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Monte Carlo calculation of the free 
energy of a quantum system 

I. Free energy in the Canonical Ensemble: Background 

Consider a system coupled to a heat bath which is constrained to have an average energy 

𝑈. A question arises as to how much of this energy 𝑈 can be converted into work (for 

example lifting a mass against the force of gravity. The maximal energy available for use 

as work is called the "free" energy 𝐹. In order to compute free energy from first 

principles for a physical system described by a Hamiltonian �̂� with eigenstates 𝜓𝑛 and 

eigen-energies 𝜖𝑛 we need to derive a microscopic expression for it. A quantum system 

coupled to a macroscopic heat bath does not have a well defined quantum stationary 

state. Instead, the state at any instant fluctuates. The energy of the system also fluctuates 

in a microscopic time scale. However, the nature of the bath is such that when one 

averages over the fluctuations one obtains an average energy 𝑈. Suppose that our bath is 

characterized by this imposed 𝑈. We want to build a theory for a fluctuating system with 

fluctuations averaging to 𝑈. Let us think of large number 𝑁 of replicas of the microscopic 

system. Each replica is in a well-defined quantum state. This is called an ensemble. The 

𝑁 replicas of the ensemble have a given total energy 𝐸 = 𝑈𝑁. Now we ask: under this 

constraint, how many systems 𝑛𝑛 are in state 𝜖𝑛? If we can answer this, we will be able 

to claim that 𝑝𝑛 =
𝑛𝑛

𝑁
 is the probability of finding the physical system in state 𝑛.  

First, what are the constraints on 𝑛𝑛? Obviously: 

∑ 𝑛𝑛

𝑛

= 𝑁 

∑ 𝑛𝑛𝜖𝑛

𝑛

= 𝐸 = 𝑈𝑁 

(0.1)  
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Now, since we have no information on the coupling to the bath or on any detail, we can 

assume that the distribution 𝑛𝑛 is just that distribution that can be realized the largest 

number of times. A given distribution 𝑛𝑛 can be realized in  

Ω[{𝑛𝑛}] =
𝑁!

𝑛1! 𝑛2! …
 (0.2)  

ways. We search for 𝑛𝑛
∗ , the distribution that, subject to constraints (0.1) maximizes Ω. 

This is equivalent to maximizing ln Ω (since ln(𝑥) is a monotonically increasing 

function) which, using Stirling’s formula ln 𝑛! ≈ 𝑛 ln 𝑛 − 𝑛, can be expressed as: 

ln Ω = 𝑁(ln 𝑁 − 1) − ∑ 𝑛𝑛(ln 𝑛𝑛 − 1)

𝑛

  (0.3)  

The constraints can be accounted for by 2 Lagrange multipliers 𝛼 and 𝛽. We subtract 

from ln Ω the first constraint as 𝛼(∑ 𝑛𝑛𝑛 − 𝑁) and the second as 𝛽(∑ 𝑛𝑛𝑛 𝜖𝑛 − 𝐸). This 

leads to an “unconstrained” minimization of the following Lagrangian: 

𝐿[{𝑛𝑛}] = − ∑ 𝑛𝑛(ln 𝑛𝑛 − 1 + 𝛼 + 𝛽𝜖𝑛)

𝑛

 (0.4)  

The stationary point 𝑛∗ is characterized by zero variation: 

0 = 𝛿 ln Ω = − ∑(ln 𝑛𝑛
∗ + 𝛼 + 𝛽𝜖𝑛)𝛿𝑛𝑛

𝑛

 (0.5)  

Since the 𝛿𝑛𝑛 are now formally unconstrained, we find that each of the coefficients of 

𝛿𝑛𝑛must separately be zero, so: 

ln 𝑛𝑛
∗ = −𝛼 − 𝛽𝜖𝑛 → 𝑛𝑛

∗ = 𝑒−𝛽𝜖𝑛−𝛼 (0.6)  

Applying the constraints themselves we can implicitly determine 𝛼 and 𝛽: 

𝑁 = ∑ 𝑛𝑛
∗

𝑛

= 𝑒−𝛼 ∑ 𝑒−𝛽𝜖𝑛

𝑛

 

𝑈𝑁 = 𝑒−𝛼 ∑ 𝜖𝑛𝑒−𝛽𝜖𝑛

𝑛

 

(0.7)  

We find that the optimal probability distribution is: 



Lecture notes in theoretical-computational chemistry 

Professor Roi Baer 

 

© All rights reserved to Roi Baer. Email: roi.baer@huji.ac.il 

 

3 

𝑝𝑛 =
𝑛𝑛

∗

𝑁
=

𝑒−𝛽𝜖𝑛

𝑍
 (0.8)  

This is the Boltzmann distribution. From normalization: 

𝑍 = ∑ 𝑒−𝛽𝜖𝑛

𝑛

 (0.9)  

Is called the partition function. Note it is dependent only on the parameter 𝛽. Thus we 

can think of our system, coupled to the heat bath as being controlled by 𝛽. The Lagrange 

multiplier 𝛽 is directly related to the temperate of the system via the identification: 

𝑇 =
1

𝑘𝐵𝛽
 (0.10)  

Thus our heat bath is characterized by the temperature. Note that in terms of 𝑝𝑛 we have 

for the maximal number of realization: 

ln Ω∗ = 𝑁(ln 𝑁 − 1) − ∑ 𝑛𝑛
∗ (ln 𝑛𝑛

∗ − 1)

𝑛

= 𝑁(ln 𝑁 − 1) − ∑ 𝑁𝑝𝑛(ln 𝑁𝑝𝑛 − 1)

𝑛

= 𝑁(ln 𝑁 − 1) − ∑ 𝑁𝑝𝑛(ln 𝑝𝑛 + ln 𝑁 − 1)

𝑛

= −𝑁 ∑ 𝑝𝑛 ln 𝑝𝑛

𝑛

 

(0.11)  

The equilibrium properties of the system are determined by 𝛽 and this is done via the 

partition function. For example, the average energy of a system in the ensemble of 𝑁 

systems: 

𝑈 =
𝐸

𝑁
= ∑ 𝑝𝑛𝜖𝑛

𝑛

=
1

𝑍
∑ 𝑒−𝛽𝜖𝑛𝜖𝑛

𝑛

=
1

𝑍
(−

𝜕

𝜕𝛽
∑ 𝑒−𝛽𝜖𝑛

𝑛

) = −
𝜕 ln 𝑍

𝜕𝛽
 (0.12)  

In thermodynamics the concept of entropy exists as a state function which is maximal 

under constraints. This prompted Boltzmann to postulate that the entropy of a system in 

the ensemble of 𝑁 systems is defined as log the number of realizations of the most 

probable state 
𝑘𝐵 ln Ω∗

𝑁
: 

𝑆 =
𝑘𝐵 ln Ω∗

𝑁
= −𝑘𝐵 ∑ 𝑝𝑛 ln 𝑝𝑛

𝑛

= −𝑘𝐵

1

𝑍
∑ 𝑒−𝛽𝜖𝑛(−𝛽𝜖𝑛 − ln 𝑍)

𝑛

= 𝑘𝐵𝛽𝑈 + 𝑘𝐵 ln 𝑍 

(0.13)  
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Indeed, multiplying (0.13) by 𝑇 = (𝑘𝐵𝛽)−1 we obtain: 

𝑈 − 𝑇𝑆 = −𝛽−1 ln 𝑍 (0.14)  

Let us denote the left hand side by and energy function 𝐹. Suppose we want to extract 

work from the bath through the use of the quantum system. When we attach the system to 

a device for doing work, it's Hamiltonian becomes dependent on a parameter (the height 

of the weight). So as the weight is pulled up,  the Hamiltonian changes, so it's partition 

function changes. The process of doing work (the change in the height) is done very 

slowly so that the bath has time to equilibrate the system. Such a process is called 

adiabatic or reversible. The temperature of the bath, which is too big to be affected, 

remains constant. Thus, in this process, the internal energy of the system changes by Δ𝑈 

and the internal entropy by Δ𝑆. This change in entropy of the system signifies that heat 

𝑄 = 𝑇Δ𝑆 was transferred from the bath to the system. The work done is then 𝑊 = Δ𝑈 −

𝑄 (by the first law) which means that 𝑊 = Δ𝑈 − 𝑇Δ𝑆. Thus we see that the work done 

by a system as it is connected to a heat bath is simply Δ𝐹 for this process. We see that 

𝐹 = 𝑈 − 𝑇𝑆 is the free energy for processes which preserve the temperature. Thus, the 

partition function, a microscopic quantity, is directly related to the free energy, a 

thermodynamic property: 

𝐹 = −𝛽−1 ln 𝑍 (0.15)  

We see from the above that: 

𝑈 =
𝜕𝛽𝐹

𝜕𝛽
= −𝑇2

𝜕𝐹/𝑇

𝜕𝑇
= 𝐹 − 𝑇

𝜕𝐹

𝜕𝑇
 (0.16)  

And the entropy is: 

𝑆 =
1

𝑇
(𝑈 − 𝐹) = −

𝜕𝐹

𝜕𝑇
 (0.17)  

We have thus formed a microscopic theory enabling the computation of the free energy 𝐹 

and from it all properties are derived. For example the change in internal energy when the 

temperature is changes: 
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𝐶 =
𝜕𝑈

𝜕𝑇
 (0.18)  

This is in fact the “heat capacity”. To see this, we not that from Eq. (0.16) and Eq. (0.17): 

𝐶 = −𝑇
𝜕2𝐹

𝜕𝑇2
= 𝑇

𝜕𝑆

𝜕𝑇
 (0.19)  

The change in entropy 𝑑𝑆 between two thermodynamic states of the system is the ratio of 

the reversible change of heat 𝑑𝑄 to the temperature 𝑇: 

𝑑𝑄 = 𝑇𝑑𝑆 (0.20)  

So: 

𝐶 =
𝜕𝑄

𝜕𝑇
 (0.21)  

Hence the name “heat capacity”. 

II. Computing the Partition Function 

We saw that the free energy of a quantum system can determine its equilibrium properties 

when coupled to a bath of temperature 𝑇 = (𝑘𝐵𝛽)−1. The free energy is given by Eq. 

(0.15)  is computable once we have the partition function 𝑍(𝛽). This can be written as: 

𝑍(𝛽)  = 𝑡𝑟[𝑒−𝛽�̂�] (0.22)  

Where the trace is realized given any complete basis having 𝑀 orthonormal 𝜓𝑚 

functions: 

𝑍 = ∑ ⟨𝜓𝑚|𝑒−𝛽�̂�|𝜓𝑚⟩

𝑀

𝑚=1

 (0.23)  

With: 

⟨𝜓𝑚|𝜓𝑚′⟩ = 𝛿𝑚𝑚′ (0.24)  

We assume, in an actual computation that: 

�̂� = −
ℏ2

2𝑀
∇2 + 𝑉(𝒓) (0.25)  
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If we use a grid to implement the system for a computer the Laplacian can be taken as: 

𝜓 → 𝜓𝑛 = 𝜓(𝒓𝑛)          ∇2𝜓(𝒓𝑛) → (𝐿ℎ𝜓)
𝑛

 (0.26)  

Where 𝐿ℎ is a finite difference formula and thus a very sparse matrix. For example, in 

2D: 

(𝐿ℎ𝜓)
𝑛,𝑚

=
𝜓(𝑛+1),𝑚 + 𝜓(𝑛−1),𝑚 − 2𝜓𝑛𝑚 + 𝜓𝑛,(𝑚+1) + 𝜓𝑛,(𝑚−1)

ℎ2
 (0.27)  

In order to compute the operation of and exponent of an operator on a function suppose 

we use the following scheme: 

𝑒−𝛽�̂�𝜓 = lim
N→∞

(1 −
𝛽�̂�

𝑁
)

𝑁

𝜓 (0.28)  

Thus, for a very large 𝑁, once we select N we can apply the operator (1 −
𝛽�̂�

𝑁
) to 𝜓 𝑁 

times. In a typical problem the number of grid-points can reach 𝑀 = 106 while 𝑁 ≈ 104. 

The operation of 𝑒−𝛽�̂� on a 𝜓 costs 𝑀𝑁 ≈ 1010 operations, quite doable on a computer. 

But for the trace one needs 𝑀 functions, so the evaluation of the trace incurs 𝑀2𝑁 ≈ 𝑁16 

operations, which is very expensive. (Note: below we describe a stable method and 

accurate method for the calculation of 𝑒−𝛽�̂�𝜓. However, it will scale similarly to the 

above estimate). 

Can this large effort be reduced? 

We can evaluate the trace using a Monte Carlo procedure. We give up (hopefully) a small 

amount of accuracy while reducing the computational load significantly. Let us define a 

“random” wave function: 

𝜒 = ∑ 𝑂𝑚𝜓𝑚

𝑀

𝑚=1

 (0.29)  

The numbers 𝑂𝑚 are either 1 or -1 taken at random. For each random determination of 𝜒 

we compute ⟨𝜒|𝑒−𝛽�̂�|𝜒⟩. We the average over the 𝑂’s. This means we generate 𝐼 random 
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𝜒′𝑠, call each 𝜒𝑖 and calculate the expectation value for each then sum them all up and 

divided by 𝐼: 

⟨⟨𝜒|𝑒−𝛽�̂�|𝜒⟩⟩
𝑂

≡ lim
I→∞

1

𝐼
∑⟨𝜒𝑖|𝑒−𝛽�̂�|𝜒𝑖⟩

𝐼

𝑖=1

≈
1

𝐼
∑⟨𝜒𝑖|𝑒−𝛽�̂�|𝜒𝑖⟩

𝐼

𝑖=1

 (0.30)  

For this type of averaging: 

⟨⟨𝜒|𝑒−𝛽�̂�|𝜒⟩⟩
𝑂

= ⟨ ∑ 𝑂𝑚𝑂𝑚′⟨𝜓𝑚|𝑒−𝛽�̂�|𝜓𝑚′⟩

𝑀

𝑚,𝑚′=1

⟩

𝑂

= ∑ ⟨𝑂𝑚𝑂𝑚′⟩𝑂⟨𝜓𝑚|𝑒−𝛽�̂�|𝜓𝑚′⟩

𝑀

𝑚,𝑚′=1

 

(0.31)  

But since 𝑂𝑚 are random and are not correlated with 𝑂𝑚′ we have, for 𝑚 ≠ 𝑚′: 

⟨𝑂𝑚𝑂𝑚′⟩𝑂 = ⟨𝑂𝑚⟩𝑂⟨𝑂𝑚′⟩𝑂 = 0 (0.32)  

On the other hand ⟨𝑂𝑚𝑂𝑚⟩𝑂 = ⟨1⟩𝑂 = 1. Thus: 

⟨𝑂𝑚𝑂𝑚′⟩𝑂 = 𝛿𝑚𝑚′ (0.33)  

From this we find: 

⟨⟨𝜒|𝑒−𝛽�̂�|𝜒⟩⟩
𝑂

= ∑ ⟨𝜓𝑚|𝑒−𝛽�̂�|𝜓𝑚⟩

𝑀

𝑚=1

= 𝑡𝑟[𝑒−𝛽�̂�] (0.34)  

We approximate ⟨⟨𝜒|𝑒−𝛽�̂�|𝜒⟩⟩
𝑂

≈
1

𝐼
∑ ⟨𝜒𝑖|𝑒−𝛽�̂�|𝜒𝑖⟩

𝐼
𝑖=1  (i.e. do not take the limit 𝐼 → ∞) 

and hope that 𝐼 ≪ 𝑀 gives an estimate of the trace to good accuracy. If we are willing to 

give up some accuracy, we may gain a large factor in the trace calculation. 

How many iterations must we make in order to improve an estimate? Here we can use the 

the central limit theorem of statistics which shows that process of averaging 𝐼 samples 

from a distribution of mean 𝜇 and variance 𝜎2 gives a random number which is 

distributed as a normal distribution with mean 𝜇 and variance 
𝜎2

𝐼
. Thus, in order to reduce 

the statistical error by a factor 10, one must increase 𝐼 by a factor 100. 
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III.  Newton interpolation 

The computation of a function of a matrix can be done in several ways. We will learn a 

neat way, called the Newton method. 

Before we refer to Newton, let us study the concept of interpolation. Suppose we have a 

function 𝑓(𝑥) which is very difficult to compute. Thus we spend time on computing it for 

a finite, say 𝑁 + 1 number of points 𝑥0 < 𝑥1 … < 𝑋𝑁. We find 𝑦𝑖 = 𝑓(𝑥𝑖). Now we want 

an approximation for any 𝑥0 < 𝑥 < 𝑥𝑁. One way of doing this is to use a polynomial. 

There is one and only one polynomial of degree  at most 𝑁 𝑝𝑁(𝑥) = 𝑎0 + 𝑎1𝑥 + ⋯ +

𝑎𝑁𝑥𝑁 which obeys 𝑝𝑁(𝑥𝑖) = 𝑦𝑖.  

Lagrange wrote this polynomial as follows: 

𝑝𝑁(𝑥) = ∑ 𝑙𝑛(𝑥)𝑦𝑛

𝑁

𝑛=0

 

Where 𝑙𝑛(𝑥) are polynomials having the property: 

𝑙𝑛(𝑥𝑚) = 𝛿𝑛𝑚 

These polynomials are easily guessed: 

𝑙𝑛(𝑥) = ∏
𝑥 − 𝑥𝑚

𝑥𝑛 − 𝑥𝑚

𝑁

𝑚≠𝑛

 

Example: the parabola going through (0,2), (1, −1), (2,1) is: 

𝑝2(𝑥) = 2 ×
(𝑥 − 1)(𝑥 − 2)

(0 − 1)(0 − 2)
− 1 ×

(𝑥 − 0)(𝑥 − 2)

(1 − 0)(1 − 2)
+ 1 ×

(𝑥 − 0)(𝑥 − 1)

(2 − 0)(2 − 1)

= (𝑥 − 1)(𝑥 − 2) + 𝑥(𝑥 − 2) +
1

2
𝑥(𝑥 − 1) 

The interpolation polynomial goes through the interpolating points. A more convenient 

formula is due to Newton. 

Suppose 𝑝𝑁(𝑥) is the interpolation polynomial for 𝑥0, … , 𝑥𝑁 and 𝑝𝑁−1(𝑥) that for 

𝑥0, … , 𝑥𝑁−1. Then,  
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𝑝𝑁(𝑥) − 𝑝𝑁−1(𝑥) = 𝐶(𝑥) 

And 𝐶(𝑥) is a polynomial of degree 𝑁. We also have 

𝐶(𝑥𝑖) = 0, 𝑖 = 0, … , 𝑁 − 1 

Thus: 

𝐶(𝑥) = 𝑎𝑁(𝑥 − 𝑥0) × … × (𝑥 − 𝑥𝑁−1) 

For the last point (𝑥𝑁, 𝑦𝑁) we have: 

𝑦𝑁 = 𝑝𝑁(𝑥𝑁) = 𝑝𝑁−1(𝑥𝑁) + 𝑎𝑁(𝑥𝑁 − 𝑥0) × … × (𝑥𝑁 − 𝑥𝑁−1) 

So that: 

𝑎𝑁 =
𝑦𝑁 − 𝑝𝑁−1(𝑥𝑁)

(𝑥𝑁 − 𝑥0) × … × (𝑥𝑁 − 𝑥𝑁−1)
 

We thus see a way to build the next polynomial from the previous one: 

𝑝𝑁(𝑥) = 𝑝𝑁−1(𝑥) +
𝑦𝑁 − 𝑝𝑁−1(𝑥𝑁)

(𝑥𝑁 − 𝑥0) × … × (𝑥𝑁 − 𝑥𝑁−1)
(𝑥 − 𝑥0) × … × (𝑥 − 𝑥𝑁−1) 

This is a nice approach because it seems we can add points and “update” the polynomial 

as we go along.  

The formula is: 

𝑓(𝑥) ≈ 𝑝𝑛(𝑥) = 𝑎0 + 𝑎1(𝑥 − 𝑥0) + 𝑎2(𝑥 − 𝑥0)(𝑥 − 𝑥1) + ⋯ 𝑎𝑛(𝑥 − 𝑥0) ⋯ (𝑥 − 𝑥𝑛−1) 

While Newton’s method looks beautiful, it turned out that to be very unstable for a large 

sequence of points. However, one can overcome this if one chooses the points in a certain 

order. This order makes it stable.  

The stable ordering was investigated by Leja and others (see references below). If the 

variable 𝑥 is in the interval [𝑎, 𝑏] then one can redfine 

𝑓(𝑥) = 𝐹(𝑠) 
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Where 𝑠 = 4
(𝑥−

𝑎+𝑏

2
)

𝑏−𝑎
 is in [−2, … ,2] and expand 𝐹(𝑠) in the interval. The Leja points in 

this [−2, … ,2] can be obtained from a Mathtype program given in the appendix of the 

paper of Reichel (3). 

The material on Newton interpolation was based on: 

1) R. Kosloff, "Propagation Methods for Quantum Molecular-Dynamics", Ann. Rev. Phys. 
Chem. 45, 145-178 (1994). 

2) L. Reichel, "Newton interpolation at Leja points", BIT 30, 332-346 (1990). 
3) J. Baglama, D. Calvetti and L. Reichel, “Fast Leja Points”,  Electronic Transactions of 

Numerical Analysis, Vol. 7, p. 124-140 (1998) (download from: 
http://etna.mcs.kent.edu/volumes/1993-2000/vol7/abstract.php?vol=7&pages=124-
140. A java applet for the leja points is also given (up to 500 points in [-2,2]). 

 

IV. Computing the Function of an operator of a sparse  

matrix 

Suppose we want to compute the operation of a function of an operator �̂� on a wave 

function: 

𝜓 = 𝑓(�̂�)𝜙 

We define a shifted –scaled Hamiltonian, using the maximal and minimal eigenvalues. 

�̂�𝑆 = 4
(�̂� −

𝐸𝑚𝑖𝑛 + 𝐸𝑚𝑎𝑥

2 )

𝐸𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛
 

We use the Newton expansion of the function 𝐹(𝑠) in the interval [−2,2]. Then 

𝜓 = ∑ 𝑎𝑚𝜓𝑚

𝑁

𝑚=0

 

Where 

𝜓0 = 𝜙0 

𝜓𝑚 = (�̂�𝑆 − 𝑥𝑚−1)𝜓𝑚−1 

http://etna.mcs.kent.edu/volumes/1993-2000/vol7/abstract.php?vol=7&pages=124-140
http://etna.mcs.kent.edu/volumes/1993-2000/vol7/abstract.php?vol=7&pages=124-140
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(note that we do not need to store any of the 𝜓𝑚, except that which is currently being 

used). 

 


