fig. 2. It is seen that
the calculation using just M = 2 potentials is very different

013412-3



PAUL, ADHIKARI, BAER, AND BAER PHYSICAL REVIEW A 81, 013412 (2010)

0.0001

0.001

0.01

0.1

1

10

100

P
ro

b
ab

il
it

y 
d

en
si

ty
 (

eV
-1

)

v = 6, ττP = 45 fs M=2
M=4
M=6
M=8

0 0.5 1 1.5 2
Kinetic energy (eV)

FIG. 2. (Color online) The total asymptotic KE distribution in H +
2

photodissociation (internal vibrational state v = 6) photodissociation
by a 45 fs Fock-state electromagnetic pulse calculated using M =
2, 4, 6 and 8 electro-photonic potentials.

from that using M = 4, while the latter is nearly identical
with the M = 6 calculation for kinetic energies of up to 0.9eV.
Comparing to M = 8, we see that beyond this energy range up

to 2 eV, the M = 6 calculation is reasonably converged. We
find then that the number of electrophotonic states needed to
converge the calculation is sensitive to the kinetic energy of the
photo fragments: a higher kinetic energy requires an increased
number M of potentials. The calculations shown below all use
M = 6 potentials and were checked for convergence.

Further insight can be gained by looking at the “adiabatic-
dressed potentials,” i.e., the potentials obtained by diagonal-
izing the potential matrix of Eq. (14). The results for maximal
coupling (when the electric field attains its maximal value)
are shown for M = 2, 4, 6, and 8 in Fig. 3. One can compare
these potentials with the zero coupling (zero-field) potentials
in Fig. 1. The strong field strongly distorts the shapes of the
potentials, especially for large internuclear distances. This is
a result of the linearly growing transition dipole moment for
H +

2 (equal, in atomic units, to eR2 at large R). Studying the
patterns shown in Fig. 3, we first discuss the M = 2 panel. We
number the dressed potential curves starting with #1 for the
highest energy curve, #2 for the next to highest, etc. Dressed
potential curves #1 and #2 are formed primarily by the mixing
of the u0 and u1 − h̄ω curves of Fig. 1. At small R, the curves
have very different energies and do not interact significantly.
Indeed the potential well of curve #2 is similar to that of u0

in Fig. 1. At larger R, the u0 and u1 − h̄ω curves approach,
and they intersect R ≈ 2.5 Å. The strong coupling by the field
(in this study the coupling is ∼ R

4a0
eV ) forms a large avoided
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FIG. 3. (Color online) The adiabatic-dressed electrophotonic states at maximal electric field coupling E0 (see Table I), with M = 2, 4, 6,
and 8 states. Avoided crossing gaps: hexagon ≈2.5 eV, circle ≈0.1 eV, square ≈0.01 eV, and triangle ≈0.001 eV.
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crossing gap, of more than ∼2 eV, in the dressed potential
curves #1 and #2. This causes the formation of a barrier in
curve #2 at R ≈ 2.2 Å. When two additional states are added
to the matrix, the picture changes dramatically. The curve
resembling u0 in Fig. 1 for small values of R is now curve #3.
For larger values of R, it is very different from u0 as it is further
distorted by the interception of u1 − 3h̄ω with u0. This causes
an avoided crossing between curves #2 and #3 at R ≈ 1.9 Å,
denoted by a circle. This crossing exhibits a much smaller gap,
of about 0.15 eV, a result of the fact that u0 and u1 − h̄ω do not
interact directly but through a second-order coupling discussed
above. The small gap will cause strong nonadiabatic effects,
the dynamics will bifurcate at this crossing, and both curves #2
and #3 will be important. It is therefore clear that the M = 4

and M = 2 dynamics will be very different. The next panel of
M = 6 allows taking the crossing of u0 with u1 − 5h̄ω. This
again causes a splitting of the curves, but the gap is now very
small, only 0.01 eV. Thus only a small amount of wave packet
will stay on curve #4, most will transfer to curve #3. The small
amount staying on curve #2 will exhibit kinetic energy of
∼2 eV (the difference between the minimum of curve #2 and
its asymptotic value). This is the reason why the calculation
with M = 6 states is not converged for this kinetic energy
range, as seen in Fig. 2. The M = 8 panel allows coupling of
u0 to an additional state (u1 − 7h̄ω), but the coupling now is
extremely weak (the gap is 0.001 eV) and does not significantly
affect the dynamics unless kinetic energies around 4 eV are
considered.

FIG. 4. (Color online) The total asymptotic KE distribution in H +
2 photodissociation for 45 fs pulses when the initial molecular state

is a sharp vibrational state (v = 3–8) and the electromagnetic field is in a coherent or a Fock state. Red (blue) arrow is the kinetic energy
corresponding to absorption of a one (two) photon(s). Pulse parameters are given in Table I.
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IV. RESULTS FOR PHOTODISSOCIATION OF H +
2

In the specific calculation made here, we used Ra = 6 Å
and then repeated the calculation with Ra = 12 Å checking
that results are converged for this parameter. The kinetic
energy distribution up to 3 eV was almost unaffected by
the two choices. For higher kinetic energies, there was a
difference. A component with kinetic energy Ek arrives at
the asymptote Ra within time Ra (2Ek/µH )−1/2. The kinetic
energy measurement at Ra [i.e., Eq. (15)] is only valid if
the coupling between the surfaces is already zero by then.
Thus, we estimate Ra > τp (2Ek/µH )1/2 for the kinetic energy
distribution at Ek to be valid. In practice, we noticed that this
happens even sooner (probably even if Ra is smaller by a
factor of 2, this still holds), and we conclude that measuring
kinetic energy distributions up to 3 eV with Ra = 12 Å gives
reasonably converged results.

A. Kinetic energy distribution

The initial state is an eigenstate of the unperturbed Hamil-
tonian, so naively the KE distribution is expected to reflect
energy conservation rules, that is,

Ek(n, v) = h̄ωn + [u0(R0) + Ev] − u0(∞), (18)

where the quantum number n indicates the number of photons
absorbed and Ev is the energy of the initial vibrational state.
Equation (18) holds for an infinite duration [the so-called
continuous wave (CW)] pulse. In our calculations, the pulse is
turned on and off within 45 fs. This switching may lead to large
deviations from Eq. (18), and we shall see that the coherent
and Fock-state pulses differ significantly in this aspect. The
KE distribution of the proton in the H +

2 photodissociation as
calculated for a 45 fs pulse assuming an initial coherent and
Fock electromagnetic field is shown in Fig. 4 (for v = 3–8)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 0.5 1 1.5 2 2.5 3

Kinetic energy (eV)

v=13

Coherent

Fock

0.0

0.5

1.0

1.5

2.0

2.5

0 0.5 1 1.5 2 2.5 3

Kinetic energy (eV)

v=14

Coherent

Fock

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

v=9

Coherent

Fock

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

v=10

Coherent

Fock

0.0

1.0

2.0

3.0

4.0

5.0

6.0

P
ro

b
ab

il
it

y 
d

en
si

ty
 (

eV
-1

)

v=11

Coherent

Fock

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

v=12

Coherent

Fock

FIG. 5. (Color online) The total asymptotic KE distribution in H +
2 photodissociation for 45 fs pulses when the initial molecular state is

a sharp vibrational state (v = 9–14), and the electromagnetic field is in a coherent or a Fock state. Red (blue) arrow is the kinetic energy
corresponding to absorption of a one (two) photon(s). Pulse parameters are given in Table I.
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FIG. 6. (Color online) The dissociation probability as a function of the initial vibrational state of H +
2 for three pulse durations. Pulse

parameters are given in Table I.

and Fig. 5 (v = 9–14). It is seen that the shape of the KE
distribution is strongly dependent on the initial vibrational state
and electromagnetic state (whether coherent or Fock). The
v = 3, 4 spectra exhibit relatively high kinetic energy peaks
similar those expected for two-photon absorption (blue arrow).
For v > 4, the KE is similar to that obtained after absorbing
a single photon. Except for v = 4, the KE distribution for
v = 3–8 of the coherent and Fock-state pulses are fairly
similar, although the details are different. The vibrational
energy of the v = 4 state is slightly above the adiabatic barrier
(indicated by the red circle in Fig. 3, plate M = 6 or 8). This
fact makes the dynamics of the photodissociation sensitive
to all details of the calculation, because of the large role of
tunneling and interference effects in this threshold case. This
may explain the large difference between the photodissociation
spectra caused by the coherent and Fock-state pulses in this
case. Starting with v = 9 and up the KE distribution caused
by the coherent-state pulse becomes very different from that
of the Fock-state pulse. The coherent-state distribution seems
to behave more like the CW case, with KE peaks close to the
position of the red arrows. On the other hand, that caused by the
Fock-state pulse is strongly biased toward low KEs. Near-zero
KE releases were observed experimentally (using coherent-
state pulses, of course) using 266 nm photons [70] and this
phenomenon, for high vibrational states, was explained based
on the dressed potential bond hardening arguments [70,71].
Here we find that for high vibrational states, the near-zero
KE is considerably enhanced when the light is in a Fock
state. Another evident difference between the coherent and
Fock-state KE distributions is the development in the latter
case of a high KE peak (at 1.5–2 eV) for initial vibrational
states with v > 13.

B. Vibrational resolved dissociation probability

In the left panel of Fig. 6, we show the total dissociation
probability as a function of the initial vibrational state for the
coherent and Fock states of the EM field. The photodissocia-
tion is maximal at v = 9 for both the Fock and coherent field.
However, as v is increased, the two light fields produce a differ-
ent qualitative behavior. As v increases, the photodissociation
probability by the coherent pulse drops, a known effect called

“stabilization” or “vibrational trapping” [15,72]. The Fock
pulse also exhibits reduction in photodissociation probability
as v is increased from v = 10 up to v = 13. Subsequently the
probability increases toward unity. We have also repeated such
calculations for shorter pulse durations of 20 and 10 fs (center
and right panels of Fig. 6) resulting in a similar behavior. It is
somewhat surprising that the Fock states do not produce the
stabilization effect, since that phenomenon has been explained
qualitatively in terms of trapped vibrational states in the same
Floquet dressed potentials as we used [14,15,72].

C. Pump-probe ionization-photodissociation of H2

So far, we have mainly studied the photodissociation from
a given vibrational state of H +

2 . One experimentally important
observable is the photodissociation resulting from a two-pulse
setup, in which a short pump pulse hits a H2 molecule and
ionizes it “suddenly” followed after a time delay τD by a probe
pulse hitting the molecular ion and causing photodissociation.
We use the results calculated here to estimate the kinetic energy
distribution within the Franck-Condon approximation, where
we assume that the first pulse creates a wave packet on the
cation potential curve given by

φ(t = 0) = ψ
H2
v=0 =

∑
v

e−iEvτD/h̄φv

〈
φv

∣∣φH2
v=0

〉
, (19)

where 〈φv|φH2
v=0〉, v = 1, 2, 3, . . . , are the Franck-Condon (FC)

factors, Ev is the vibrational energy of H +
2 , and ψ

H2
v=0 is the

vibrational ground-state wave packet of the electronic ground-
state potential of H2. Using this wave function as the initial
wave packet allows the estimation of the KE distribution in
pump-probe photodissociation of H2. In Fig. 7, we show the
KE distributions for three pump-probe delay times τD = 0, 10,
and 20 fs and the three pulse widths τP = 10, 20, and 45 fs. One
striking effect is the large sensitivity of the KE distribution to
the pulse durations and the delay times. We find that as the
pulse duration decreases, the total probabilities are generally
reduced, but high kinetic energies are more probable than in the
longer pulses. In terms of total probability, there is not a large
difference between the coherent and Fock-state probe pulses,
usually the former shows higher probability by 10–20%. A
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FIG. 7. (Color online) The total asymptotic KE distributions in H2 pump-probe photodissociation using probe pulses of pulse duration
τP = 10, 20, and 45 fs with pump-probe delay time of τD = 0, 10, and 20 fs. The legend indicates the total photodissociation probability P . It
is assumed that the initial molecular state is the ground v = 0 H2 vibrational wave packet (Franck-Condon approximation).

large difference is seen when we compare the KE distributions.
The Fock-state probe is often (but not always) more efficient
at producing the higher kinetic energy dissociations.

V. SUMMARY AND DISCUSSION

We have presented a study of H +
2 photodissociation where

the initial quantum state of light is a Fock state, compar-
ing results to conventional coherent-state pulses of similar
characteristics. The equations of motion include a coupling
of the molecular Hamiltonian to several Fock states of the
oscillator representing the radiation field. We found that only
a small number (M = 6) of photonic (harmonic oscillator)
states are needed in order to converge the photodissociation
dynamics of the H +

2 system, in the kinetic energy range
of up to 3 eV. We explained this finding in terms of
the diabatic coupling hierarchies. For both coherent and
Fock-state pulses, the kinetic energy distribution was sensitive

to the initial vibrational state of H +
2 . In some cases, especially

for the threshold vibrational states (around v = 4) and for large
vibrational quanta, there was a significant sensitivity of the KE
distribution to the quantum state of the electromagnetic field.

Our finding, that certain aspects of the photodissociation
molecular dynamics are sensitive to the quantum state of
light, implies that photochemistry may gain from the emerging
quantum light technology [44,54,73]. The results may also
be useful as a sort of “stability analysis”: the effect of Fock
perturbations of the coherent state [51] in the photodissociation
dynamics.
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