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Abstract

Linear scaling density functional theory ap-
proaches to electronic structure are often based
on the tendency of electrons to localize even
in large atomic and molecular systems. How-
ever, in many cases of actual interest, for exam-
ple in semiconductor nanocrystals, system sizes
can reach very large extension before signi�-
cant electron localization sets in and the scaling
of the numerical methods may deviate strongly
from linear. Here, we address this class of sys-
tems, by developing a massively parallel den-
sity functional theory (DFT) approach which
doesn't rely on electron localizationa and is for-
mally quadratic scaling, yet enables highly ef-
�cient linear wall-time complexity in the weak
scalability regime. The approach extends from
the stochastic DFT method described in Fabian
et. al. WIRES: Comp. Mol. Science, e1412
2019 but is fully deterministic. It uses stan-
dard quantum chemical atom-centered Gaus-
sian basis sets for representing the electronic
wave functions combined with Cartesian real
space grids for some of the operators and for
enabling a fast solver for the Poisson equation.
Our main conclusion is, that when a processor-
abundant high performance computing (HPC)
infrastructure is available, this type of approach
has the potential to allow the study of large sys-
tems in regimes where quantum con�nement or
electron delocalization prevents linear-scaling.

1 Introduction

In the past few decades, the supercomput-
ers' massive number-crunching power, mea-
sured in �oating-point operations per second
(FLOPS), has grown a million-fold1 and is
currently pushing towards the exa�op (1018

FLOPS) realm. Combining this new technology
with electronic structure calculations can revo-
lutionize computational materials science and
biochemistry, provided we complement it with
algorithms that can e�ciently exploit its mas-
sively parallel-based infrastructure.
One of the key questions then becomes how to

quantify the e�ciency of a certain algorithm on
a massively parallel machine. A crucial measure
in this regard is the speedup, which we de�ne
as the ratio

S (W,M) ≡ T1 (W )

TM (W )
(1.1)

between the wall-times, T1 (W ) for executing a
given computational workW using a single pro-
cessor and TM (W ) for its execution using M
processors working in parallel. In operational
regimes where the speedup is nearly propor-
tional to M , i.e. S = E ×M there is a clear
advantage in using a parallel multiprocessor ap-
proach where E is the e�ciency, with E = 1
being ideal.
The e�cient use of parallel computing was

discussed by Amdahl in his seminal paper2,
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where he identi�ed in W an inherently serial
(subscript s) and parallelizable (subscript p)
part, W = Ws + Wp. He assumed that the
execution wall-time is independent of M for
completing Ws and decreases linearly with M
for Wp. Amdahl de�ned the serial fraction as
sA = T1(Ws)

T1(W )
, measured on a single processor ma-

chine for a given job independent of M . With
this de�nition, the speedup can be expressed
as: SA (W,M) =

(
sA + 1−sA

M

)−1
(Amdahl's law,

also called strong scalability) and saturates once
M exceeds the value of 1/sA.
Gustafson pointed out3,4 that in real-world

usage sA isn't independent of M , due to the
fact, that one does not generally take a �xed-
sized problem but rather scales the workload
W with the available computing power. He
then de�ned the serial fraction sG = TM (Ws)

TM (W )

as measured on the M -processor system and
showed that the speedup can be expressed as
S (M) = sG +M (1− sG) (Gustafson's law also
called weak scalability), enabling linear speed
up which does not inherently saturate as M in-
creases.
These considerations can be applied to elec-

tronic structure calculations of extended sys-
tems in DFT codes that lower the cubic scal-
ing by taking advantage of electron localiza-
tion5�25. For linear-scaling schemes, the Am-
dahl serial fraction sA = T1(Ws)

T1(W )
is expected to

be system-size independent (since both timings
in the numerator and the denominator scale lin-
early with system size) while for codes of higher
algorithmic complexity, sA decreases as system
size increases26. In a weak scalability analysis of
the linear scaling codes Gustafson's serial frac-
tion sG = TM (Ws)

TM (W )
is also expected to be system-

size independent (since both timings in the
numerator and the denominator scale linearly
with system size) and therefore take to form:
sG =

(
1 + M0

M

)−1
, where M0 is a constant (de-

pending on the hardware, algorithm). For large
M , the speedup saturates to SG (M)→ 1+M0,
but if M0 is very large there is a sizable regime
where M � M0 and the sG is essentially zero
so an ideal linear speedup emerges, as reported,
for example, for the CONQUEST code6,27, even
up to M = 200, 000 cores on the Fujitsu-made

K-computer. It is clear from the previous stud-
ies mentioned above that it is important to de-
termine the strong and weak scalability prop-
erties of codes that can use massively parallel
machines, because they are sensitive to many
details concerning hardware, systems size, al-
gorithmic scaling etc.
In this paper we develop an e�ciently par-

allelizable, (semi)local DFT approach which
o�ers quadratic scaling with system size and
does not involve approximations derived from
assuming electron localization. It uses atom-
centered Gaussian basis-sets combined with
calculations performed on Cartesian grids
for providing the electrostatic and exchange-
correlation energies. We describe the theory
and implementation in section 2, where we also
provide an illustration of the non-localized na-
ture of electrons in the large benchmarking
systems we use (see Fig. 2.1). Next, we present
the algorithmic complexity and the parallel
strong/weak scalability properties of our ap-
proach in section 3, and �nally, we summarize
and discuss the conclusions in section 4.

2 Method

In our method, we work with standard quan-
tum chemistry basis-sets, composed of atom-
centered local functions φα (r), α = 1, . . . K.
For calculating the necessary integrals, solv-
ing the Poisson equations, and generating the
exchange-correlation potentials, we use a 3D
Cartesian real-space grid of equidistant points
spanning a simulation box, containing the sys-
tem's atoms and electronic density. For this
purpose, we developed an e�cient method for
evaluating the basis functions on a relevant set
of grid points, outlined in section A of the sup-
plementary material. Our method of combining
basis functions and real-space grids is similar
in spirit to those existing in literature, such as
SIESTA9 and CP2K/Quickstep7, but di�ers in
important details. Unlike SIESTA, we use stan-
dard non-orthogonal Gaussian basis sets and
unlike Quickstep we represent the basis func-
tions on the grid where all integrals are per-
formed as summations. The �rst type of inte-
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gral that we have to evaluate on the grid then,
is the overlap matrix:

Sαβ = h3
∑
g

φα (rg)φβ (rg) , (2.1)

where rg are the grid points and h is the grid-
spacing. Next, the kinetic energy integrals are
evaluated as

Tαβ =
1

2
h3
∑
g

∇φα (rg) · ∇φβ (rg) , (2.2)

where the derivatives of the basis functions are
calculated analytically and then placed on the
grid (see section A.2.3 of the supplementary
material for details). To avoid an excessive
number of grid points, the equally-spaced grid is
complemented with norm-conserving pseudopo-
tentials28, representing the e�ects of the tightly
bound core electrons (which are not treated
explicitly) and taken into account in the KS
Hamiltonian, represented by the Fock matrix

FKS = T + V NL + V KS, (2.3)

where

V NL
αβ = h3

∑
g

φα (rg)
∑

C∈nuclei

v̂Cnl φβ (rg) (2.4)

are the integrals for the non-local pseudopoten-
tial and

V KS
αβ = h3

∑
g

φα (rg) vKS (rg)φβ (rg) (2.5)

are the KS potential integrals, where:

vKS (rg) =
∑

C∈nuclei

vCloc (rg −RC) (2.6)

+ vH [n] (rg) + vxc [n] (rg) .

In Eq. (2.6), vH [n] (rg) is the Hartree po-
tential on the grid which is evaluated di-
rectly from the grid representation of the elec-
tron density n (rg) by a reciprocal space-based
method for treating long range interactions29.
The exchange-correlation potential vxc [n] (rg)
(within the local density approximation (LDA))
is also determined on the grid directly from the

electron density. From the grid representation
of the pseudopotentials1 we obtain the poten-
tial vCloc (rg −RC) appearing in Eq. (2.6) for nu-
cleus C at positionRC and, by grid integration,
the matrix V NL appearing in Eq. (2.3). All in-
tegral calculations are performed in parallel for
di�erent basis function pairs; for more details
see the supplementary material C.
The electron density on the grid is formally

de�ned as

n (rg) = 2
K∑
α,β

Pαβφα (rg)φβ (rg) , (2.7)

where P is the density matrix (DM) and
the factor of two comes from integration over
spin degrees of freedom. The DM must obey
an electron conserving criterion, namely that
the integral over all grid points evaluates to
the total number of electrons in the system:
h3
∑

g n (rg) = Ne. Indeed, performing this in-
tegral and using Eq. (2.1) and (2.7) we �nd

Ne = 2Tr [PS] . (2.8)

This relation is part of a more general require-
ment, that the Kohn-Sham eigenstates are pop-
ulated according to the Fermi-Dirac function
fFD (ε) = 1

1+eβ(ε−µ)
where ε is the corresponding

energy eigenvalue. For the DM, this condition
can be satis�ed by de�ning21:

P = fFD
(
S−1FKS

)
S−1. (2.9)

For �nite-temperature DFT, β is the inverse
temperature and µ is the chemical poten-
tial. For ground-state calculations β obeys
β (εL − εH) � 1, where εL (εH) is the Kohn-
Sham eigenvalue of the lowest unoccupied
(highest occupied) molecular orbital. The
chemical potential in the Fermi-Dirac function
is adjusted to reproduce the systems' number
of electrons Ne through Eq. (2.8).

1Here we use the Kleinman-Bylander (KB) form30,
which produces two types of operators, a non-local
potential operator v̂Cnl ≡ vCnl (r −RC , r

′ −RC) which
is de�ned in a small sphere around each atomic core
(RC is the location of atom C) and a scalar poten-
tial vCloc (r −RC) containing the long-range electron-
shielded nucleus Coulomb attraction.
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Figure 2.1: The Fock (FKS), overlap (S) and DM (P ) matrices of Si705H300 and (H2O)471 cluster
(calculated within the LDA) are shown using a color-coded plot. The basis set in both systems
is similar in size, with K ≈ 6000. For clearer inspection of the sparsity pattern the rows and
columns are permuted so as to achieve a minimum bandwidth around the diagonal. We applied
the MinimumBandWidthOrdering command of Mathematica® 31 to the atomic proximity matrix
DAB = Θ (R0 −RAB) (where RAB is the distance between any pair of atoms A, B and R0 = 10a0 is
the proximity distance), giving a permutation which is then used to order the atom-centered basis
functions.

The use of atom-centered local basis func-
tions allows for sparsity in the basic matri-
ces FKS and S, as illustrated in Fig. 2.1 for
two systems of similar size but di�erent chem-
ical nature, a 2.5nm (diameter) semiconductor
nanocrystal Si705H300 and a 3nm water clus-
ter (H2O)471. For the matrix representation in
Fig. 2.1, we have ordered the atoms (and the
basis functions associated with them) in a way
that takes into account their spatial proxim-
ity (near atoms tend to have similar indices).
Therefore, it is clear by mere inspection that
FKS and S have a relatively small spatial range
and are therefore quiet sparse. Our approach
makes an e�ort to exploit this property by us-
ing sparse matrix algebra. Despite the spatial
locality of FKS and S, P in these large systems
is highly non-local, expressing the physical fact,
that the electronic coherence in these systems
is long ranged. For the silicon system, this �ts
our intuition, namely that silicon is by nature a
semiconductor, with properties which are close
to those of metals. Although water is a large

band-gap system, it is known that under LDA
it exhibits very small HOMO-LUMO gaps32�35

(see also Fig. 2.2).
The various expectation values of relevant ob-

servables (i.e., operators in the grid representa-
tion) can be expressed as trace operations:〈

Ô
〉

= 2Tr [PO] (2.10)

where

Oαβ = h3
∑
g

φα (rg) Ôφβ (rg) (2.11)

is the matrix representation of the one body
operator Ô in the atomic basis. In order to
expedite the calculation we need to parallelize
the computational work, and this can be done
by representing the trace operations as a sum
over unit column vectors uα (with coordinates
(uα)β = δαβ, i.e., zeros in all positions except

4



at α), computed column by column:

〈
Ô
〉

= 2
K∑
α

uTαOPuα. (2.12)

For achieving this, we treat the DM as an oper-
ator, i.e. we devise a linear-scaling method for
applying it to the column vector uα, based on
Eq. (2.9): Puα = fFD

(
S−1FKS

)
S−1uα. The

operation S−1uα is performed by the linear-
scaling preconditioned conjugate-gradient ap-
proach involving repeated application of the
sparse overlap matrix S on column vectors 2.
The operation of fFD

(
S−1FKS

)
on the column

vector S−1uα employs a Chebyshev expansion
of the function fFD (ε), which results in re-
peated applications of the operator S−1FKS to
column vectors. Details are described in the
supplementary material B. The entire proce-
dure can be readily distributed over several pro-
cessors in parallel, each commissioned with a
distinct set of uα column vectors. This calcu-
lation method has the additional bene�t that
it avoids storage of the non-sparse DM. We
discuss the algorithmic complexity of the ap-
proach, as well as its weak and strong scalabil-
ity in section 3.
Equations (2.1)-(2.9) and the techniques of

their application discussed above form a series
of nonlinear equations that must be solved to-
gether, to give the self-consistent-�eld (SCF)
solution. The procedure is iterative and uses
the direct inversion of the iterative subspace
(DIIS) convergence acceleration method38.
Once converged various expectation values such
as charges and multipoles, density of states and
polarizability can be calculated, as well as forces
on the nuclei39, which can be used for structure
optimization.
In order to check and validate the implemen-

tation of the algorithm outlined above, we show
in �gure 2.2 the density of states (DOS) of a
cluster of 100 water molecules, obtained with
our program, and with the commercially avail-

2We use the incomplete Cholesky preconditioning36

for the conjugated gradient approach implemented in
the HSL-MI28 and MI21 codes, respectively, where HSL
is a collection of FORTRAN codes for large scale scien-
ti�c computation ( http://www.hsl.rl.ac.uk/).
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Figure 2.2: The DOS as a function of energy
for a water cluster (H2O)100 calculated using
the all-electron Q-CHEM37 and our code (with
pseudo-potentials). Comparison is made for
three standard Gaussian basis-sets as indicated
in the panels within the LDA and a grid point
spacing for our code of ∆x = 1/3 a0. Both cal-
culations plot the DOS using kBT = 0.01Eh.
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able quantum chemistry program Q-Chem37,
using three di�erent basis-sets, ranging from
single to triple zeta quality (STO-3G, 6-31G
and 6-311G). Overall, there is a clear trend visi-
ble that the two di�erent DOSs become almost
identical as the basis set quality grows. For
the smallest STO-3G basis-set the results di�er
the most, due to a shift in energy between the
two DOSs. The DOSs computed in the bigger
6-31G basis set are much closer and for the 6-
311G basis set both our and Q-Chem's DOSs
are in close to perfect agreement. It is impor-
tant to note, that whereas Q-Chem is an all-
electron program, meaning that all electrons are
described explicitly, our implementation treats
core electrons with pseudopotentials. The dis-
crepancies for the smaller basis-sets between the
two codes can very likely be attributed to this
fact. We stress that our results change very lit-
tle for the di�erent basis-sets in the gap region
(�4 eV) which is usually of the highest interest
in the energy spectrum.

3 Scaling properties of the

method

In this section we study the method's algorith-
mic complexity and analyze the speedup achiev-
able by parallelization in terms of strong and
weak scalability.

3.1 Algorithmic complexity

To understand the algorithmic complexity of
our method, we have to examine how each part
of our code scales as we increase the system
size K. Here we are especially interested in
the asymptotic behavior, meaning that the pro-
gram part with the largest scaling will deter-
mine the overall algorithmic complexity. Our
entire SCF cycle, that is described in detail in
the supplementary material A.3, includes dif-
ferent integral calculations, solving the Poisson
equation and calculating the density. The in-
tegral calculation is expected to scale linearly
with system size K, i.e. O(K), because the
relevant matrices (FKS, S) are expected to be-
come sparse (see also Fig. (2.1)). The Poisson

equation is solved by a fast Fourier transform
(FFT) which scales as O (Ng logNg), where Ng

are the grid points, expected to scale linearly
with system size. This leaves only the density
calculation which is done according to equa-
tion 2.12. The application of the DM P to a col-
umn vector uα, expressed through a Chebyshev
series, involves repeated applications of the op-
erator S−1FKS to the column vector v = S−1uα
(see supplementary material B for details). The
length of the Chebyshev expansion, NC , is in-
dependent of the system size K and so the al-
gorithmic complexity of the Puα operation is
identical to that of one S−1FKSv operation,
namely linear with K. There are a total of
K di�erent Puα operations (see Eq. (2.12)),
so that the overall algorithmic complexity of
the method is asymptotically quadratic, i.e.
O (K2). As the system size grows our algo-
rithm could be modi�ed to take advantage of
the emerging sparsity of the DM, allowing for
a K-independent complexity of each Puα op-
eration. In such situations one can expect an
overall linear-scaling numerical complexity, i.e.
O (K). However, in the present paper, we fo-
cus on the broad class of systems which are very
large but for which the DM has not yet local-
ized. Hence we are in the formally quadratic
complexity regime.
To show that quadratic complexity is in-

deed what we achieve with this method, we
plot, in �gure 3.1 the wall-time per SCF cycle
vs. system size for water clusters (taken from
http://www.ergoscf.org/xyz/h2o.php) and
hydrogen-terminated silicon nanocrystals (we
use a series of nanocrystals, starting from
Si35H36 reaching Si2785H780, for details, see sup-
plementary material D), using STO-3G and the
larger 6-31G basis-sets. As seen in the �gure, all
cases show overall quadratic algorithmic com-
plexity. It is noteworthy to state that the small
and intermediate sized systems in the �gure ex-
hibit a varying algorithmic complexity with sys-
tem size associated with the interplay between
linear complexity processes having a large pref-
actor and cubic stages due to the non-sparse
nature of the Hamiltonian and overlap matri-
ces.
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Figure 3.1: The wall-time as a function of system size, for the water clusters and the silicon
nanocrystals, calculated using two basis sets within the LDA. The calculations were performed on
eight Intel Xeon Gold 6132 CPU @ 2.60GHz 755GB RAM (connected through In�niband), using
112 cores for all systems. The dotted lines in the �gures are guides to the eye with designated
quadratic scaling. Fitting the function t = Axn to the data at the larger time range, one obtains
the exponent n = 1.9 (2.1) for both the water and the silicon systems in the STO-3G (6-31G) basis.

3.2 Strong scalability

In �gure 3.2 we study the strong scalability
properties of our code, i.e. the scalability
achievable when increasing the number of pro-
cessors for a given task. We show in the �gure
the speedup and e�ciency for a single SCF it-
eration of the Si1379H476 nanocrystal. Our def-
inition for the speedup in Eq. 1.1 requires the
knowledge of the elapsed wall time it takes a
single processor (more accurately 1 core) to �n-
ish this nanocrystal calculation. Due to (hu-
man) time constraints we had to extrapolate
this timing from a calculation on 36 cores on
one single compute node by T1 = 36T36. The
results can be analyzed in terms of the Am-
dahl law �nding that the the serial fraction is
sA = 9 × 10−5 showing a high degree of paral-
lelization. Accordingly, the parallelization e�-
ciency drops very slowly as the number of pro-
cessors increases, with 96% e�ciency even at
M = 500 (see the inset in the top panel). We
emphasize that this is achieved with a 10Gb
ethernet network communication. Potentially,
the decay of e�ciency may be slowed down
by employing a faster communication solution.
According to the Amdahl law, e�ciency will
drop to 0.5 when M ≈ 1

sA
= 104 . In the

supplementary material E we show results for

a smaller system, Si705H300 where the Amdahl
serial fraction is larger, sA = 2×10−4, a system-
size dependency due to the quadratic complex-
ity of our method (see our discussion in Sec-
tion 1).

3.3 Weak scalability

In this section we focus on the weak scalabil-
ity properties of our method, namely how the
wall time changes with system size K when the
number of processors a�orded to the calculation
M grows in �xed proportion r = K/M . In the
left panel of Fig. 3.3 we present the wall-time T
as a function of system size K for six series of
runs we made with di�erent �xed ratios ranging
from r = 4 up to r = 120 (in the actual calcula-
tion, r is the number of vectors uα assigned to
each processor (see Eq. (2.12))). The markers of
each series fall on asymptotically straight lines
in the log-log plot which appear parallel to the
dark-dashed line indicating a constant slope of
1. This con�rms the claim of achieving linear-
scaling wall-time in this regime of operation,
where r is held constant. We would also like
to examine the speedup in order to determine
the degree of e�ciency of our calculation on the
parallel machine. For calculating the speedup
under our de�nition in Eq. (1.1) we need to be
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Figure 3.2: Strong scalability speedup analysis
(upper panel) and e�ciency E (M) = S (M) /M
(lower panel) for Si1379H476. The reference time
for 1 processor for the speedup is extrapolated
from T1 = 36T36. The inset in the lower
panel enables a higher resolution of the e�-
ciency regime close to unity. The calculation
used the 6-31G basis-set (11984 basis functions)
within the LDA and were performed on several
2.60GHz Intel Xeon Gold 6240 with 256 GB
using 10Gb Ethernet networking communica-
tions.

able to estimate the wall time T1 (W ), which for
the large systems is not easily accessible due to
(human) time constraints. Therefore, we devel-
oped the following model for the wall time, with
which we will estimate the M = 1 wall times:

T (K,M) =
τ2K

3/ (K0 +K)

M
+ τ1K logM.

(3.1)
The �rst term on the right is the dominant
parallelizable part of the calculation run on M
processors (electron density calculation, see the
supplementary material C for more informa-
tion). For K � K0 it exhibits quadratic scal-
ing while for K � K0 the scaling is cubic due
to insu�cient sparsity of the Hamiltonian and
overlap matrices for small K. The second term
in Eq. (3.1) re�ects the timing of the serial part
of the calculation, dominated by the communi-
cation time needed for speci�c MPI functions
(reduce and broadcast) and scales linearly with
K and logarithmically with M .
Using the analytical model, the speedup can

now be obtained by plugging Eq. (3.1) into
Eq. (1.1), resulting in the following closed form
expression,

S (r,M) =
M(

K0

rM
+ 1
)
τ1
τ2r

logM + 1
. (3.2)

From this equation, it can be seen, that for
asymptotically large values of M , the speedup
approaches the limit S (r,M)→ M

τ1
τ2r

logM+1
and

as long as r is not too small,

r >
τ1
τ2

logM, (3.3)

the speedup is close to ideal S (r,M)→M .
We now �t our model to the calculation's tim-

ing results from the six constant-r series shown
in the left panel of Fig. 3.3 (a total of 32 data
points). This leads to a best-�t set of pa-
rameters (in hours): τ1 → 5.16 × 10−6 h and
τ2 → 5.63 × 10−7h and K0 → 2292.6 for our
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Figure 3.3: Weak scalability speedup analysis. Left: The wall-time for a single SCF cycle vs. the
number of basis set functions K in calculations given for several �xed values of r (K/M where M
is the number of processors) on a series of eight hydrogen-terminated silicon nanocrystals (detailed
in the supplementary material D) using the 6-31G basis-set within the LDA. The black-dashed line
is a guide to the eye showing linear scaling wall-time. The calculations were run on several Intel
Xeon Gold 6240 CPUs @ 2.60GHz 256GB RAM connected through a 10Gb ethernet networking
communications. We had access to at most 1584 cores, therefore for r = 4 we could not treat
systems greater than K = 6420 and similar though less stringent limitations appeared for r = 8
and 16. The colored dotted lines are the best-�t of the data to our model in Eq. 3.4 Right: The
scaled speedup as a function of the number of processors M , calculated for the six values of r from
Eq. 3.2 using the best-�t parameters of our model. The black-dashed line indicates the �perfect�
speedup S = M .

model and the resulting �t functions,

T�t (K; r)

10−6h
= K

(
0.563r

2292.6
K

+ 1
+ 5.16 log (K/r)

)
(3.4)

are plotted in the left panel of the �gure as dot-
ted colored lines, one for each values of r. It
can be seen that these �t functions indeed re-
produce the actual data (given as points) quiet
closely.
Having the best-�t parameters, let us now dis-

cuss the actual estimated values for the (scaled)
speedup in the Gustafson sense . These esti-
mates, based on Eq. (3.2) are plotted in the
right panel of Fig. 3.3. We see that for r > 16
the the speedup is not too far from ideal, in
accordance with the analysis presented above,
however as indicated in Eq. (3.3) the speedup is
smaller when r decreases as is clearly visible for
r = 8 and small M and for r = 4 for all values
of M . However, even for these small r cases,
the speedup is maintained as M increases and
the calculation is still quite e�cient.

4 Summary and Conclu-

sions

In this paper we presented a parallelizable elec-
tronic structure approach to �nite tempera-
ture density functional theory under (semi)local
functionals, using atom-centered Gaussian ba-
sis sets which o�ers linear wall-time complexity
as a function of system size in the weak scala-
bility regime. The inherent time complexity of
the method is quadratic O (K2), as discussed
in section 3.1 and it does not involve trunca-
tion of density matrix elements, characteristics
of linear-scaling approaches. Our trace-based
calculation combined with Chebyshev expan-
sions allows for e�cient parallelization in the
strong scalability sense, as shown in subsec-
tion 3.2. Due to the quadratic complexity, we
found that the value of the Amdahl parameter
was system-size dependent, with sA = 2× 10−4

for the Si705H300 system and sA = 9 × 10−5 for
Si1379H476. The overall weak scalability perfor-
mance shows that linear scaling wall time is
achievable, as demonstrated in section 3.3 and

9



is highly e�cient when the number of orbitals
per processors r is not smaller than ∼10 and be-
yond that e�ciency drops by a factor of ∼1.5.
Our main conclusion is, that this type of ap-
proach has the potential to be a useful and e�-
cient tool for studying large systems in regimes
where quantum con�nement or electron delo-
calization prevents traditional linear-scaling to
set in. In the future, we aim to develop force
evaluation for this approach, enabling the de-
termination of the system's structure and other
properties. Furthermore, for even larger sys-
tems, where electrons localize, we plan to en-
able linear scaling either through stochastic or-
bital methods21 or by exploiting directly the
DM's �nite range.
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Supplementary material: �Linear scalability of

density functional theory calculations without

imposing electron localization�

A Basis-set / grid representation

A.1 Basis-set → grid transformation

Each basis function φα (r) is centered on an atom, located at point Rα and associated

with lα, and mα, the angular momentum and magnetic quantum number, respectively. The

basis functions employed are non-orthogonal gaussians that are contracted to Gaussian type

orbitals (GTOs):

φα (r) =
Ncn∑
p=1

dpαΦ (r−Rα; ζpα, lα,mα) , (1)

where ζpα are the Gaussian exponents, d
p
α are the contraction coe�cientsNcn is the contraction

length, and

Φ (r; ζ, l,m) =
∑
i,j,k

wi,j,klm ϕijk (r; ζ) (2)

are the primitive spherical GTOs which are constructed from the following Cartesian GTOs

ϕijk (r; ζ) = xie−ζ x
2 × yje−ζ y2 × zke−ζ z2 , (3)

where r = (x, y, z), i+ j + k = l and the weights wijk are given in Table 1.

In order to evaluate the GTO primitive at a grid-point rg = (xg, yg, zg), for each Cartesian
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dimension, e.g. x, we store in memory an array containing, the values of (xg −Rαx)
i e−ζαp (xg−Rαx)2

(and its derivatives) in the interval [−Lαx, Lαx] around Rαx. The memory cost for the three

arrays is small since Lα is small due to the compact nature of the Gaussian function. With

these considerations, the evaluation of ϕijk (rg, ζ) involves just two multiplications, at least

an order of magnitude faster than a direct evaluation of the GTO primitive.

Table 1: Cartesian angular momenta and weight derived from the real solid harmonics1 for
l ≤ 2. Note that only cases where i+ j + k = l give non-zero values for d and w.

l s p d

m 0 1 0 −1 2 1 0 −1 −2

i 0 1 0 0 2 0 1 2 0 0 0 1

j 0 0 0 1 0 2 1 0 2 0 1 0

k 0 0 1 0 0 0 0 0 0 2 1 1

wijk 1 1 1 1
√

3/2 −
√

3/2
√

3 −1/2 −1/2 1
√

3
√

3

A.1.1 The GTO window

The length Lα of the window encompassing the basis function φα (r) is determined such that

the most protruding primitive GTO has 1 − η of its �charge� included, where η is a small

cuto� parameter. This can be expressed as the solution of the charge equation

c
(
Lα
√
ζα, lα

)
= 1− η, (4)

where c (d, l) ≡
∫ d
0 x

le−x
2
dx∫∞

0 xle−x2dx
and ζα = minp ζ

p
α identify the exponent of the most protruding

primitive GTO. An important issue is the choice of η, small values give larger windows,

improving accuracy at the expense of a higher computational cost. In Fig. 1 the wall-

time and accuracy is plotted vs the η parameter and the window length L for a deterministic

calculation of Si353H196. As η drops from 10−3 to 10−6, L grows from 5 to 7Å (the volume and

number of grid-points grow by a factor of 2.7), the single SCF iteration wall-time increases
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by a factor of 3, while the relative energy error drops by nearly 3 orders of magnitude.
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Figure 1: The wall-time of a deterministic LDA calculation (cubic-scaling) of Si353H196 and
the accuracy in the relative energy vs. η and the silicon atom widow length LSi. The grid
spacing was ∆h = 0.5a0 and the basis set was 6-31G.

Furthermore, not all grid points of the entire grid will be relevant to evaluate the numeri-

cal integrals for each pair of basis function. We therefore introduce for each contracted spher-

ical GTO φα (rg) a small grid-axes aligned cubic windowWα of lengths Lα = (Lαx, Lαy, Lαz),

in which the basis function is de�ned and nonzero. In �gure 2 two such grid windows are

displayed for the 2 dimensional case for illustrative purpose (our program uses of course 3D

windows): two atomic centers are present (Rα, Rβ), each with their own window (Wα, Wβ).

For each of the windows only a subset of points is relevant and even more so for the overlap

of both windows, Wαβ, where only four grid points are relevant in this example.
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Wβ

Wα

Lα

Wαβ

Rα

Rβ

Figure 2: Schematic of grid windows in 2D. Shown are the grid points displayed as grey
disks and two atomic centers, Rα and Rβ, with their respective GTO windows, Wα and Wβ

of length Lα and Lβ(not shown). The window Wαβ is the region of overlap between Wα and
Wβ.
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A.1.2 The density n (rg)

One important step in the DFT algorithm is to evaluate the electronic density on the grid,

based on the density matrix. In order to calculate the electronic density, we de�ne

nα (rg) = 2φα (rg)
∑
β

φβ (rg)Pβα (5)

as the density contributed by the α's column of the density matrix P , which can be calculated

independently on parallel processors. The calculation is done by the following schematic

algorithm:

1. For all rg ∈ Wα, set nα (rg) = 0.

2. For each β such thatWαβ = Wα∩Wβ (see Fig. 2) and rg ∈ Wαβ, we update the density

nα (rg)← nα (rg) + φα (rg)φβ (rg)Pβα.

The total density n (r) =
∑

α nα (r) is then obtained as a reduce operation for all processors.

For more details on the parallelization see section C.

A.2 Grid → basis-set transformation

Here we will explain how to construct the AOmatrices from the corresponding grid-operators,

the KS potential vKS (r) → V KS
αβ , the non-local pseudopotential v̂nl (r, r′) → V NL

αβ and the

kinetic energy − ~2
2me
∇2 → Tαβ.

A.2.1 KS potential V KS and overlap S

In order to generate a matrix element V KS
αβ in the basis set representation from a grid-based

function vKS (r), we only have to sum over the grid points, where both windows Wα and Wβ

overlap (Wαβ = Wα ∩Wβ, see also �gure 2) :

V KS
αβ =

∑
rg∈Wαβ

φα (rg) vKS (rg)φβ (rg)h
3, (6)
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with h as the grid spacing. A list is kept in advance for tracking the pairs of orbitals φα and

φβ that actually have a non empty Wαβ, expediting the evaluation. The overlap matrix can

be calculated this way taking vs (rg) = 1 at each gridpoint.

A.2.2 Non-local pseudopotential V NL

While the grid enables a very e�cient evaluation of the KS-potential, it is not ideal for

describing core electrons. Therefore these electrons are taking into account through norm-

conserving pseudopotentials. For atom C at the location RC , there is, similar to the window

for a basis function, a window WC , i.e. a set of grid points for which the nonlocal part

of the pseudopotential, vCnl
(
rg −RC , r

′
g −RC

)
operates. The matrix V NL representing the

non-local part of the pseudopotential in the AO basis has non zero elements V NL

αβ only for

those orbital pairs for which there exists an atom C for which WC
α ≡ WC ∩Wα 6= ∅ and

WC
β 6= ∅ (where ∅ is the empty set of grid points). In practice, the calculation of V NL is done

by locating, for each β all atoms C for which WC
β 6= ∅ and then calculating the localized

function:

ψCβ (rg) =
∑
r′g∈WC

β

vCnl
(
rg −RC , r

′
g −RC

)
φβ
(
r′g
)
h3, rg ∈ WC . (7)

Then one searches for all orbitals φα for which WC
α 6= ∅ and calculates

V C
αβ =

∑
rg∈WC

α

φα (rg)ψCβ (rg)h
3 (8)

�nally, the matrix element is obtained as a sum over all atoms C for which WC
β 6= ∅:

V NL

αβ =
∑

C:WC
β 6=∅

V C
αβ. (9)

The pseudo-potential matrix V NL has to be calculated only once in the beginning of the

calculation.

6



A.2.3 Kinetic energy T

The �nal type of integral considered here is the kinetic energy integral.

Tαβ =
1

2

∑
rg∈Wαβ

[∇φα (rg)] · [∇φβ (rg)]h
3. (10)

Here we need to take the gradient of the basis function φα and φβ and multiply them. Taking

the gradient of both basis functions rather than the Laplace operator for only one ensures

that T will also numerically be positive. For the gradient we need the partial derivatives

of the basis functions calculated at each grid point rg. Currently derivatives up to second

order are implemented. They are taken with respect to equation 3.

A.3 Putting everything together: The SCF cycle

In order to solve the non-linear KS equation, one has to do so iteratively, until the SCF

solution is found. This process is depicted in �gure 3, with a focus on our unique basis-

set/grid representation. All integrals are calculated from their respective grid operators, as

discussed in section A.2.1-A.2.3. This grid→basis-set transformation is depicted in �gure 3

by purple arrows and the corresponding equation number. Except for V KS, all other matrices

are only calculated once in the beginning of the SCF cycle. For the start of the SCF cycle the

KS-Fock matrix, FKS, is calculated by summing FKS = T+V NL+V KS, where the �rst V KS

matrix is determined by an initial guess of the density n (r) (for us usually the sum of atomic

densities). The next step in the SCF cycle is to update the density n (r) on the grid. This

step is the only basis-set→grid transformation and is shown in �gure 3 by a red arrow. As

discussed in section A.1.2, the density matrix P is put column-wise on the grid. Each column

of P is calculated according to P = fFD
(
S−1FKS

)
S−1, where the application of the inverse

overlap matrix S−1 is handled by a preconditioned conjugate gradient (PCG) approach 1,

1We used the incomplete Cholesky preconditioning2 for the conjugated gradient approach implemented
in the HSL-MI28 and MI21 codes, respectively, where HSL is a collection of FORTRAN codes for large scale
scienti�c computation ( http://www.hsl.rl.ac.uk/).
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thereby only requiring the repeated application of S (which is advantageous, since S is much

sparser than S−1) and the matrix exponential (exp
(
S−1FKS

)
) is evaluated by a Chebyshev

expansion (see section B). Once the density is calculated, the Hartree potential vH (r) is

obtained by solving Poisson's equation through a fast Fourier transform (FFT)3 and the

exchange-correlation potential vXC (r) by employing the relevant functional form (in our

case the local-density approximation (LDA)). The KS potential on the grid vKS (r) is then

calculated according to vKS (rg) =
∑

C∈nuclei v
C
loc (rg −RC) + vH [n] (rg) + vxc [n] (rg) ,where

vloc is only calculated once in the beginning of the SCF cycle. The KS potential matrix V KS

is updated according to eq. 6 before the next SCF cycle starts with a new KS Fock matrix.

B Chebyshev expansion

The inverse temperature parameter β in the Fermi-Dirac function fFD (ε) = 1
1+eβ(ε−µ)

needs

to be chosen high enough so that β (εL − εH) � 1 where εL (εH) is the Kohn-Sham eigen-

value of the lowest unoccupied (highest occupied) molecular orbital. The chemical potential

parameter µ must be adjusted to reproduce the number of electrons in the system. For the

actual application of the Fermi-Dirac function on a vector uα we need to evaluate a matrix

exponential of a matrix product (exp
(
S−1FKS

)
) and this is achieved by using the Chebyshev

polynomial expansion of the Fermi-Dirac function

fFD (ε) =

NC−1∑
l=0

al (T, µ)Tl

(
H − Ē

∆E

)
(11)

where Tl (x) are the Chebyshev polynomials obeying the recursion relation Tl+1 (x) = 2xTl (x)−

Tl−1 (x), NC ≈ 2∆Eβ is the expansion length, and �nally: ∆E = Emax−Emin
2

, Ē = Emax+Emin
2

,

where Emax (Emin) is the largest (smallest) eigenvalue of H = S−1FKS. The Chebyshev ex-

pansion coe�cients al (T, µ) can be computed using fast Fourier transform methods4. The

expansion, when applied to the Fermi-Dirac function of the Hamiltonian H allows us to

approximate the α′s column of the DM ρα ≡ Puα by the following procedure: First, we set
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Basis set Grid

n(rg)

vH(rg) vXC(rg)

VΚS

Fαβ

Tαβ ∇φα(rg)∇φβ(rg)

Sαβ

fFD(S-1FKS)

PCG

φα(rg)φβ(rg)

SCF

vKS(rg)

vloc(rg)

αβ

C

Vαβ
NL vNLC

KS

eq. 10

eq. 6

eq. 6

eqs. 7, 8, 9 ^

eqs. 5, 2.9

Figure 3: Flowchart for the KS-DFT calculation indicating the stages of the processing and
the transformation of data back and forth between the grid and basis set representation
during the SCF procedure
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U0 ← S−1uα, U1 ← HNU0 (where HN = H−Ē
∆E

is the �normalized� Hamiltonian) and l = 2,

then we compute ρα ← a0 (T, µ)U0 + a1 (T, µ)U1, and loop until l = NC the following steps:

U2 ← 2HNU1 − U0, (12)

ρα ← ρα + al(T, µ)U2, (13)

U0 ← U1, U1 ← U2 (14)

l← l + 1 (15)

C Parallelization

In this section we will discuss the main advantage of this algorithm, which is the straightfor-

ward path to parallelization. To understand the parallelization strategy a �owchart of the

program is depicted in �gure 4. All parallelization shown here is done through the message

passing interface (MPI).

There are a total number of M processors that can be used and between which the

workload in the SCF cycle is split. At �rst all processors are producing the same initial

guess density and an initial KS potential, n0(rg) and vKS0(rg) respectively. This vKS0(rg)

is then transferred from the grid to the matrix representation with equation 6. This step

is parallelized in such a way that each processor gets a batch of matrix elements V KS
αβ that

it needs to calculate and in the end these separate matrix elements are combined and dis-

tributed to every processor. The KS-Fock matrix is updated next for every processor, where

FKS = T + V NL + V KS. T and V NL are calculated once before the SCF cycle according to

equation 9 and 10 and are parallelized in the same way as described for V KS. Each processor

is independently calculating an electron density on the grid according to equation 5. For

this, each processor gets a di�erent set of unit vectors uα, where the total number of vectors

is just the basis set size K. Each processor therefore gets to calculate a fraction r = K/M
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YesConvrgd END

Core 1 Core 2 – Core M-1 Core M

No

𝑛0 r𝑔

v𝐾𝑆0 r𝑔

V𝛼𝛼𝐾𝑆 V𝛼𝛽
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𝐹𝐾𝑆

𝑛( 𝒓) 𝑛' 𝒓)⋯

𝑛 r𝑔

v'* r𝑔

Figure 4: Parallelization strategy for the SCF cycle employed in the program

11



of the densities. The maximal parallelization that can be achieved in this step is therefore

for M = K and r = 1. All the densities from the di�erent processors are summed on the

�rst (�master�) processor. Only the master process calculates the new potential vKS(rg) and

checks if the calculation reached the de�ned convergence criteria (∆E = ESCF − ESCF−1).

If this is the case the calculation �nishes, otherwise vKS(rg) is distributed to all processors

and the SCF cycle is repeated from the calculation of the KS potential matrix. For more

details on the SCF cycle see also subsection A.3.

D Systems

Table 2: Silicon clusters employed in the calculations

System K (STO-3G) K (6-31G) #e− # atoms

Si35H36 176 352 176 71

Si87H76 424 848 424 163

Si353H196 1608 3216 1608 549

Si705H300 3120 6240 3120 1005

Si1063H412 4664 9328 4664 1475

Si1379H476 5992 11984 5992 1855

Si2031H628 8752 17504 8752 2659

Si2785H780 11920 23840 11920 3565
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Table 3: Water clusters employed in the calculations (taken from http://www.ergoscf.

org/xyz/h2o.php)

System K (STO-3G) K (6-31G) #e− # atoms

(H2O)10 60 120 80 30

(H2O)20 120 240 160 60

(H2O)32 192 384 256 96

(H2O)47 282 564 376 141

(H2O)76 456 912 608 228

(H2O)100 600 1200 800 300

(H2O)139 834 1668 1112 417

(H2O)190 1140 2280 1520 570

(H2O)237 1422 2844 1896 711

(H2O)301 1806 3612 2408 903

(H2O)384 2304 4608 3072 1152

(H2O)471 2826 5652 3768 1413

(H2O)573 3438 6876 4584 1719

(H2O)692 4152 8304 5536 2076

(H2O)816 4896 9792 6528 2448

(H2O)964 5784 11568 7712 2892

(H2O)11120 6720 13440 8960 3360

(H2O)1293 7758 15516 10344 3879

(H2O)1481 8886 17772 11848 4443

(H2O)1698 10188 20376 13584 5094

(H2O)1924 11544 23088 15392 5772

(H2O)2165 12990 25980 17320 6492

(H2O)2469 14814 29628 19752 7407

(H2O)2737 16422 32844 21896 8211

(H2O)3050 18300 36600 24400 9150
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E Strong scalability Si705H300
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Figure 5: Strong scalability speedup analysis for Si705H300. The reference time for 1 processor
for the speedup is extrapolated from T1 = 36T36. The calculations used the 6-31G basis-set
(6240 basis functions) within the LDA and were performed on several 2.60GHz Intel Xeon
Gold 6240 with 256 GB using 10Gb Ethernet networking communications.
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