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ABSTRACT: A stochastic orbital approach to the resolution of identity (RI) approximation for
4-index electron repulsion integrals (ERIs) is presented. The stochastic RI-ERIs are then applied
to second order Møller−Plesset perturbation theory (MP2) utilizing a multiple stochastic orbital
approach. The introduction of multiple stochastic orbitals results in an O(NAO

3 ) scaling for both
the stochastic RI-ERIs and stochastic RI-MP2, NAO being the number of basis functions. For a
range of water clusters we demonstrate that this method exhibits a small prefactor and observed
scalings of O(Ne

2.4) for total energies and O(Ne
3.1) for forces (Ne being the number of correlated

electrons), outperforming MP2 for clusters with as few as 21 water molecules.

■ INTRODUCTION

The vast majority of ab initio electronic structure methods
require the calculation of 4-index electron repulsion integrals
(ERIs). In fact, in some instances, when atom-centered
Gaussian basis sets are used, the calculation of these integrals
and their transformation from the atomic orbital (AO) to the
molecular orbital (MO) basis are the computational bottleneck,
e.g., second order Møller−Plesset perturbation theory (MP2).
An appreciable reduction in the computational prefactor may
be obtained through the resolution of identity (RI)
approximation, also known as the density fitting approxima-
tion.1−5 The RI approximation expresses the 4-index ERIs in
terms of 2-index and 3-index ERIs, the former being evaluated
in an auxiliary basis and the latter as a combination of the AO
and auxiliary basis sets. Since only 2- and 3-index ERIs are
needed, the RI approximation reduces the total number of
integrals to be calculated and transformed. Today it has become
common practice to apply the RI approximation to 4-index
ERIs in order to lower the computational prefactor. However,
in spite of these benefits, the assembly of the approximate ERIs
scales as O(N5), N being the number of basis functions, and
therefore the scaling remains unaltered. Recent work focused
on mitigating the high computational cost associated with the
4-index ERIs, through the application of a tensor decom-
position technique known as tensor hypercontraction,6−8 has
resulted in flexible factorization of the ERIs and reduced
scaling.
As an alternative to reduced scaling techniques focused on

the ERIs, stochastic approaches to performing traditional
electronic structure calculations have proven effective in

reducing the high computational cost.9−27 There are many
successful stochastic techniques that can handle increasingly
larger systems. We note, for example, that in certain situations
the full configuration-interaction quantum Monte Carlo
approach can handle systems with tens of electrons.9−12

Likewise, auxiliary-field Monte Carlo which replaces the two-
body interaction by an interaction with fluctuating densities and
the fixed-node approximation,28 when combined with the
shifted-contour approach29 give excellent results for systems
with tens of electrons.30 For large systems containing hundreds
or thousands of electrons several of the authors have developed
stochastic methods for DFT and TDDFT,21,26,27,31 MP2,19,24

GF2,32 GW,25,33−35 and the Bethe-Salpeter equation.25

Given the success of the RI approximation and stochastic
electronic structure methods, it is therefore conceivable that
methods that bring together the strengths of both approaches
could prove extremely beneficial. In this letter, we present a
hybrid approach, stochastic resolution of identity (sRI), that (i)
lowers the computational scaling of the RI approximation to
the 4-index ERIs and (ii) decouples pairs of indices within the
4-index ERI expression, a general feature capable of bringing
about additional method-specific reductions in scaling. We
apply the sRI approximation to the time-integrated MP2
expression and obtain an observed scaling of O(Ne

2.4), where Ne

is the number of correlated electrons.
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■ THEORY
We use the usual notation, where the occupied, virtual, and
general sets of MOs are represented by the indices i, j, k, ...; a, b,
c, ...; and p, q, r, ..., respectively. The AO Gaussian basis
functions are represented by χα(r) and Greek indices α, β, γ, δ,
..., while the auxiliary basis functions are represented by the
indices A, B, .... Finally, the total number of AO basis functions,
auxiliary basis functions, occupied MOs, and virtual MOs are
NAO, Naux, Nocc, and Nvirt, respectively. Further, both Naux and
NAO are proportional to the system size with Naux, typically 3−6
times NAO.
Deterministic Resolution of Identity. The 4-, 3-, and 2-

index ERIs are defined as
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The approximate 4-index RI-ERIs are then expressed
symmetrically in terms of the lower-rank integrals according to
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Summations over A and B (eqs 2 and 3) are usually performed
beforehand, and their contractions, Kαβ

Q and Kγδ
Q , scale as

O(NAO
2 Naux) while the construction of V−1/2 scales as O(Naux

3 ).
By expressing eq 2 in terms of Kαβ

Q and Kγδ
Q (eq 4), the

approximate ERIs now scale as O(NAO
4 Naux).

ERIs are most often used in the MO basis, and their
transformation from the AO basis is done is done in a two-step
process with both the first and the second transformations (eq
5) costing O(NAO

3 Naux).
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According to eq 4 the cost of computing the RI-ERIs scales
as O(NAO

4 Naux); however, the total number of integrals that
must be calculated grows only as O(NAO

2 Naux). Since both NAO
and Naux are dependent on the system size, the principle

advantage of the RI approximation is its ability to reduce the
total number of integrals that must be calculated and stored
while maintaining the same overall scaling.

Stochastic Resolution of Identity. The stochastic RI
approximation we develop here utilizes the same set of 2- and
3-index ERIs while introducing an additional set of Ns stochastic
orbitals, {θξ}, ξ = 1, 2, ..., Ns. The stochastic orbitals are defined
as arrays of length Naux with randomly selected elements θA

ξ =
±1. The stochastic orbitals have the following property:

θ θ⟨ ⊗ ⟩ =ξ IT
(6)

where we have denoted the stochastic average over Ns
stochastic orbitals by ⟨...⟩ξ. To better illustrate this, consider
the case where the set {θξ} contains Ns elements, where each
array θξ is of length Naux = 2. The resulting stochastic average is
then
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The individual matrix elements may be grouped as diagonal and
off-diagonal elements. The stochastic average of the diagonal
elements, ⟨θAθA⟩ξ, is 1, and the stochastic average of the off-
diagonal elements, ⟨θAθB⟩ξ, converges to 0 as Ns → ∞, due to
the random oscillations of θA

ξθB
ξ between ±1. The above

example shows that the introduction of an identity matrix can
be recast as the stochastic average over outer products of
stochastic orbitals and is the underlying principle of the
stochastic resolution of identity method.
The deterministic RI-ERIs in eq 2 are expressed symmetri-

cally in terms of the 2-index and 3-index ERI matrix elements
with the symmetric parts being coupled through a summation
over the index Q. Inserting the stochastic identity matrix, we
obtain the expression for the sRI-ERIs:
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where (⟨θ ⊗ θT⟩ξ)PQ is the PQth element of the stochastic
identity matrix. We now define the ξth elements of the
stochastic average as
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With this definition, the ERI in the AO basis (eq 8) is now
given by a stochastic average, an O(NsNAO

4 ) step:

∑αβ γδ| ≈ ≡ ⟨ ⟩
ξ
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ξ

γδ
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R R R R( )

1
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Calculation of the LA
ξ terms in eq 9 scales as O(Naux

2 Ns) while
the overall computational scaling of the Rξ matrices is
O(NsNAO

2 Naux). This is similar to the deterministic RI
components Kαβ

Q and Kγδ
Q but with an additional prefactor of Ns.

The transformation to the MO basis is given by
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and is a two-step process with both transformation steps scaling
as O(NsNAO

3 ) compared to the deterministic transformation that
costs O(NauxNAO

3 ).
The stochastic error of the elements of the identity matrix

and therefore the error of the ERIs is governed by the number
of stochastic orbitals, Ns, as can be seen from eq 7. Since it is
the length of stochastic arrays, Naux, that increases with the
system size rather than the number of stochastic orbitals, Ns is
expected to have little size dependence. We will show for a set
of water clusters that Ns remains approximately constant as a
function of system size for a fixed statistical error. Thus, the
transformation from the AO to MO basis scales as O(NAO

3 ) and
the 4-index ERI assembly as O(NAO

4 a factor of Naux/Ns less
than deterministic RI.
Stochastic Resolution of Identity MP2. As we have

stated above, in some instances the sRI approximation may lead
to an additional decrease in scaling due to the decoupling of
indices. We now demonstrate this for MP2. The MP2 energy
expression for a closed shell system may be written as

∑
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Implementing the sRI approximation we obtain a similar
expression for sRI−MP2
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Although eq 12 is an O(Nocc
2 Nvirt

2 ) step, MP2 scales as
O(NoccNAO

4 ) because of the 4-index ERI transformation, while
RI-MP2 scales as O(Nocc

2 Nvirt
2 Naux) due to the reconstruction

step in eq 4. Similarly, with the naive application of the sRI
approximation in eq 13 one sees that sRI−MP2 is expected to
scale as O(NsNocc

2 Nvirt
2 ). However, with the introduction of a

second stochastic orbital in conjunction with Almlöf’s36 time-
integrated decomposition of the energy denominator, it is
possible to reduce the overall cost to that of the R matrices (eq
9). First, the sRI−MP2 energy expression is written in terms of
two rather than one stochastic orbital denoted by ξ and ξ′ in eq
14.
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The introduction of the second stochastic orbital doubles the
number of Rξ matrices while leaving the number of elements in
the stochastic average unchanged. The use of two stochastic
orbitals is denoted by ⟨...⟩ξξ′. The modest increase in the
computational prefactor and memory requirements of sRI−
MP2 is extremely advantageous as it allows the stochastic
average to be taken over the entire sRI−MP2 energy expression
rather than individual integral pairs, decoupling indices in the
numerator. The numerator may now be rearranged in terms of
products of the form Rai

ξRai
ξ′ and Rai

ξRaj
ξ′ and the denominator

rewritten as a time integral resulting in the time-integrated
sRI−MP2 expression of eq 15.
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The quantity A(t) scales as O(NoccNvirt) and the matrix E(t) as
O(Nocc

2 Nvirt). The overall scaling for the energy expression is
O(NsNtNocc

2 Nvirt), where Nt is the number of quadrature points
and, in the case of small prefactors, Ns and Nt, becomes
O(Nocc

2 Nvirt).

■ RESULTS AND DISCUSSION
To study the observed scaling, stochastic errors, and the impact
of prefactors Ns and Nt on the sRI−MP2 method, we selected a
test set of water clusters consisting of 8, 21, 32, 52, 78, and 111
water molecules. The sRI−ERI and time-integrated sRI−MP2
routines are implemented in a development version of the
NWChem 6.6 package of computational chemistry tools.37

Deterministic MP2 calculations were performed with the
NWChem semidirect MP2 module. Dunning’s correlation
consistent basis sets of double-ζ quality, cc-pVDZ,38 were used
for all calculations, and the corresponding cc-pVDZ-RI auxiliary
basis39,40 was used in sRI−MP2 calculations. Schwartz integral
screening was applied to all ERIs. All benchmark calculations
were performed with the National Energy Research Scientific
Computing Center resource Cori, using a single Haswell
compute node and 30 computational cores.
The results are listed in Table 1, where deterministic MP2

and sRI−MP2 correlation energies per electron are given in

Table 1. MP2 and sRI−MP2 Parameters and Results for the Water Cluster Test Set (Ne, Number of Correlated Electrons; MP2
and sRI−MP2 Correlation Energies Per Electron in hartree; Error and Standard Error Per Electron in kcal/mol)

Ne NAO Naux MP2 sRI−MP2 error std error Ns

64 200 768 −0.0270 −0.0281 0.6750 0.8440 200
168 500 2016 −0.0268 −0.0261 0.3947 0.8422 200
256 800 3072 −0.0268 −0.0269 0.0577 0.6579 200
416 1300 4992 −0.0269 −0.0268 0.0426 1.0825 200
624 1950 7488 −0.0270 −0.0283 0.8304 1.1841 200
888 2775 10656 −0.0281 1.0755 200
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hartree and the error in the correlation energy per electron and
standard error of correlation energy per electron given in units
of kcal/mol. As mentioned previously the computationally
demanding step of the sRI approximation is the construction of
the Rξ matrices which scales as O(NsNAO

2 Naux), while the sRI−
MP2 energy expression is an O(NsNtNocc

2 Nvirt) step. For the
given test set 10 quadrature points were found to be sufficient
for the energy denominator decomposition. Therefore, the
observed scaling of the method is dependent on Ns remaining
small with respect to the system size while simultaneously
satisfying a standard definition of stochastic convergence. Since
the total energy of a system diverges in the thermodynamic
limit, we define convergence as a standard error in correlation
energy per electron of less than 1.5 kcal/mol per electron. (The
standard error of the total energy and the correlation energy are
equal.) The results listed in Table 1 show that Ns = 200 is
sufficient to produce standard errors below 1.5 kcal/mol per
electron for all systems within the test set.
The observed MP2 and sRI−MP2 timings per core are

plotted in Figure 1. For a system of 8 water molecules the sRI-

MP2 method is 3.5 times more expensive than the
deterministic MP2. However, for systems above 161 correlated
electrons (approximately 21 water molecules with Ne = 168)
the computational cost of sRI−MP2 drops below that of MP2
with an observed scaling of O(Ne

2.4), where Ne is the number of
correlated electrons.
If the extent of the sRI−MP2 capabilities were limited to

converging the correlation energy per electron to within a given
threshold of the deterministic results, sRI−MP2 would be of
limited utility as in most practical applications it is necessary to

accurately calculate relative energies and forces along the
potential energy surface. As an initial investigation we verify
that using a standard error of 1.5 kcal/mol per electron as a
convergence criterion leads to systematic behavior in the
standard errors of the forces as a function of system size. In the
8, 21, 32, 52, and 78 water clusters a central hydrogen-bound
pair was selected and numerical forces, with a displacement step
of 0.01 bohr, were calculated at five intermolecular distances
along the hydrogen-bond coordinate. All other degrees of
freedom were fixed in an attempt to avoid any fortuitous error
cancelation in the relative total energies.
The absolute and standard errors in the forces with Ns = 200

are listed in Table 2. The results show that the absolute errors
in the forces at each point are within the standard error and
that the standard error increases slowly with system size. Since
the scaling of sRI−MP2 depends linearly on the number of
stochastic orbitals, a modest increase in computational cost is
expected in order to achieve a constant standard error.
Recently, it has been shown that correct ab initio Langevin
dynamics may be performed with stochastic density functional
theory with the standard error in the forces being in excess of
10 (kcal/mol)/Å.41 Selecting a constant standard error of 5
(kcal/mol)/Å for the 21, 32, 52, and 78 water clusters we
obtain an observed scaling of O(Ne

3.1); see Figure 2.

To conclude, we introduced a stochastic implementation of
the resolution of identity approximation that reduced the
scaling of the deterministic AO to MO transformation from
O(NAO

5 ) (or O(NAO
4 ) for the deterministic RI approximation) to

O(NAO
3 ) and overall memory requirements to O(NAO

2 ). It was
then demonstrated that, with the introduction of an additional
stochastic orbital, the stochastic averaging may take place over

Figure 1. Observed MP2 and sRI−MP2 CPU timings per core for the
water cluster test set with Ns = 200 and a maximum standard error of
1.2 kcal/mol per electron.

Table 2. Absolute and Standard Error in sRI−MP2 Forces at Five Points along a Hydrogen-Bond Coordinate in the 8, 21, 32,
52, and 78 Water Clusters (Ne, Number of Correlated Electrons; ri, ith Hydrogen-Bond Distance; Absolute and Standard Errors
in (kcal/mol)/Å; Standard Errors in Parentheses)

Ne r1 r2 r3 r4 r5

64 0.43 (3.66) 2.17 (2.84) 1.00 (2.55) 0.17 (2.62) 1.51 (2.82)
168 4.09 (7.65) 3.76 (6.66) 2.02 (5.74) 1.27 (4.98) 1.31 (4.77)
256 5.06 (8.38) 1.27 (7.34) 0.12 (5.85) 0.71 (4.78) 0.04 (4.78)
416 7.35 (9.91) 1.62 (9.07) 1.61 (8.05) 1.27 (7.30) 0.64 (7.18)
624 1.01 (11.01) 4.39 (9.04) 3.23 (8.66) 0.47 (9.03) 3.03 (9.21)

Figure 2.MP2 and sRI−MP2 CPU timings per core for the 21, 32, 52,
and 78 water cluster test set with a constant standard error in the
forces of 5 (kcal/mol)/Å.
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more complex expressions rather than individual 4-index ERIs,
leading to a decoupling of indices. This led to the time-
integrated sRI−MP2 with a formal scaling of O(NAO

3 ). When
applied to a set of three-dimensional systems, scalings of O(Ne

2.4)
and O(Ne

3.1) were observed when maintaining a constant error
in the energy per electron and total forces, respectively. Given
that 4-index ERIs are ubiquitous in ab initio electronic structure
methods, we expect the sRI approximation to be widely
applicable and readily interfaced with other reduced scaling
techniques.
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(4) Vahtras, O.; Almlöf, J.; Feyereisen, M. W. Integral approximations
for LCAO-SCF calculations. Chem. Phys. Lett. 1993, 213, 514.
(5) Feyereisen, M.; Fitzgerald, G.; Komornicki, A. Use of
Approximate Integrals in ab initio Theory. An Application in MP2
Energy Calculations. Chem. Phys. Lett. 1993, 208, 359−363.
(6) Hohenstein, E. G.; Parrish, R. M.; Martínez, T. J. Tensor
Hypercontraction density fitting. I. Quartic scaling second- and third-
order Møller-Plesset perturbation theory. J. Chem. Phys. 2012, 137,
044103.
(7) Parrish, R. M.; Hohenstein, E. G.; Martínez, T. J.; Sherrill, C. D.
Tensor hypercontraction. II. Least-squares renormalization. J. Chem.
Phys. 2012, 137, 224106.
(8) Hohenstein, E. G.; Parrish, R. M.; Sherrill, C. D.; Martínez, T. J.
Communication: Tensor hypercontraction. III. Least-squares tensor
hypercontraction for the determination of correlated wavefunctions. J.
Chem. Phys. 2012, 137, 221101.
(9) Thom, A. J. W.; Alavi, A. Stochastic Perturbation Theory: A Low-
Scaling Approach to Correlated Electronic Energies. Phys. Rev. Lett.
2007, 99, 143001.
(10) Ohtsuka, Y.; Nagase, S. Projector Monte Carlo method based
on configuration state functions. Test applications to the H(4) system
and dissociation of LiH. Chem. Phys. Lett. 2008, 463, 431−434.

(11) Booth, G. H.; Thom, A. J. W.; Alavi, A. Fermion Monte Carlo
without fixed nodes: A game of life, death, and annihilation in Slater
determinant space. J. Chem. Phys. 2009, 131, 054106.
(12) Booth, G. H.; Alavi, A. Approaching chemical accuracy using full
configuration-interaction quantum Monte Carlo: A study of ionization
potentials. J. Chem. Phys. 2010, 132, 174104.
(13) Li Manni, G.; Smart, S. D.; Alavi, A. Combining the Complete
Active Space Self-Consistent Field Method and the Full Configuration
Interaction Quantum Monte Carlo within a Super-CI Framework,
with Application to Challenging Metal-Porphyrins. J. Chem. Theory
Comput. 2016, 12, 1245−1258.
(14) Thom, A. J. W. Stochastic Coupled Cluster Theory. Phys. Rev.
Lett. 2010, 105, 263004.
(15) Spencer, J. S.; Thom, A. J. W. Developments in stochastic
coupled cluster theory: The initiator approximation and application to
the uniform electron gas. J. Chem. Phys. 2016, 144, 084108.
(16) Willow, S. Y.; Kim, K. S.; Hirata, S. Stochastic Evaluation of
Second-Order Many-Body Perturbation Energies. J. Chem. Phys. 2012,
137, 204122.
(17) Willow, S. Y.; Kim, K. S.; Hirata, S. Stochastic evaluation of
second-order Dyson self-energies. J. Chem. Phys. 2013, 138, 164111.
(18) Willow, S. Y.; Hirata, S. Stochastic, real-space, imaginary-time
evaluation of third-order Feynman-Goldstone diagrams. J. Chem. Phys.
2014, 140, 024111.
(19) Neuhauser, D.; Rabani, E.; Baer, R. Expeditious Stochastic
Approach for MP2 Energies in Large Electronic Systems. J. Chem.
Theory Comput. 2013, 9, 24−27.
(20) Neuhauser, D.; Rabani, E.; Baer, R. Expeditious Stochastic
Calculation of Random-Phase Approximation Energies for Thousands
of Electrons in Three Dimensions. J. Phys. Chem. Lett. 2013, 4, 1172−
1176.
(21) Baer, R.; Neuhauser, D.; Rabani, E. Self-Averaging Stochastic
Kohn-Sham Density-Functional Theory. Phys. Rev. Lett. 2013, 111,
106402.
(22) Neuhauser, D.; Gao, Y.; Arntsen, C.; Karshenas, C.; Rabani, E.;
Baer, R. Breaking the Theoretical Scaling Limit for Predicting
Quasiparticle Energies: The Stochastic GW Approach. Phys. Rev.
Lett. 2014, 113, 076402.
(23) Neuhauser, D.; Baer, R.; Rabani, E. Communication: Embedded
fragment stochastic density functional theory. J. Chem. Phys. 2014, 141,
041102.
(24) Ge, Q. H.; Gao, Y.; Baer, R.; Rabani, E.; Neuhauser, D. A
Guided Stochastic Energy-Domain Formulation of the Second Order
Møller-Plesset Perturbation Theory. J. Phys. Chem. Lett. 2014, 5, 185−
189.
(25) Rabani, E.; Baer, R.; Neuhauser, D. Time-dependent stochastic
Bethe-Salpeter approach. Phys. Rev. B: Condens. Matter Mater. Phys.
2015, 91, 235302.
(26) Gao, Y.; Neuhauser, D.; Baer, R.; Rabani, E. Sublinear scaling for
time-dependent stochastic density functional theory. J. Chem. Phys.
2015, 142, 034106.
(27) Neuhauser, D.; Rabani, E.; Cytter, Y.; Baer, R. Stochastic
Optimally Tuned Range-Separated Hybrid Density Functional Theory.
J. Phys. Chem. A 2016, 120, 3071−3078.
(28) Zhang, S.; Carlson, J.; Gubernatis, J. E. Constrained Path
Quantum Monte Carlo Method for Fermion Ground States. Phys. Rev.
Lett. 1995, 74, 3652.
(29) Rom, N.; Charutz, D. M.; Neuhauser, D. Shifted-contour
auxiliary-field Monte Carlo: circumventing the sign difficulty for
electronic-structure calculations. Chem. Phys. Lett. 1997, 270, 382−
386.
(30) Shee, J.; Zhang, S.; Reichman, D. R.; Friesner, R. A. Chemical
Transformations Approaching Chemical Accuracy via Correlated
Sampling in Auxiliary-Field Quantum Monte Carlo. J. Chem. Theory
Comput. 2017, 13, 2667−2680.
(31) Neuhauser, D.; Baer, R.; Rabani, E. Embedded fragment
stochastic density functional theory. J. Chem. Phys. 2014, 141, 041102.
(32) Neuhauser, D.; Baer, R.; Zgid, D. Stochastic self-consistent
Green’s function second-order perturbation theory (sGF2). 2016,

Journal of Chemical Theory and Computation Letter

DOI: 10.1021/acs.jctc.7b00343
J. Chem. Theory Comput. 2017, 13, 4605−4610

4609

mailto:tylertakeshita@lbl.gov
mailto:wadejong@lbl.gov
mailto:dxn@chem.ucla.edu
mailto:roi.baer@huji.ac.il
mailto:eran.rabani@berkeley.edu
http://orcid.org/0000-0003-0067-2846
http://orcid.org/0000-0002-7114-8315
http://orcid.org/0000-0001-8432-1925
http://dx.doi.org/10.1021/acs.jctc.7b00343


arXiv:1603.04141. arXiv.org ePrint archive. https://arxiv.org/abs/
1603.04141.
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(35) Vlcěk, V.; Rabani, E.; Neuhauser, D.; Baer, R. Stochastic GW
calculations for molecules. 2017, arXiv:1612.08999. arXiv.org ePrint
archive. https://arxiv.org/abs/1612.08999.
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