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We present a broadly applicable, physically motivated, first-principles approach to determining the

fundamental gap of finite systems from single-electron orbital energies. The approach is based on using a

range-separated hybrid functional within the generalized Kohn-Sham approach to density functional

theory. Its key element is the choice of a range-separation parameter such that Koopmans’ theorem for

both neutral and anion is obeyed as closely as possible. We demonstrate the validity, accuracy, and

advantages of this approach on first, second and third row atoms, the oligoacene family of molecules, and

a set of hydrogen-passivated silicon nanocrystals. This extends the quantitative usage of density functional

theory to an area long believed to be outside its reach.
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The Kohn-Sham (KS) [1] formulation of density func-
tional theory (DFT) [2] has become the method of choice
for ground state electronic-structure calculations across an
unusually wide variety of fields [3]. In this approach, the
interacting electron system is mapped into an equivalent
noninteracting electron system subject to a common local
external potential, in the form: [4]

�
�r2

2
þ vextðrÞ þ vHðrÞ þ vxcðrÞ

�
’iðrÞ ¼ "i’iðrÞ; (1)

where vextðrÞ is the ion-electron potential, vHð½n�; rÞ the
Hartree potential, vxcð½n�; rÞ the exchange-correlation (xc)
potential, and "i and ’iðrÞ the KS eigenvalues and orbitals,
respectively. This mapping is exact in principle, but in
practice vxcð½n�; rÞ is only known approximately.

A well-known deficiency of the KS approach is that the
gap, EKS, defined as the difference between the lowest
unoccupied and highest occupied KS eigenvalues, gener-
ally differs from the fundamental gap, Eg, defined as the

difference between the ionization potential, I, and the
electron affinity, A [5]. This is because Eg ¼ EKS þ �xc

[6], where�xc is the derivative discontinuity (DD), i.e., the
finite ‘‘jump’’ that the xc potential exhibits as the particle
number crosses the integer number of particles in the
system, N [7,8]. While in some cases �xc can be small,
extensive numerical investigations show that it is usually
sizable [9]. This would hinder the prediction of the funda-
mental gap from the KS eigenvalues of the N electron
system even if the exact form for vxcð½n�; rÞ were known.

A remedy for this deficiency may lie within the gener-
alized KS (GKS) scheme [5,10,11], in which the interact-
ing electron system is mapped into an interacting model
system that can still be represented by a single Slater
determinant. This leads to the GKS equation,

�
Ôs½f’ig� þ vextðrÞ þ vRð½n�; rÞ

�
’jðrÞ ¼ "j’jðrÞ; (2)

where Ôs½f’ig� is a nonlocal, orbital-specific operator and
vRð½n�; rÞ is a ‘‘remainder’’ local potential, which includes
all Hartree, exchange, correlation, or kinetic energy com-

ponents not accounted for by Ôs½f’ig�. As in KS theory,
this mapping is exact in principle but approximate in

practice. It is generally hoped that because Ôs½f’ig� inher-
ently exhibits a discontinuity as the particle number
crosses an integer due to partial occupation of an additional

orbital, a judicious choice of Ôs½f’ig� would greatly di-
minish the DD in vRðrÞ, making the GKS gap, EGKS, con-
siderably closer to Eg than EKS [5,10,12,13]. It is further

hoped that the nonlocal character of Ôs½f’ig� would allow
it to mimic more efficiently the role played by the self-
energy operator in many-body perturbation theory (MBPT)
calculations of quasiparticle excitation energies [14].
For solids, this hope is supported, to an extent, by

practical schemes: In the screened-exchange approach

[10,15], Ôs½f’ig� corresponds to the sum of the single-
particle kinetic energy operator, the Hartree operator, and a
Fock-like operator based on a semiclassically screened
potential. In the hybrid functional approach (which can
be viewed as a special case of the GKS scheme) [5], a
weighted mixture of local exchange and nonlocal Fock
exchange is used. In many (but not all) cases, either ap-
proach leads to meaningful improvement over the KS
scheme in the prediction of fundamental gaps [10,15,16].
For finite-sized objects (e.g., atoms, molecules, nano-

crystals), the above schemes are not useful because the
asymptotic potential, absent in a solid, plays a crucial role
in the energetics of electron addition and removal. In the
screened-exchange approach, the long-range (LR) ex-
change term is absent. In conventional hybrid functionals,
only a fixed fraction of it remains. And indeed hybrid
functional gaps for finite-sized objects are often much
smaller than the fundamental gap and arguably in far better
agreement with the first excitation energy (known as the
optical gap) [5,17].
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Range-separated hybrid (RSH) functionals are a class of
functionals, in which the exchange energy term is split into
LR and short-range (SR) terms, e.g., via r�1 ¼
r�1erfð�rÞ þ r�1erfcð�rÞ [18–20]. The SR exchange is
represented by a local potential derived from the local-
density or the generalized-gradient approximations.The
LR part is treated via an ‘‘explicit’’ or ‘‘exact’’ exchange
term. In this way, the full LR Fock exchange is obtained,
without sacrificing the description of the SR correlation.

If one assumes a system independent �, its value can be
optimized for, e.g., thermochemistry and other desired
properties of the system or the functional [19,21–23].
Specifically, Cohen et al. have shown that for such a semi-
empirical RSH functional that they constructed, called
MCY3, [23] GKS gaps for several atoms and small mole-
cules were in better agreement with experimental funda-
mental gaps, with a mean absolute error of 0.7 eV [12].

Assuming a system-independent � is only an approxi-
mation, as � is itself a functional of the electron density, n
[20,21,24]. System-specific studies showed that good pre-
diction of, e.g., the ionization potential is possible, but �
can vary substantially—from 0.3 for Li2 to 0.7 for HF orO2

(in atomic units) [21]. In particular, a constant � is prob-
lematic in the study of the quantum size effect because as
the system evolves from the molecular to the solid-state
limit, the relative importance of the LR and SR exchange
must vary. Thus, even with RSH functionals the long-
standing question of whether DFT eigenvalues can at all
be used as a broadly applicable tool for predicting funda-
mental gaps of finite-sized systems remains open.

In this Letter, we show that with the aid of a simple,
physically motivated, first-principles �-determining step,
the GKS eigenvalues of RSH functionals can be used
successfully for quantitative prediction of fundamental
gaps of finite-sized objects in general and of quantum
size effects in particular. This paves the road towards using
DFT as a practical tool in an area dominated by computa-
tionally challenging methods such as coupled cluster,
quantum Monte Carlo, or MBPT calculations.

In exact KS theory, the DFT version of Koopmans’
theorem establishes that the highest-occupied KS eigen-
value is equal and opposite to the ionization potential
[7,25]. The same is true in exact GKS theory [12]. This
implies that an optimal choice for obtaining the ionization
potential from the highest-occupied GKS eigenvalue is to
enforce Koopmans’ theorem, i.e., to find � such that

� "�H ¼ I�ðNÞ � EgsðN � 1;�Þ � EgsðN;�Þ (3)

where "�H is the highest-occupied molecular orbital
(HOMO) per a specific choice of � and I�ðNÞ is the energy
difference between the ground state energies, Egs, of the N

and the N � 1 electron system, per the same � [26]. While
this has been shown to be useful for determining ionization
potentials [27], determining the gap requires that we also
know the electron affinity. This means that we employ
Koopmans’ theorem also for I of the N þ 1 electron

system which, barring relaxation effects, is the same as
the A of the N electron system. Because there is one para-
meter but two conditions, we seek the � that minimizes the
overall deviation expressed in the target function [28,29]

Jð�Þ ¼ j"�HðNÞ þ I�ðNÞj þ j"�HðNþ 1Þ þ I�ðNþ 1Þj: (4)

Importantly, using Eq. (4) to choose the optimal �, denoted
��, does not require any empirical input and contains no
adjustable parameters. Furthermore, two figures of merit
can serve to evaluate if the result is expected to yield a
usefully accurate fundamental gap. First, Jð��Þ should be
substantially smaller than the desired accuracy. Second,
one could define a similar condition involving the lowest
unoccupied molecular orbital (LUMO) ��L [29]:

J0ð�0Þ ¼ j"�0
H ðNÞ þ I�

0 ðNÞj þ j"�0
L ðNÞ þ I�

0 ðN þ 1Þj: (5)

Unlike Eq. (4), Eq. (5) has no rigorous basis because there
is no formal equivalent to Koopmans’ theorem involving
the LUMO, owing to the DD. However, if indeed the
residual DD is small, as hoped for above, then �� should
be close to �0� and Jð��Þ should be close to J0ð�0�Þ.
To examine how well the GKS eigenvalues, obtained

from such an optimally tuned RSH functional, can predict
fundamental gaps in practice, we performed extensive
optimally tuned calculations based on the Baer,
Neuhauser, and Livshits (BNL) RSH functional, [21,30]
as implemented in version 3.2 of Q-CHEM [31].
Consider a series of atoms from the first three rows of the

periodic table. A comparison of computed and experimen-
tal gaps for these atoms is given in Fig. 1. Several observa-
tions are drawn from these results. First, the tuning
procedure, based on Eq. (4), produces consistently excel-
lent gap prediction, with a mean deviation of �0:01 eV, a
mean absolute deviation of 0.1 eV, and a maximal absolute
deviation of 0.3 eV (for P). Second, different atoms require
different range parameters (see Fig. 1): For alkali metals �
is relatively high because these atoms bear more resem-
blance to one-electron systems where Hartree-Fock theory
is exact. With the exception of Be, the general trend along a
given row in the periodic table is that higher values of the
gap require higher values of �. First row atoms require
values of � between 0.5 and 0.65, whereas second and third
row atoms require lower � values, between 0.37 and 0.47.
Third, for a given atom the gap is a very sensitive function
of the range parameter. For example, for F and O the gap
changes by as much as 8 eV when � changes from 0.3 to 1.
Fourth, the inset to Fig. 1 compares the gaps from ourBNL�
functional to those from the semiempirical, fixed-�MCY3
[12] functional. Although the latter presents a huge im-
provement over previous attempts, the optimal tuning leads
to higher accuracy and consistency. Taken together, these
four observations underline the importance and nontrivial-
ity of our first-principles tuning procedure.
To further test our approach, we studied the evolution of

the fundamental gap in two systems known to exhibit a
significant quantum size effect: the oligoacene molecules
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C2þ4nH4þ2nðn ¼ 1� 6Þ [32–35] and the hydrogen-
passivated spherical Si nanocrystals [36,37]. For both
systems, ground state properties are well described by
conventional functionals, but the fundamental gap is seri-
ously underestimated. For the oligoacenes, even gap values
obtained from total energy differences using B3LYP were
found to be smaller by an average of 0.5 eV with respect to
experiment, with a maximal deviation for hexacene that
exceeds 0.7 eV [35]. Eigenvalue-based BNL� gaps, com-
pared with experiment, are given in Fig. 2 (left). The mean
absolute deviation is 0.3 eV, with a maximal deviation of
0.5 eV. The tuned � values decrease consistently with
system size, from 0.3 to 0.19, because electron delocaliza-
tion increases with system size, rendering the necessary
weight of exact exchange smaller. Again an optimally
tuned � outdoes a fixed one.

In Fig. 2 (right) the BNL� HOMO and LUMO energies
for nanocrystaline Si systems are compared with experi-
mental [38] ionization potentials and GW-computed ion-
ization potentials and electron affinities [36]. The three
small-diameter systems do not bind an electron. The
mean deviation of the BNL� eigenvalue gaps from GW
gaps is 0.1 eV and the mean absolute deviation is 0.2 eV
with a maximal deviation of 0.45 eV. Moreover, I and A
values are very well-reproduced separately, at a fraction of
the computational cost of a GW calculation. Here too ��
decreases steadily as the size increases, and for the same
physical reason.

We note that for the molecular and nanocrystaline sys-
tems, the remaining difference between our results and the
reference values may also reflect limitations of the refer-
ence. For molecules, vertical electron affinities are hard to
come by owing to structural relaxation effects. Further-
more, GW calculations of molecules may exhibit some
deviation from experiment, especially for the electron

affinity [39]. For example, the experimental ionization
potential of Si5H12 is closer to the BNL� value than to
the GW one (deviations of �0:01 and þ0:15 eV,
respectively).
For both oligoacenes and Si nanocrystals, the tuning

procedure results in Jð��Þ and J0ð�0�Þ that are close to
zero (� 0:02 eV on average), indicating a negligible DD.
Likely, this excellent performance arises from the fact that
addition of an electron to the system does not change its
chemical nature, ergo�� for neutral and anion is similar. For
atoms, addition of a single electron does change their nature
appreciably. Coupled with the larger gaps in general, we
expect larger deviations in this case. Indeed, optimal tuning
based only on A leads to an average root mean square
deviation from experiment of 0.15 eV, but tuning according
to Eq. (4) leads to a deviation of 0.35 eV. Furthermore,
tuning based on Eq. (4) and (5) yields an average Jð��Þ or
J0ð��0Þ of 0.65 or 0.4 eV, respectively. The difference in-
dicates a non-negligible, but still small, DD. But Jð��Þ in
this case is too strict a criterion. The remaining error in I and
A is of the same sign, resulting in the excellent gaps of
Fig. 1. Thus, even in this worst-case scenario, the method
still yields quantitatively useful fundamental gaps. Partly,
this is because we mimic the ‘‘straightline between inte-
gers’’ dependence of the total energy on the electron num-
ber, expected for the exact functional [7,13]: By
construction, Eq. (3) demands that the slope approaching
N from below (given by the HOMO eigenvalue due to
Janak’s theorem) remains the same as the average slope
betweenN � 1 andN (given by the energy difference), with
an obvious generalization toN þ 1 in Eq. (4). This imposes
severe constraints on the deviation of the eigenvalues from
their correct value, even in the presence of nonlinearity.
Finally, we comment on the importance of our approach.

For finite systems, in principle one can always compute the

FIG. 1 (color online). BNL� HOMO-LUMO gaps (computed
using the aug-cc-pVTZ basis set), compared with experimental
fundamental gaps [43]. The value of �, determined by minimiz-
ing J, is indicated near each point. Inset: the deviation from
experiment of GKS HOMO-LUMO gaps based on BNL� (this
work) and MCY3 [12].

FIG. 2 (color online). Left: BNL� HOMO-LUMO gaps, com-
pared with gaps from experimental (vertical) ionization poten-
tials (IP) [32] and best estimates of vertical electron affinities
[33], for the oligoacenes C2þ4nH4þ2n, n ¼ 1 (benzene) to 6
(hexacene). The value of �, determined by minimizing J, is
indicated near each point. Right: BNL� HOMO and LUMO
energies compared to GW [36] and experimental [38] IP and
EA of hydrogen terminated Si nanocrystals, as a function of
diameter. The values of the tuned range parameter are shown in
red. In both systems the cc-pVTZ basis set was used. Geometries
were obtained from a B3LYP calculation for the oligoacenes and
from Ref. [44] for the Si nanocrystals.
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fundamental gap from the total energy of theN,N � 1, and
N þ 1 electron systems. Depending on the system and the
approximate functional, such calculations may be of insuf-
ficient accuracy, e.g., for semilocal functionals applied to
large systems [40]. But an accurate eigenvalue-based DFT
gap is also essential in other contexts. Three typical ex-
amples are: (1) The (image-charge renormalized) incorrect
DFT gap results in gross overestimations of the calculated
conductance, e.g., of single-molecule oligophenyldiami-
ne�gold junctions [41]. (2) A more accurate DFT gap
provides a much better starting point for DFT-based
MBPT calculations that yield the overall quasiparticle
spectrum [42]. (3) Accurate DFT-level prediction of the
fundamental gap is essential for accurate prediction of
optically-induced charge transfer excitations [28,29].

In conclusion, we presented a physically motivated first-
principles approach to determining the fundamental gap of
finite systems from single-electron orbital energies. It is
based on using a RSH functional within the GKS scheme,
choosing the range-separation parameter such that
Koopmans’ theorem for both neutral and anion is obeyed,
as closely as possible. We demonstrated the validity and
accuracy of this approach on first, second, and third row
atoms, oligoacenes, and hydrogen-passivated silicon nano-
crystals. This extends the quantitative usage of DFT to an
area long believed to be outside its reach.
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