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Transition to metallization in warm dense helium-hydrogen mixtures using stochastic density
functional theory within the Kubo-Greenwood formalism
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The Kubo-Greenwood (KG) formula is often used in conjunction with Kohn-Sham (KS) density functional
theory (DFT) to compute the optical conductivity, particularly for warm dense matter. For applying the
KG formula, all KS eigenstates and eigenvalues up to an energy cutoff are required and thus the approach
becomes expensive, especially for high temperatures and large systems, scaling cubically with both system
size and temperature. Here, we develop an approach to calculate the KS conductivity within the stochastic
DFT framework, which requires knowledge only of the KS Hamiltonian but not its eigenstates and values. We
show that the computational effort associated with the method scales linearly with system size and reduces in
proportion to the temperature, unlike the cubic increase with traditional deterministic approaches. In addition, we
find that the method allows an accurate description of the entire spectrum, including the high-frequency range,
unlike the deterministic method which is compelled to introduce a high-frequency cutoff due to memory and
computational time constraints. We apply the method to helium-hydrogen mixtures in the warm dense matter
regime at temperatures of ∼60 kK and find that the system displays two conductivity phases, where a transition
from nonmetal to metal occurs when hydrogen atoms constitute ∼0.3 of the total atoms in the system.
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I. INTRODUCTION

The state of warm dense matter (WDM) is characterized
by high atomic density, similar to conventional condensed
matter systems, and elevated temperatures of several electron
volts (1 eV ≈ 104 K). This is an intermediate regime bridg-
ing plasma physics and condensed matter physics for which
equations of state (EOSs) and other properties are of inter-
est. One example appears in the study of hydrogen-helium
mixtures under extreme conditions, where the EOS [1], phase
separation, and physical properties such as conductivity [2]
and miscibility [3] can be used to explain the luminosity and
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gravitational moments of planets such as Jupiter and other
gas giants, as well as their formation and evolution charac-
teristics [4–6]. Generally, EOSs and properties are calculated
for various materials using first-principles methods, specifi-
cally the Kohn-Sham density functional theory (KS-DFT) at
finite temperatures [7–10], often shows good agreement with
experiments [10–12]. Within the KS-DFT framework, WDM
conductivity is often obtained by using the Kubo-Greenwood
(KG) formalism [13–16] with good results when compared to
experiment. The KS-DFT and the KG electrical conductivity
equation when applied to WDM requires large computational
effort which increases dramatically with temperature and sys-
tem size, because of the need to construct and propagate all
the occupied KS eigenstates, as well as a sufficient number of
unoccupied states, the number of which grows as T 3, where
T is the temperature [17].

Recently, stochastic DFT (sDFT) approaches that circum-
vent the computational difficulties mentioned above have
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been developed [17–22] for ground/thermal state calcula-
tions. These have also served as a basis for developing
time-dependent methodologies for description of materials
properties [23–26]. It was shown that sDFT is especially
useful for EOS calculations in the WDM regime since it
involves a computational effort that scales as T −1 [17].

In this paper, we develop an approach for calculating
the KG conductivity within the framework of sDFT. The
main advantage of the approach is that it does not require
any knowledge of the occupied or empty KS orbitals. We
show and benchmark a stochastic method to sample the KG
conductivity. We then use the method to study the conductivity
in hydrogen-helium mixtures. Our approach is similar to pre-
viously developed stochastic conductivity approaches [27–29]
but differs in essential implementation details and is unique in
its combination with sDFT calculations.

In the paper, we present the development of the stochastic
KG (sKG) method and provide important implementation
details, as well as demonstrations of the method’s validity and
a discussion of the statistical errors and scaling in Sec. II.
In Sec. III the sDFT-sKG method is applied to the study
of the conductivity of mixtures of helium and hydrogen in
the warm dense matter regime, targeting metallization and
beyond-linear-mixing effects.

II. METHOD

A. Time-dependent linear response

The time-dependent expectation value of a many-body ob-
servable B̂ after an impulsive perturbation is applied through
the observable Â to a system at time t = 0 (usually assumed in
thermal equilibrium) is given, in the linear-response regime,
as the following correlation function [13,30]: CAB(t ) =
iθ (t )Tr{ρ(β,μ)[Â, B̂(t )]}, where B̂(t ) = eiĤt/h̄B̂e−iĤt/h̄, Ĥ is
the unperturbed Hamiltonian, and θ (t ) is the Heaviside func-
tion imposing causality. The expectation values are performed
with respect to the many-body thermal density ρ(β,μ) =
Z (β,μ)−1e−β(Ĥ−μN̂ ), where Z (β,μ) is the partition function
at chemical potential μ and inverse temperature β = 1

kBT , kB

being the Boltzmann constant.
One of the important applications of linear-response theory

is the prediction of the frequency-dependent conductivity

σ (ω) = 2πe2

�m2
e h̄

Im[C̃PP(ω)]

ω
, (1)

where � is the volume of the simulation cell and C̃PP(ω) is the
Fourier transform of the momentum-momentum correlation
function,

C̃PP(ω) =
∫ ∞

0
CPP(t )e−iωt e− 1

2 η2t2
dt, (2)

and η is a small real parameter. In the limit ω → 0 L’Hopital’s
rule can be used to assess the DC conductivity:

σ (0) = 2πe2

�m2
e h̄

lim
ω→0

∂ImC̃PP(ω)

∂ω
. (3)

For noninteracting particles, with a single-particle Hamil-
tonian ĥ, having eigenvalues εn and eigenstates |n〉, n =
1, 2, . . ., the correlation function reduces to the following

expression:

CAB(t ) = −2θ (t )ImTr[ fFD(ĥ)â(1 − fFD(ĥ))b̂(t )], (4)

where â, b̂ are the single-particle perturbing and observed
operators, respectively, b̂(t ) = eiĥt b̂e−iĥt , and

fFD(ĥ) ≡ 1

1 + eβ(ĥ−μ)
(5)

is the Fermi-Dirac distribution. Combining Eqs. (4) and (2)
and taking the formal limit η → 0 gives the Kubo-Greenwood
(KG) conductivity [13,31]:

σ (ω) = 2πe2

�m2
e h̄ω

Ng∑
m,n

fmn|pmn|2δ(ω − εnm/h̄), (6)

where Ng is the number of grid points, fmn ≡ fFD(εm) −
fFD(εn), εnm = εn − εm, and pnm = 〈n| p̂|m〉. For practical rea-
sons, the summation over the occupied and unoccupied states
is determined according to an energy cutoff and as a result
the conductivity spectrum can be calculated only up to a
corresponding frequency cutoff.

B. Stochastic calculation of the response function

To calculate the KG conductivity in a stochastic manner
the stochastic trace formula [32] can be used to estimate the
trace in Eq. (4). However, we found that a smaller statistical
noise can be obtained if the stochastic trace is applied to the
following equivalent but more symmetrical expression:

CPP(t ) = −2θ (t )ImTr[
√

fFD p̂(1 − fFD) p̂(t )
√

fFD]. (7)

To apply the stochastic trace formula, we define a set of
stochastic orbitals χ , represented on the grid such that
〈rg|χi〉 = (δx)−3/2eiθ i

g , where θg ∈ [0, 2π ] is a random phase
and δx is the grid spacing. The stochastic expression for
CPP(t ) is given by

CPP(t ) = −2θ (t )E{Im〈ξ | p̂(1 − fFD(ĥ))eiĥt p̂e−iĥt |ξ 〉}, (8)

where |ξ 〉 =
√

fFD(ĥ)|χ〉 and E{. . .} designates an expecta-
tion value.

The procedure consists of the following schematic steps:
(1) Set n = 0, |η j〉 = |ξ j〉, |ζ j〉 = [1 − fFD(ĥ)] p̂|ξ j〉, and

the time step �t = π
�E , where �E = Emax − Emin and Emax

(Emin) is the maximal (minimal) eigenvalue of ĥ (the condition
is required to avoid aliasing). The time step determines the
cutoff frequency of the spectrum and Nts = �E

�ω
= π

�ω�t is the
total number of time steps for achieving a spectral resolution
of �ω.

(2) Calculate C j
PP(n�t ) = −2Im〈ζ j | p̂|η j〉.

(3) Set n = n + 1, |η j〉 = e−iĥ�t |η j〉, |ζ j〉 = e−iĥ�t |ζ j〉.
(4) Go to 2 and repeat until n = Nts.
(5) The response function is then averaged over Iσ

(the number of stochastic orbitals), yielding CPP(n�t ) ≈
1
Iσ

∑Iσ
j=1 C j

PP(n�t ). This response function is then discrete-
Fourier transformed and used to obtain the frequency-
dependent conductivity [Eq. (1)].

The process is easily parallelized, since each element
C j

PP(n�t ) is calculated independently before averaging in the
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final step. In our calculations we do not use the above pro-
cedure directly because using Chebyshev expansions for the
evolution operator, we found a way to expedite the calculation
as described in Sec. II E.

The stochastic-KG (sKG) procedure forms a postprocess-
ing step after a sDFT calculation [17,18] which provides the
self-consistent KS Hamiltonian ĥ. The stochastic calculation
requires two sets of stochastic orbitals. One set is used to
perform the sDFT calculation with which ĥ is determined; this
set will be denoted “sDFT-o’s.” A second set, used in the sKG
calculation to determine the conductivity, is denoted “sKG-
o’s.” The KS wave functions are expanded using plane waves
although the nonlocal part of the pseudopotentials are imple-
mented using a real-space grid, to acheive high efficiency.
For all the stochastic calculations in this paper, we used the
local density approximation (LDA) [33] and Troullier-Martins
norm-conserving pseudopotentials [34] within the Kleinman-
Bylander representation [35].

C. Validation of the method

To validate the method we compare conductivity estimates
with that of the well-established Quantum Espresso (QE)
package [36], for carrying out both the DFT and the KG (using
the KGEC module [37]) calculations. The results for H256 (at
4000 K) and a single He atom (at 3200 K) are shown in the
panels of Fig. 1 and the density of states (DOS) ρ(ε) is shown
in the insets. The H256 nuclear configuration was obtained
using an ab initio molecular dynamics (AIMD) simulation
using VASP. It can be seen that for both systems the stochastic
conductivity spectra and the DOS curves are in close agree-
ment with the corresponding deterministic estimates of QE
throughout the entire frequency/energy range.

To further test the method we also looked at He128 sys-
tems in the temperature range 27–57 kK and density range
0.71–0.83 g

cm3 . To obtain a set of nuclear configurations, an
AIMD trajectory was run using the PBE [38] exchange-
correlation (XC) functional, employing the plane-wave code
VASP [39,40]. Snapshots of the nuclear configurations were
then taken from the equilibrated part of the simulation, as
described in Ref. [12]. For each snapshot we performed a
sDFT calculation using 160 sDFT-o’s to obtain the Hamil-
tonian. The standard deviation was estimated by using five
different sets of 160 sKG-o’s, each different from the set
used for the Hamiltonian calculation, to avoid bias. For a
given nuclear snapshot, the stochastic calculation produces
a conductivity spectrum with a certain stochastic error. The
stochastic fluctuations in our case turned out to be larger
than the fluctuations arising from averaging over the differ-
ent nuclear configurations. We therefore present here results
obtained from one snapshot only. To calculate the discretized
momentum-momentum correlation function CPP(�t × n) we
used n = 600 time steps with �t = 0.25 h̄E−1

h . The conduc-
tivity spectrum is then obtained from Eq. (8) using a Gaussian-
broadening parameter of η = 0.036 eV.

The full spectrum and the standard deviation involved in
the calculation as described above are shown in Fig. 2. The
advantage of the stochastic method is apparent when looking
at frequencies higher than ∼70 eV, where the deterministic
calculation of Ref. [12] gives no contributions above this

sDFT+sKG

DFT+KG (QE)
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FIG. 1. The conductivity σ (ω) and DOS ρ(ε) (in the insets) us-
ing stochastic versus deterministic (Quantum Espresso) calculations.
We show two examples, each calculated in a periodic simulation cell
of length L at the � point: an insulator He atom at 3200 K with
L = 5.3 Å (upper panel) and a metallic system, H256 at 4000 K, with
L = 8 Å (lower panel). The deterministic QE results used 200 KS
eigenstates for the first system and 1700 for the second. For the
stochastic DFT calculation we used 960 stochastic orbitals for the
insulator and 480 orbitals for the conductor. The conductivity of
both systems was calculated using 120 stochastic orbitals. A kinetic
energy cutoff of 762 eV for He and 525 eV for H256 was used. Each
peak was Gaussian broadened, deploying a width parameter equal to
η = 1.2 eV [in sKG this parameter affects Eq. (2)].

cutoff energy which has to be introduced in plane-wave DFT
codes like VASP. The deterministic frequency range could
have increased in principle by including more KS states,
but this would require an excessive computational effort.
Careful analysis with respect to the cutoff energy shows that
equation-of-state data and the low-frequency conductivity can
be converged properly (see, e.g., Refs. [11,12]). The sKG
calculation on the other hand samples states from the entire
energy spectrum and therefore exhibits the physically correct
asymptotic decay of ω−5/2, as expected for the free-electron
gas. The correct high-frequency asymptotic behavior enables
calculation of the Thomas-Reiche-Kuhn sum rule [41,42],
which states that the total oscillator strength per electron
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FIG. 2. The conductivity spectrum for a He128 system at T =
27 kK and density of 0.83 g

cm3 . The sKG-sDFT LDA conductivity
with error bars (with Iσ = IH = 160) is compared to the deterministic
results by VASP based on PBE, as described in Ref. [12]. The
deterministic calculations were done with an energy cutoff of 800 eV
using 570 KS states. Inset: The spectrum decay. The red line is
proportional to ω−5/2.

fosc/Ne, where

fosc = me�

πe2

∫ ∞

−∞
σ (ω)dω, (9)

and σ (ω) is the conductivity defined in Eq. (1), should be
equal to 1. The actual calculated values of fosc/Ne are shown
in Table I for three He128 systems (one of which we considered
in Fig. 2 and two others, of different temperature and density,
are given for further demonstration) and are indeed very close
to the theoretical value of 1, signifying that the calculations
are converged with respect to the number of states and the
total time of propagation.

At intermediate frequencies, we find (Fig. 2) a close overall
agreement between the deterministic and stochastic estimates
of the conductivity spectra, despite the fact that both methods
make use of different XC functionals. The most conspic-
uous feature of the spectrum in this range is its peak at
h̄ωpeak ≈ 25 eV, featuring the maximal deviation between the
two spectra which is nonetheless small, with a 10% difference
in height and 0.3 eV difference in the value of h̄ωpeak.

The DC conductivities for three different systems are
displayed in the third and fourth columns of Table I and

TABLE I. The total oscillator strength per electron fosc/Ne [see
Eq. (9)] and the DC conductivity calculated using VASP based on
PBE [12] and the sDFT-sKG based on LDA employing Iσ = IH =
160 stochastic orbitals. The statistics for the stochastic calculation
is obtained from 5 different sKG runs and that of the deterministic
calculation was taken from 5 points in the proximity of the DC
conductivity to evaluate the ω → 0 limit.

System σDC (106 S/m)

ρ/(g/cm3) T /kK fosc/Ne VASP/PBE sKG-sDFT/LDA

0.71 29 1.010 0.021 ± 0.001 0.026 ± 0.002
0.83 27 0.998 0.018 ± 0.001 0.02 ± 0.003
0.75 57 1.014 0.110 ± 0.002 0.10 ± 0.020

FIG. 3. The conductivity spectrum of He128 at 27 kK and density
of 0.83 g/cm3. Top panel: The conductivity based on one sDFT
Hamiltonian (using IH = 150) calculated with an increasing number
Iσ of sKG-o’s. Inset: The standard deviation (stdev) of the conduc-
tivity, averaged over all frequencies as a function of Iσ . The dashed
line is proportional to I−1/2

σ . Bottom panel: The conductivity based
on three sDFT Hamiltonians, each obtained using IH sDFT-o’s. In
order not to clutter the plot, error bars are given only for the IH = 150
sDFT-o’s calculation. The sKG calculations were all done using
Iσ = 150 sKG-o’s.

the agreement between the deterministic and stochastic zero-
frequency limit is shown.

D. Analysis of the statistical errors

There are three sources of statistical errors in the cal-
culation. The sDFT, which produces the Hamiltonian with
which the conductivity is calculated with Eqs. (2) and (3),
contributes two of the errors. One is the fluctuation which
is measured by the standard deviation of the results, and is
proportional to I−1/2

H , where IH is the number sDFT-o’s. The
second is the bias, related to the deviance of the average from
the exact value, discussed in previous works [17,21], that is
proportional to I−1

H . In addition to the errors in the sDFT
stage, the stochastic evaluation of the momentum-momentum
correlation function also contributes an additional fluctuation.
The effect of the two errors arising from the sDFT calculation
on the conductivity spectrum is displayed at the bottom panel
of Fig. 3. We show three spectra, each based on a distinct
sDFT Hamiltonian, calculated using different values of IH.
For the case of IH = 150 ten different sDFT-o sets were used
in order to assess the fluctuation stemming from the stochastic
procedure. For all three conductivity calculations, we used the
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same set of Iσ = 150 sKG-o’s, thereby leading to a similar
fluctuation, so that we can focus on the errors resulting from
the sDFT process. The spectra based on IH = 300 are within
the error bars of the IH = 150 for all frequencies considered,
while the spectrum that is based on IH = 75 exhibits a devia-
tion from the other two, especially near the ω ∼ 25 eV peak.
Since the fluctuation is small, we deduce that this difference
can be attributed to the bias component of the statistical error,
and that it is small at IH = 75 and much smaller than the
fluctuation when IH � 150.

Having discussed the two errors connected with the
stochastic nature of the Hamiltonian, we now address the
random fluctuations that arise from the sKG calculation. For
this purpose, we take one of the sDFT Hamiltonians above
(that was calculated using IH = 150 sDFT-o’s) and perform
three conductivity spectra calculations on it using different
values Iσ of sKG-o’s. The resulting spectra are shown in
the upper panel of Fig. 3. The inset shows that the standard
deviation, averaged over all frequencies, decreases according
to the central-limit theorem as expected. Since the sKG-o’s are
used to directly sample the trace, the statistical error should be
a “pure” fluctuation, with no bias. Therefore, while the peak in
this example exhibits a decrease as Iσ increases, we attribute
that behavior to a fluctuation.

E. Algorithmic implementation and scaling of the algorithm

The computational time of the sKG algorithm, as described
in Sec. II B and Eq. (7), is determined mainly by application
of fFD(ĥ),

√
fFD(ĥ), and the time evolution operator e−iĥ�t ,

all functions of the Hamiltonian ĥ on given wave functions.
Each of these Hamiltonian functions can be applied by using
Chebyshev expansions [43–46], where the Hamiltonian is
applied to the wave function repeatedly NC times. The length
of the expansion NC is proportional to �E = Emax − Emin

where Emax and Emin are upper and lower bounds on the
maximal and minimal eigenvalues of ĥ, respectively. For the
Fermi-Dirac functions fFD(ĥ) and

√
fFD(ĥ) the Chebyshev

expansion length NC is proportional to β�E .
Propagating the wave function ϕ to different times can be

performed with several Chebyshev expansions:

ϕn = e−iĥ(n�t )ϕ =
NC (n�t )∑

m=0

am(n�t )φm, (10)

where φm are the Chebyshev recursion wave functions [47].
Note that the ϕn’s for the different values of n are different
linear combinations of the same recursion wave functions φm,
but summed with different expansion coefficient am(n�t ).
We can therefore generate one set of φ1, . . . , φNC for gen-
erating the required set of ϕn’s. The Chebyshev expansion
length NC is determined as the smallest integer for which
|am(n�t )| < 10−9 for all m � NC . Clearly, NC depends on
n�t ; hence the notation NC (n�t ). The expansions in Eq. (10)
are highly beneficial since most of the computational effort
goes to applying the Hamiltonian on the different wave func-
tions, that is, calculating the set of φ’s. Thus, to find the op-
timized number of simultaneously calculated time steps n, in
Fig. 4 we look at the number of Chebyshev terms required per
time step, NC (n�t )/n, alongside the wall time for every choice

FIG. 4. The CPU time (blue circled markers) and NC (n�t )/n
(purple square markers) as a function of the number n of time step
propagation operators used in the calculation. The calculation was
done for He128 using Ng = 603 grid points, at 57 kK on 8 processors,
where Nts = 128 and �t = 0.25 a.u., for one dipole direction.

of n. It can be seen that NC (n�t )/n is highest at n = 1 and as n
increases, its value drops steeply toward an asymptotic plateau
value smaller by a factor of ∼4. It is seen that using this
approach CPU times indeed decrease but due to an additional
overhead of the calculation only a factor of 2 is obtained.

The computational effort for the sKG procedure has a
near-linear scaling with system size N as does the sDFT, and
this is due to the following two reasons: (1) the Hamiltonian ĥ
action on a wave function involves an O(Ng ln Ng) numerical
complexity (this is the operation count of the fast Fourier
transform involved in the kinetic energy operation), where
Ng ∝ N is the number of grid points; and (2) the number
of such Hamiltonian operations is NC × Iσ , where NC (the
Chebyshev expansion length) and Iσ (the number of sKG-o’s)
are both system-size independent. For the same reasons the
sDFT calculation also scales linearly with N (as shown before
in Ref. [18]). Furthermore, the computational effort in sDFT
decreases as the temperature increases in proportion to 1/T
[17], due to the fact that the FD Chebyshev expansion length
NC is proportional to �E/kBT [48] and the energy range �E
is system-size independent. The O(N/T ) scaling with system
size and temperature we report here should be compared to
the O(N3T 3) scaling of the deterministic calculation based
on Eq. (6), which requires calculation of all the occupied
(and many unoccupied) states, the number of which is pro-
portional to T 3 (based on the electron gas density of states).
The system-size scaling can be seen in actual calculation,
as shown in Fig 5, where the wall time for the DFT + KG
calculation is shown as a function of the number of atoms
in the system (keeping the density and temperature fixed as
the number of atoms increases) for the deterministic case
(using QE) and sDFT + sKG. For small system sizes the QE
calculation is considerably faster than the stochastic approach.
However, as the system size increases, due to liner scaling,
the stochastic approach becomes competitive. At N = 128
we find a crossover and already for N = 432 the stochastic
calculation is 10 times faster than the deterministic one.

III. MIXED He/H WDM SYSTEMS

As an application of the method, we study the conductivity
and DOS of various systems with different hydrogen-helium
mixtures at a temperature of 57 kK and constant volume.

195101-5



YAEL CYTTER et al. PHYSICAL REVIEW B 100, 195101 (2019)

FIG. 5. Wall time for stochastic DFT + KG calculations with
600 time steps with �t = 0.25 h̄E−1

h as well as a deterministic
calculation done using Quantum Espresso (QE), as a function of the
number of He atoms, at 0.75 g

cm3 and 57 kK. The orange curve is
proportional to N3, and the blue curve is linear with N , the number
of atoms.

For each system, we obtained a set of thermally distributed
nuclear configurations using the electron force field (eFF)
[49] dynamics as implemented in LAMMPS [50], which has
been shown to give a good description of the pair correlation
and equations of state of first row materials under extreme
conditions [51,52]. For He128 at 57 kK we generate a set of
Boltzmann-distributed configurations using both an empirical
force field and an ab initio approach taken from Ref. [12]. The
configurations were then used to average the results over
the thermal fluctuations of the nuclei. In Fig. 6 we compare
the two sets of results and show that while giving two visibly
different spectra they share similar trends with peaks/troughs
located at nearly identical frequencies. Comparing the two
DOSs we see small differences in the occupied state energies
while they are nearly identical at the unoccupied state ener-
gies. Comparing the correlation functions g(r), we find that
AIMD gives significant weight to He pairs approaching as
close as 0.5 Å while the eFF does not. Both functions show
a peak at 1.1 Å, but it is more significant in AIMD. It is
perhaps surprising that despite the rather large differences in

FIG. 6. Comparison of the calculated conductivity σ (ω) (a), the
DOS ρ(ε) (b), and the radial pair correlation g(r) (c) for He128 at
57 kK and density of 0.75 g

cm3 based on configurations generated by
AIMD [12] versus eFF dynamics. The dashed line in panel (b) shows
the Fermi-Dirac level occupation, transiting from a value of 1 at low
energies ε to 0 at high energies.

the pair correlation between the two methods, the electronic
properties, as mentioned above, are not very different.

We characterize the mixture by the hydrogen fraction in the
system

XH = NH

NH + NHe
, (11)

where NH and NHe are the number of hydrogen and he-
lium atoms, respectively. For practical purposes, this ratio is
achieved by holding the total number of atoms NH + NHe in
the simulation cell constant and equal to 1024.

We ran five molecular dynamics trajectories at fixed
volume (minimum image periodic boundary conditions for
L = 39.4a0) and temperature (T = 57 kK) with interactions
between He and H described by the eFF force field with a
cutoff of 6.45a0. Each trajectory started with the same ordered
configuration, and a different velocity allocation, equilibrated,
and then ran for a total of 3 ps with time step of 10−3 fs,
needed because of consideration of both electronic and nu-
clear timescales. The duration of the trajectories corresponded
to the correlation time of 3 ps estimated using the same data.
The final nuclear configuration for each trajectory represented
a set of five uncorrelated H-He mixtures. For each structure, a
sDFT calculation determined the Hamiltonian ĥ which was
used for the sKG calculation of the conductivity spectrum.
For both sDFT and sKG an identical simulation box and grid
of Ng = 1203 points were used which correspond to a grid
spacing of δx = 0.33a0. The sDFT calculation was based on
IH = 120 sDFT-o’s and the sKG calculation used a distinct set
of Iσ = 120 sKG-o’s.

In Fig. 7 the conductivity spectra and the DOS for three
different mixtures are displayed. These two characteristics are
closely related and will therefore be discussed together. The
statistical fluctuation in the DOS (lower panel), denoted as
error bars, was determined by running sDFT calculations on
the five distinct configuration snapshots as described above,
each using a different set of sDFT-o’s. These five Hamilto-
nians were then used for evaluating the conductivity (upper
panel) employing a different set of sKG-o’s to avoid additional
bias. The resulting five conductance spectra and DOSs were
used for estimating the thermally averaged curves and their
associated statistical errors. It is seen in the upper panel of
Fig. 7 that the statistical fluctuations are small compared to
the difference between the curves and they do not seem to
increase as a function of the hydrogen atomic fraction XH and
therefore, only one snapshot was used in all other calculations.

When a relatively small fraction of hydrogen atoms is
present in the system, it gives rise to a small peak at 3 eV
inside the helium energy gap in the DOS (see the lower panel
of Fig. 7). As the hydrogen concentration increases the He
gap fills with states until it is no longer visible and at the
same time the DOS of the valence band (seen in the figure
at around −10 eV) decreases steadily. Both effects show
a gradual transition to metallization as the hydrogen ratio
grows. At high energies the DOS of all mixtures converges
to the free-electron limit.

The sKG conductivity follows the changes seen in the
DOS. Consider first the DC conductivity, shown in the lower
panel of Fig. 8, which remains relatively constant as the
hydrogen fraction grows until X crit

H ∼ 0.3. Beyond this value
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FIG. 7. The conductivity (upper panel) and the DOS (lower
panel) of different systems containing 1024 atoms with different
hydrogen percentages at T = 57 kK and an average atomic volume
of 60a3

0 per atom. The conductivity was normalized according to the
number of electrons in the system. The DOS is shifted so that the
chemical potential is zero.

of the hydrogen fraction the DC conductivity increases nearly
linearly with χH as a result of the energy gap filling in the
DOS, allowing more transitions at low energies. Due to the
finite temperature and therefore partial occupation there exist
zero-frequency transitions even at helium-dominated systems
causing the DC conductivity to change only by a factor of 2.5
when moving from pure-helium to pure-hydrogen systems.
The peak in the He-dominated spectrum, as seen in the upper
panel of Fig. 7, appears at around 25 eV and corresponds
to the transition from the highest density in the occupied
band to the nonoccupied band threshold levels (as seen in
the DOS at 10 eV). Furthermore, at higher He concentrations
due to the energy gap, transitions in 15 eV become less
probable, resulting in a local minimum in the conductivity at
this frequency.

Next, we consider the frequency ωmax for which the con-
ductivity is maximal, plotted as a function of XH in the
top panel of Fig. 8. This frequency displays an abrupt shift
of ωmax from ∼25 eV to 0 (DC) as XH passes through the
critical value of X crit

H ∼ 0.3. This critical value indicates an
abrupt nonmetal-to-metal transition in the H-He system as
reported in Ref. [2] for considerably lower temperatures. This
critical hydrogen concentration is well within the range of
the Mott criterion for metallization in pure hydrogen, as seen
in Ref. [53], which shows that it occurs at n1/3

H a0 ≈ 0.25
for temperatures up to 15 kK. In the present system, we
find the metallization density at n1/3

H a0 ≈ 0.18, which seems

FIG. 8. The maximal conductivity frequency ωmax (top panel),
maximal conductivity σmax (middle panel), and the DC conductivity
of the actual (round blue markers) and the linear-mixing model σLM

(square orange markers), as a function of the hydrogen ratio XH in
He-H mixtures.

reasonable considering the fact that we are looking at a sub-
stantially higher temperature in which thermal effects promote
the conductivity onset.

The finite ωmax is a result of the energy gap in what is
generally an insulating system (He dominated) and the zero
ωmax signifies its disappearance, allowing many of the energy
transitions to occur at infinitesimal energy values. In the
middle panel of Fig. 8 the transition through X crit

H is seen as a
qualitative change in the behavior of the maximal conductivity
σmax, which initially decreases as XH approaches X crit

H , and
then increases as XH grows further.

Finally, we compare the spectra in the different concentra-
tions to a model of linear averaging of pure helium and pure
hydrogen spectra, defined as

σLM(XH; ω) = XHσ (1; ω) + (1 − XH)σ (0; ω). (12)

It can be seen in the lower panel of Fig. 8 that the DC
conductivity σLM(XH; 0) based on the linear-averaging model
is typically greater than the corresponding value calculated
using sKG. This is due to the fact that in the actual system
the environment each atom experiences includes, on average,
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a mixture of He and H atoms, while in the linear-averaging
model each atom is surrounded by atoms of its own kind.

IV. SUMMARY AND CONCLUSIONS

In this work we presented a stochastic approach, sKG, to
calculate the conductivity using the Kubo-Greenwood for-
malism on top of a sDFT calculation. We showed that sKG
conductivity can approach the values of the deterministic
KS conductivity determined by the KG method when the
number of sDFT-o’s and sKG-o’s are increased systematically.
Moreover, the uniform sampling of all states of the system by
sKG allows it to describe equally well the low-end, middle,
and high-end ranges of the spectrum, while the deterministic
method is limited to lower energies due to memory and CPU
constraints. The computational effort of the method scales
linearly with system size and is inversely proportional to the
temperature, similarly to the sDFT calculations [17], while the
deterministic approach has cubic scaling in both system size
and temperature.

As an application of the method, we studied the conduc-
tivity and DOS for mixed hydrogen and helium systems at
a constant volume and temperature (T = 57 kK) ensemble.
We found that the system displays two conductivity phases,

where a transition from insulator to metal occurs at a hydrogen
atomic fraction of XH ≈ 0.3.

The method enlarges the scope of sDFT to study properties
of warm dense matter for very large systems at high temper-
atures. This could be significant when large inhomogeneous
systems are studied or in systems where the mixing occurs on
the nanoscale.
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