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Abstract: A sparse matrix multiplication scheme with multiatom blocks is reported, a tool that can be very useful for
developing linear-scaling methods with atom-centered basis functions. Compared to conventional element-by-element
sparse matrix multiplication schemes, efficiency is gained by the use of the highly optimized basic linear algebra
subroutines (BLAS). However, some sparsity is lost in the multiatom blocking scheme because these matrix blocks will
in general contain negligible elements. As a result, an optimal block size that minimizes the CPU time by balancing these
two effects is recovered. In calculations on linear alkanes, polyglycines, estane polymers, and water clusters the optimal
block size is found to be between 40 and 100 basis functions, where about 55–75% of the machine peak performance
was achieved on an IBM RS6000 workstation. In these calculations, the blocked sparse matrix multiplications can be
10 times faster than a standard element-by-element sparse matrix package.
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Introduction

The last decade has seen a surge of computational methods that
address the scaling issues in self-consistent field (SCF) electronic
structure methods such as Hartree–Fock (HF) and density func-
tional theory (DFT). With atom-centered basis sets, SCF calcula-
tions involve two computationally expensive steps: (1) the evalu-
ation of an effective one-electron hamiltonian (Fock operator) for
a given electron density, and (2) the updating of a Slater determi-
nant wave function for a given Fock operator.

Effective O(N) algorithms now exist for evaluation of all
components of the Fock operator: Coulomb, exact exchange, and
exchange-correlation potential. For the Coulomb matrix, these
include the continuous fast multipole method (CFMM)1–5 and
tree-code approaches.6 The ONX and LinK algorithms are condi-
tionally linear scaling approaches for forming the Hartree–Fock
exact exchange matrix.7–10 Linear scaling quadrature methods are
used for formation of the exchange-correlation potential.11

Traditionally, the Slater determinant wave function is updated
by first diagonalizing the Fock matrix and then using the eigen-
vectors as new molecular orbitals. The diagonalization formally
scales cubically with the system size. Clearly, with the advent of

fast Fock matrix build algorithms, the diagonalization step can
become the bottleneck in HF or DFT calculations on large sys-
tems.12–14 To avoid this cubic-scaling step, alternative methods
have been proposed.12 They usually involve (1) solving directly
for the one-particle density matrix (1PDM) in a direct-minimiza-
tion procedure (such as Li–Nunes–Vanderbilt scheme,15–21 curvy-
step approach,22–24 a quadratically convergent approach25), (2) an
iterative procedure,26,27 or (3) a Chebyshev polynomial expansion
method.28,29

All these methods involve only matrix manipulations—multi-
plications, additions, traces, etc. In a local basis, such as the
atom-centered Gaussian functions commonly used in electronic
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structure calculations,30 all required matrices (operator matrices,
and the 1PDM) become sparse as system size grows. Asymptoti-
cally the number of significant elements in the matrices grows
linearly with the system size. Therefore, all matrix manipulations
can be carried out in O(N) cost, thereby paving the way for an
overall linear-scaling behavior in updating the wave function.

In this article, we explore efficient ways to carry out such
matrix multiplications. Other matrix manipulations can be done in
a similar way, and are far less expensive than multiplications. One
standard way to carry out sparse matrix multiplications (e.g.,
SPARSKIT31) is to represent the matrices in a compressed sparse
row (CSR)32,33 format and to multiply one pair of matrix elements
at a time. This is a good approach (indeed, a necessary approach)
if the data is distributed randomly in a structureless sparse matrix.
However, it is suboptimal compared to approaches that exploit the
structure present in the sparse matrices because of the particular
physical problem being solved. Such structure can increase the
efficiency of matrix multiplies by lowering the overhead of index-
ing the sparse array.

In SCF calculations, the sparse matrices indeed have structure.
For example, in insulating systems the off-diagonal elements of the
1PDM �(r, r�) in the position representation decay exponentially
with distance i.e., �(r, r�) � exp(���r � r��), where � is related
to the band gap of the system (see ref. 12 for a review). As a result,
the density matrix is local in an atom-centered basis representation.
In this basis, other matrices such as the Fock matrix and the
overlap matrix are even more local20,34 because of the basis
function locality. To make use of the locality of these matrices, one
can group basis functions with common or close-by atom centers
together into blocks. A large matrix then becomes a set of small
submatrices, each corresponding to two blocks of basis functions.
One then needs to keep track of submatrices rather than individual
matrix elements.

The first effort in this direction for electronic structure calcu-
lations was reported by Challacombe,21,35 who organized a block-
ing scheme at the level of grouping together all functions on a
common atom. With this scheme, the cost of bookkeeping is
reduced, but the submatrices are still small. For example, for a
molecule containing first-row elements (Li–Ne) and hydrogen, the
submatrices are 5 � 5, 5 � 1, or 1 � 1 with an STO-3G basis, and
15 � 15, 15 � 2, or 2 � 2 with a 6-31G* basis.36 For these small
submatrices, it is not very efficient to use the widely used vendor-
supplied level-3 basic linear algebra subroutines (BLAS), which
are optimized for larger matrices. Challacombe employed alternate
linear algebra routines from PHiPAC37 optimized for small blocks.
ATLAS38 subroutines can also be used instead of PHiPAC. Our
benchmark calculations show that ATLAS performs marginally
better than BLAS (on IBM RS6000 375 MHz) for small block
sizes. For example, for multiplications involving 15 � 15 matrices
(carbon in a 6-31G* basis) ATLAS achieves 26% of machine peak
performance while BLAS achieves 20% of peak performance.
Although ATLAS offers some promise for small blocks, its per-
formance is very similar to that of BLAS for large blocks. For
example, for multiplications involving 57 � 57 matrices (3 CH2

groups in a 6-31G* basis) both BLAS and ATLAS achieve 57% of
the machine peak performance.

In this article, we explore the extent to which further improve-
ments are possible by considering generalized blocking schemes,
where all functions from several atoms are grouped together to

define a block. The resulting blocks will be larger, which permits
greater efficiency to be obtained on the dense block–block matrix
multiplies. However, some sparsity is lost compared to using
smaller blocks. In this article, we will assess the efficiency of using
many-atom blocks. The rest of the article is arranged as follows. In
the next section, we outline our algorithm for dividing a molecular
system into blocks, and describe our procedure to carry out mul-
tiplications with such multiatom blocks. Then we present our
preliminary results on linear alkanes, estane polymers, polygly-
cines, and water clusters. Finally, we provide some concluding
remarks.

Algorithm

There are many conceivable ways to partition a molecular system.
For example, one can solve a saleman’s problem to find a shortest
route covering every atom once, and then divide the system along
the route. We can also define other target functions and optimize
those functions to get a partitioning. The simplest way, however,
is to follow the partitioning scheme in the continuous fast multi-
pole method (CFMM).2,39 The molecule is encapsulated into a
rectangular box. For systems with dimensions much larger than a
prespecified cutoff distance Rcut (discussed later in this section),
we divide the parent boxes along the lengthy dimensions using a
binary scheme, where each parent box is divided into two child
boxes. Once the box dimensions are less than or equal to Rcut, each
box is divided into multiple small boxes. The division of the boxes
stops when the average number of basis functions in a box (ex-
cluding the empty boxes) reaches a target number of basis func-
tions. Although this scheme is straightforward and general, it is
only optimal for systems that are spatially homogeneous (i.e., have
very small density fluctuations). Otherwise, the number of basis
functions per block may fluctuate substantially about the optimal
average. More elaborate schemes to define blocks of uniform size
can certainly be envisaged (nonuniform box sizes, etc.), but are
beyond our present scope.

In the context of SCF calculations, one can partition the system
well before all the SCF cycles, which amounts to a reordering of
the atoms (and thus basis functions) in the molecule. Equivalently,
we can keep the ordering of the atoms as in the input and carry out
two permutations in every SCF cycle: the permutation of the Fock
matrix into the desired blocked structure at the end of a Fock build
and the back permutation of 1PDM. Both permutations can be
done with an O(N) effort with a very small prefactor. In this work,
we follow the latter scheme.

Once the boxes and thus the basis function blocks are made, we
can save a sparse matrix in terms of its submatrices. The elements
in the submatrices can be stored continuously in memory to avoid
big memory strides and associated cache misses when a submatrix
is being used. If a system is divided into Nbox blocks, then there are
Nbox � Nbox submatrices in total, of which many can be neglected.
As far as the total memory requirement is concerned, one can have
an O(N2) storage if one allocates space for all the submatrices
including the negligible ones. O(N) memory storage is also pos-
sible, but it requires the knowledge of the number of nonnegligible
submatrices per row (or column). In other words, we need to know
a cutoff radius. In SCF calculations, it is easy to find the cutoff
radius for Fock matrix. The cutoff radius for density matrix is
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slightly larger.20,34 We found it safe to set Rcut, the cutoff radius
for all matrices, to be two or three times that of the Fock matrix.
This corresponds to a fixed format (FF) scheme20 with a large
cutoff radius.

There are many ways to store a blocked sparse matrix and do
the bookkeeping. For a given submatrix one needs easy access to
important information such as the indices of the multiatom blocks
involved, the size of the submatrix, and a pointer to its address. But
such choices do not affect the overall performance for the mul-
tiatom blocking scheme because the “real” work is done by
DGEMM, the level-3 BLAS subroutine for multiplying matrices.
We adopt the blocked compressed sparse row (B-CSR) O(N)
storage scheme,21,32,33,35 in which a double precision number is
used to keep track of the largest (absolute) element in submatrices
of different sizes. During multiplication, submatrices Aik and Bkj

(within the radius Rcut) are multiplied to obtain a contribution to
submatrix Cij, where i, j, and k represent multiatom blocks. The
block Cij is obtained only if Cij is within the cutoff radius, i.e., the
shortest distance between atoms in the ith block and those in the
jth block is less than or equal to Rcut. Next, we compute the
product of the largest (absolute) elements from the two submatri-
ces. DGEMM is called if the product is larger than thresh � 10�2,
where thresh is a prespecified cutoff.

Results

In this section we present results of our multiatom block matrix
multiplication scheme. Test calculations are performed by multi-
plying converged Fock matrices, F, and the corresponding density
matrices, P, from a Hartree–Fock calculation.

In Figure 1 we plot recoverable sparsity (sr, which is defined
as the fraction of negligible submatrices) of matrix F � P against
the fractional average block size (defined as the ratio of the
average block size to total number of basis functions). We show
this for C120H242 (STO-3G, 842 basis functions), polyglycine with
80 gly units (STO-3G basis, 1842 basis functions), water cluster
with 320 water molecules (STO-3G basis, 2240 basis functions),
and C120H242 (6-31G* basis, 2284 basis functions). This figure
clearly shows that as one uses larger atom blocks, one recovers less

sparsity. In the limit of the whole system being a big block, all
sparsity is lost. Although this is generally true, in Figure 1 we
observe that at some block sizes the sparsity actually increases
with increase in block size. This intriguing bumpy behavior of
curves in Figure 1 can be easily understood as follows. For
example, in a linear alkane suppose that R is the range (in the
number of CH2 units) that a particular CH2 group can “see” in one
direction, and U is the average number of CH2 units per block.
Then the total number of nonnegligible blocks (NB) in a row is
given by

NB � 2 � �int�ceil�R/U� � 1, (3.1)

where, ceil(R/U) is the smallest integer greater than or equal to
R/U. The fraction of nonnegligible blocks is NB/Ntot, where Ntot is
the total number of blocks per row. The recoverable sparsity is
then given by

sr � 1 � NB/Ntot. (3.2)

Note that for a given system, the basis set plays a role only
through R. For C120H240, we find R � 16 with a STO-3G basis
and a thresh � 10�6. If U is increased from 7 (49 basis functions)
to 8 (56 basis functions), NB “jumps” from 7 to 5, Ntot “jumps”
from 18 to 15 causing an increase in sr from 0.61 to 0.67.

In Figure 2 we plot the fraction of nonnegligible blocks (1 �
sr) (with a fixed block size of approximately 50 basis functions)
against the fraction of nonnegligible elements (1 � se, where se is
the actual sparsity) for linear alkanes in a STO-3G basis. Because
the actual sparsity is the maximum sparsity that one can recover,
1 � sr is always larger than 1 � se, as can clearly be seen from
Figure 2. The actual ratio of (1 � sr) to (1 � se) is found to be
around 2 for all linear alkanes, suggesting that in every submatrix
about half of the elements are negligible.

As block size increases, the submatrices become larger. Be-
cause BLAS is better optimized for larger matrices, one would
expect to perform more floating point operations per second
(FLOPs/s). This is confirmed from Figure 3, which shows FLOPs/
sec achieved on an IBM RS/6000 375-MHz workstation capable of
performing up to four FLOPs per clock cycle. From Figure 3 it is
clear that we achieve 70–80% of machine peak performance

Figure 1. Recoverable sparsity as function of fractional block sizes.
Fractional block size is defined as the ratio of the block size (in number
of basis functions) to the total number of basis functions. This is shown
for a linear alkane (C120H242, STO-3G basis), a glycine oligomer (80
gly units, STO-3G basis), a water cluster (320 water molecules,
STO-3G basis), and linear alkane (C120H242) in a larger basis (6-
31G*).

Figure 2. Fraction of nonnegligible blocks (1 � sr) vs. fraction of
nonnegligible elements (1 � se) for a block size of approximately 50
basis functions for linear alkanes C60H122, C120H242, C150H302, and
C180H362 in a STO-3G basis.
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(1500 MFLOPs per second) with a block size of over 75 basis
functions.

From Figure 1 we realize that small blocks are needed to
recover more sparsity. However, Figure 3 shows that large blocks
are needed to approach peak efficiency of BLAS (i.e., more FLOPs
per second). We, therefore, expect to see an optimal block size that
balances these two effects. This is shown in Figure 4, where the
CPU time is plotted as a function of block size. The numbers in the
parentheses are the number of repeated F � P multiplications. The
figure suggests an optimal block size of between 40–100 basis
functions for all test systems, where we achieved about 55–75%
(825–1125 MFLOPs/s) of the machine’s peak performance.

In Figure 4 we also compare the performance of SPARSKIT31

with our blocked multiplication. Benchmark calculations are per-
formed on linear alkane C120H242 in a STO-3G basis. We note that
SPARSKIT is around 10 times slower than our multiplication
scheme. Note that part of this speedup is because element-by-
element sparsity schemes must evaluate all contributions that are
implied by the two input matrices, because testing the magnitude
of each contribution is prohibitively expensive. By contrast, with
blocking one can threshold based on the maximum elements in
each block–block product with virtually no overhead. This is an
additional advantage of using the blocking approach.

It is interesting to examine the basis set effect on the optimal
block size. Figure 5 shows that the optimal block size increases
with the size of basis set when we go from a minimal basis to any
larger basis set. However, the optimal block size does not change
a lot among the larger basis sets (3-21G and 6-31G*). This is
explained as follows. The CPU time t for a single sparse matrix
multiplication can be written as

t �
number of FLOPs

number of FLOPs per second
. (3.3)

The denominator (i.e., the number of FLOPs per second) does not
depend on the size of the basis set (see Fig. 3) for a given block
size. On the other hand, the numerator (total number of FLOPs per
matrix multiplication) strongly depends on the size of the basis set.
If Nb is the total number of basis functions, the numerator is
approximately given as:

number of FLOPs � � � Nb
3 � �1 � sr�

2, (3.4)

where � � 1 in a let-it-grow (LIG) scheme,20 and � � 1 for a
sparse matrix multiplication performed only with a distance cutoff.
The basis set dependence of the number of FLOPs can be seen in
Figure 6, where we plot the number of FLOPs for C120H242 in the
STO-3G (842 basis functions), 3-21G (1564 basis functions), and

Figure 6. Showing the number of FLOPs per sparse multiplication as
a function of block size for C120H242 at STO-3G (842 basis functions),
3-21G (1564 basis functions), and 6-31G* (2284 basis functions)
level. The number of FLOPs for 3-21G and 6-31G* are scaled by
(842/1564)3 and (842/2284)3, respectively.

Figure 3. Efficiency of BLAS subroutines (in the Engineering Scien-
tific Subroutine Library (ESSL) on IBM RS/6000) as a function of
block size. It is clear that for block sizes above 75 basis functions, we
obtain up to 70–80% of machine peak performance (1500 MFLOPs
per second).

Figure 4. CPU time (in seconds) as a function of the block size
showing an optimal block size of between 40–100 basis functions. The
numbers in parentheses represent the number of F � P multiplications.
We note that SPARSKIT takes 2470 s for 2500 F � P multiplications
(for C120H242 in a STO-3G basis) while our blocked multiplication
(with average block size of 30) takes only 230 s.

Figure 5. Showing basis-set dependence of optimal block size. The
optimal block size increases going from the mimimal basis to any
other basis. The figure also shows a similar optimal block sizes for
3-21G and 6-31G* basis sets.
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6-31G* (2284 basis functions) basis sets. The curves for 3-21G
and 6-31G* basis set are scaled by (842/1564)3 and (842/2284)3,
respectively, for the purpose of comparison. As larger basis sets
assign more basis functions to a CH2 unit, the FLOP count grows
slower with respect to block size for 3-21G and 6-31G* basis sets.
Moreover, as discussed previously, the time per FLOP is indepen-
dent of basis set size (see Fig. 3). These two factors result in a
larger optimal block size [i.e., minimum CPU time in eq. (3.3)] for
larger basis sets as shown in Figure 5.

In Table 1, we show the overall scaling for our block matrix
multiplication scheme for linear alkanes in STO-3G basis. Clearly,
the CPU time grows almost linearly with the system size between
C120H242 and C180H362.

Concluding Remarks

We have discussed a multiatom blocked sparse matrix multiplica-
tion scheme, a tool useful for developing linear-scaling methods
based on atom-centered orbitals. In this scheme large nonzero
submatrices are obtained by forming many-atom blocks. We show
that although the fraction of negligible submatrices (recoverable
sparsity) is lower than the actual elemental sparsity, we benefit
from the use of highly optimized level-3 basic linear algebra
subroutines for large matrix sizes such that total time is reduced.

By performing matrix multiplications on sample systems (lin-
ear alkanes, polyglycines, water cluster, and estane globules) with
various basis sets, the optimal block size is found to range between
40–100 basis functions. In this range we obtain 55–75% of the
machine’s peak performance. We also show that our scheme can
be 10 times faster than SPARSKIT, a package based on element-
by-element sparse matrix operations. Our calculations indicate that
the optimal block size increases from minimal basis set to any
larger basis sets. We also show that the optimal block sizes are
similar for larger basis sets. In the future, we will report the use of
this multiplication tool in our linear-scaling density functional
theory calculations.40
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Table 1. Showing the Scaling for the
Multiatom Block Matrix Multiplication Scheme.

Alkane Average block size CPU seconds

C60H122 52.75 110
C120H242 52.62 276
C150H302 52.60 360
C180H362 52.58 449

The CPU time represents time for 2500 F � P multiplications.
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