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We introduce the concept of sparse stochastic compression, an efficient stochastic sampling of any general
function. The technique uses sparse stochastic orbitals (SSOs), short vectors that sample a small number of space
points. As a first demonstration, SSOs are applied in conjunction with simple direct projection to accelerate our
recent stochastic GW technique; the new developments enable accurate prediction of G0W0 quasiparticle energies
and gaps for systems with up to Ne > 10, 000 electrons, with small statistical errors of ±0.05 eV and using less
than 2000 core CPU hours. Overall, stochastic GW scales now linearly (and often sublinearly) with Ne.
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I. INTRODUCTION

Fundamental band gaps and quasiparticle (QP) energies
determine the electronic properties of molecules and solids,
but their first principles calculations are nontrivial. Density
functional theory (DFT) [1] is usually used for ground state
charge densities and atomic geometries, but gives wrong
QP energies [2–4]. Going beyond DFT is computationally
demanding. For small molecules, configuration interaction
[5–7] and the equation of motion coupled cluster technique
[8–10] yield accurate QP energies, but scale very steeply with
the number of electrons.

In recent years, the GW approximation [4,7,11] became
the predominant framework for QP calculations. The method
describes all many-body effects through the single-particle
self-energy, approximated as � = GW , where G is the single
particle Green’s function and W is the screened Coulomb
interaction. GW provides accurate ionization energies and
electron affinities for both molecules and solids, at a steep
scaling [12–18]. Most computational improvements focus
on reducing the prefactor rather than lowering the overall
scaling [14,17].

We recently introduced a stochastic formulation of GW [19]
that expresses the self-energy as a statistical quantity, aver-
aged over random samplings. The spirit behind the stochas-
tic paradigm is that quasiparticles (electrons and holes) are
viewed, whenever possible, as being in time-dependent states
that are a random combination of occupied (or unoccupied)
states. All quantities, such as the Green’s function and the
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effective interaction, are expressed, in one form or another,
in terms of such evolving random combinations. There is
an elegance in this viewpoint, in that physically one should
not need to know the detailed eigenstates for large systems.
The resulting stochastic GW method reproduces the results
of deterministic GW [20] but is very fast so it is appli-
cable to large systems with thousands of valence electrons
[19,21,22].

Here, two major improvements of stochastic GW are
introduced, and together they enable routine calculations of
QP energies for systems with Ne > 10, 000. The first is simple
and technical, a direct projection of the occupied states (which
formally increases the scaling of the method with system size
but in practice reduces the effort below hundreds of thousands
of electrons).

The second improvement is more fundamental, and relates
to a general feature of the stochastic method, a representation
of functions by a random basis set. Originally, we used a
stochastic resolution of the identity, SRI, but it turns out that
for large systems the required number of stochastic basis
functions grows with the number of electrons, destroying
the overall linear scaling for large systems. To circumvent
this, we develop a new approach based on sparse vectors,
which we label as sparse stochastic resolution of the identity
(SSRI); the method does not lower the accuracy but is much
cheaper, thereby enabling the treatment of very large systems
with Ne > 10, 000. SSRI has potentially a large number of
applications, and we use stochastic GW here to demonstrate
its efficiency.

With direct projection and SSRI, stochastic GW is efficient
and scales very gently. The overall method, as reviewed here,
is fundamentally quite simple—once one accepts the concept
of evolving random states as the basic tool, the formulation
is quite transparent. The method is demonstrated here first for
finite molecules (acenes and C60 molecules); in addition we
apply for the first time stochastic GW for periodic systems
with very large supercells.
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The paper is organized as follows: Deterministic GW is
reviewed in Sec. II. In Sec. III we qualitatively overview the
ingredients in stochastic GW . Section IV details (following
Refs. [19,20]) how the stochastic expansion of G converts GW

into the action of W on a source term. Section V reviews
the use of linear response with deterministic or stochastic
TDH (time-dependent Hartree) for acting with WR, the causal
(retarded) effective interaction. In Sec. VI sparse orbitals are
introduced and used to convert the application of WR to
W . Results for molecules and solids are shown in Sec. VII,
followed by conclusions in Sec. VIII.

II. GW METHOD

We first outline deterministic GW . The starting point is a
specific real-valued KS (Kohn-Sham) orbital φ (typically the
HOMO or LUMO) and associated eigenvalue εKS that fulfill
H0φ = εKSφ. Here the KS-DFT Hamiltonian is (using atomic
units and treating closed-shell systems)

H0 = − 1
2∇2 + vnuc[n0] + vH[n0] + vxc[n0],

and we introduced the ground state density, n0(r), and the
nuclear and exchange-correlation potentials, while the Hartree
potential is vH[n](r) = ∫

ν(r, r′)n(r′)dr′ with ν(r, r′) = |r −
r′|−1. In the diagonal approximation, the associated QP energy
fulfills [4]

εQP = εKS + 〈φ|X + �(ω = εQP ) − vxc|φ〉, (1)

where X is the Fock exchange operator and � refers throughout
to the polarization self-energy.

The frequency-resolved matrix element of the polariza-
tion self-energy is obtained from the time-dependent form,
〈φ|�(ω)|φ〉 ≡ ∫ 〈φ|�(t )|φ〉e− 1

2 γ 2t2
eiωtdt , where γ is an en-

ergy broadening term for converging the time integration [23].
The required polarization self-energy �(t ) has a very simple
direct product form in the GW approximation [4]:

�(r, r′, t ) = iG(r, r′, t )W (r, r′, t ), (2)

where G is the Green’s function (detailed below) and W the
effective polarization interaction. We use here the one-shot
G0W0 approximation, but omit the zero subscript throughout,
as well as the P (polarization) subscript on � and W . Despite
its elegance, it is expensive to directly calculate 〈φ|�(t )|φ〉
using Eq. (2) and the first goal of stochastic GW is to convert
the direct product to an initial value expression as detailed
below.

III. STOCHASTIC PARADIGM FOR GW :
GENERAL DISCUSSION

A. Overview

The general deterministic expression, as reviewed above,
involves three main steps, i.e., the evaluation of two matri-
ces (or formally operators)—the Green’s function and the
polarization interaction, and the conversion of the causal
(retarded) polarization interaction WR (discussed later) to the
time-ordered one W .

In deterministic GW the last step is trivial but the first
two are quite expensive since they involve the construction
of frequency dependent matrices so the overall method scales

practically as O(N3
e ) − O(N4

e ) with a large prefactor related
to the number of frequencies needed, the grid size needed to
represent the basis functions, etc.

The stochastic paradigm views GW quite differently. In
essence, it converts operators into correlation functions. Thus
the Green’s function is replaced, as proved later, by a corre-
lation function between a random function at time zero and
an evolved random function at a later time. This paradigm
is quite intuitive, in that physically, for large systems, the
dynamics is fast so one should not be required to know the
detailed energy resolved eigenstates over the whole occupied
and unoccupied manifold for getting the correction to the
HOMO/LUMO states.

For W , the stochastic paradigm plays out in an even more
interesting fashion. In the usual deterministic paradigm it is
well known that the action of the retarded effective action
WR is evaluated most efficiently by perturbing the sea of
occupied states and letting all the perturbed occupied states
evolve in time. For large systems, therefore, a large number
of propagations is needed. But in the stochastic paradigm
one takes just a few random combinations of all these states
and propagates them. For example, a system with 10,000
electrons would typically be represented by only about eight
[sic] random combinations of occupied states that are propa-
gated; conceptually; think of each of these states as carrying
about one-eighth of the total electronic charge, i.e., as if they
represent an artificial “particle” with a charge of ≈1250e−. It is
almost counterintuitive that such a simplification would work,
but as we have tested it works better and better as the system
gets larger, due to self-averaging. Heuristically, the response of
W is collective, plasmonlike, and the stochastic method excels
at describing such collective properties.

In addition to the stochastic resolution of the G and WR, the
stochastic paradigm plays out in the conversion from the action
of WR to that of W . The required procedure, detailed later,
could be done directly but would then require many terabytes of
storage. To circumvent it, we have used what could be labeled
as stochastic compression—i.e., spanning the detailed space-
dependent function by stochastic vectors. Here we improve the
method by developing sparse stochastic compression, where
each stochastic function is defined over only a small number of
space points. Here also a counterintuitive point emerges—the
quality of the stochastic compression is independent of the
size of each sparse vector. Therefore, a large number of very
sparse vectors can be used—with little numerical effort (as
each vector involves only a small number of grid points) but
with high fidelity (due to the large number of such vectors).

In the remainder of the section we outline the basic premise
of the stochastic technique, the stochastic resolution of identity
(SRI); in the following sections SRI is used to develop the
different ingredients in stochastic GW .

B. Stochastic resolution of identity

Our starting point is a set of random functions on a grid, each
labeled ζ̄ (r). The simplest choice is real discrete stochastic
functions that have a random sign at each point:

ζ̄ (r) = ±(dV )−
1
2
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(dV is the grid volume element). The stochastic functions
fulfill {ζ̄ (r)ζ̄ (r′)} = (dV )−1δr,r′ , where δr,r′ is a Kronecker
delta and the {· · · } refers to a statistical average over all
stochastic functions. This implies a resolution of the identity
relation, I = {|ζ̄ 〉〈ζ̄ |}. In practice we need to use a finite
number (labeled Nζ̄ ) of stochastic functions and the resolution
becomes approximate

I 	 1

Nζ̄

∑
ζ̄

|ζ̄ 〉〈ζ̄ |. (3)

IV. STOCHASTIC PARADIGM FOR RESOLVING G

In this section we review the use of the general stochastic
paradigm for the first part of the GW formalism, i.e., a
stochastic representation of the zero-order Green’s function.
As we show below the Green’s function becomes a stochastic
average correlation function, whereby a random vector is
correlated to the same vector when projected to the occupied
(or unoccupied) space and propagated in time.

A. Separable expression for the Green’s function

It is easy to show that the Kohn-Sham Green’s
function is given by the operator form iG(t ) =
e−iH0t [(I − P )θ (t ) − Pθ (−t )], where the projection operator
to the Nocc occupied states is P = ∑

n�Nocc
|φn〉〈φn|. To make

a separable form, multiply iG(t ) by Eq. (3), leading to

iG(r, r′, t ) 	 1

Nζ̄

∑
ζ̄

ζ (r, t )ζ̄ (r′), (4)

where |ζ (t )〉 ≡ iG(t )|ζ̄ 〉. Equation (4) is the main ingredient
of stochastic GW , reformulating the Green’s function as a sum
over separable terms.

To evaluate |ζ (t )〉, start with the negative-time Green’s
function which is a propagator of the occupied states, iG(t <

0) = −e−iH0tP, so

|ζ (t < 0)〉 = −e−iH0t |ζ v〉, (5)

where we define a stochastic occupied (valence) state |ζ v〉 =
P|ζ̄ 〉. Similarly for positive times the Green’s function is the
propagator of unoccupied (conduction) states, iG(t > 0) =
e−iH0t (I − P ), so

|ζ (t > 0)〉 = e−iH0t |ζ c〉, (6)

where |ζ c〉 = (I − P )|ζ̄ 〉 = |ζ̄ − ζ v〉.

B. Projective filtering

The next stage is therefore to calculate P|ζ̄ 〉. Previously we
used Chebyshev filtering which scales linearly with system
size, but with a large prefactor. Therefore, as long as the
occupied states are available (i.e., for systems with up to tens
of thousands of electrons) it is faster to use projective filtering,
i.e.,

ζ v (r) = 〈r|P ζ̄ 〉 =
∑

n�Nocc

φn(r)〈φn|ζ̄ 〉. (7)

The cost of Eq. (7) is the number of occupied states (Nocc) times
the number of grid point (Ng) times the number of stochastic

functions (Nζ̄ ). The first two factors are proportional to the
system size; however, as we show later, for a given accuracy,
the number of required stochastic states decreases (or at least
does not increase) with system size. Therefore, the scaling of
Eq. (7) is at most O(N2), and even that part has a small prefactor
so the dominant scaling is quasilinear, as detailed below.

Once ζ v (r) is prepared, the time-dependent orbitals of
Eqs. (5) and (6) are evaluated by a Trotter (split-operator) prop-
agation, |ζ (t ± dt )〉 = e∓iH0dt |ζ (t )〉, for positive or negative
times, respectively.

C. Separable expression for 〈�〉
Given Eq. (2) and the separable form of Eq. (4) it immedi-

ately follows that

〈φ|�(t )|φ〉 	 1

Nζ̄

∑
ζ̄

∫
φ(r)ζ (r, t )u(r, t )dr, (8)

where

u(r, t ) =
∫

W (r, r′, t )ζ̄ (r′)φ(r′)dr′. (9)

V. ACTING WITH THE RETARDED POLARIZATION
POTENTIAL

To calculate u(r, t ) in Eq. (9), one needs to act with
W (r, r′, t ) on the product ζ̄ (r′)φ(r′). This will be done in
two stages. First, we will calculate the action of the retarded
(causal) effective interaction:

uR (r, t ) =
∫

WR (r, r′, t )ζ̄ (r′)φ(r′)dr′. (10)

Physically, uR (r, t ) is the effective potential at time t due to a
stochastic external charge (ζ̄ φ) applied at time zero.

The next section then explains how to convert the causal
uR (r, t ) function to the time-ordered one u(r, t ).

A. Deterministic W R

It is well known (Refs. [7,24]) that linear-response TDH can
be used to calculate the action of WR on any initial function.
In our context, this amounts to perturbing all occupied states,

φλ
n (r, t = 0) = e−iλvpert (r)φn(r), n � Nocc,

where λ is small (typically 10−4E−1
h ) and vpert (r) ≡∫

ν(r, r′)ζ̄ (r′)φ(r′)dr′. Then one propagates simultaneously
all occupied states, |φλ

n (t + dt )〉 = e−iHλ(t )dt |φλ
n (t )〉 using a

time-dependent Hamiltonian:

Hλ(t ) = H0 + vλ
H(r, t ) − vH(r), (11)

where vλ
H(r, t ) ≡ vH[nλ(t )](r), vH(r) ≡ vH[n0](r), and

nλ(r, t ) is the density associated with these occupied orbitals
(including the spin factor), nλ(r, t ) = 2

∑
n�Nocc

|φλ
n (r, t )|2.

The causal response of Eq. (10) is then

uR (r, t ) = vλ
H(r, t ) − vH(r)

λ
. (12)
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B. Stochastic W R

Deterministic linear-response TDH is expensive for large
systems since all occupied states are propagated. We have
therefore developed and applied a very cheap alternative,
stochastic TDH [19,25,26]. Each time we choose a ran-
dom vector |ζ̄ 〉 we also choose and propagate a small
set (Nη ∼ 5–30) of occupied stochastic functions formally
defined as

ηl (r) =
∑

n�Nocc

ηnlφn(r), l = 1, . . . , Nη, (13)

where the coefficients can be real or complex, and are ei-
ther specified directly (e.g., ηnl = ±1) or based on a pro-
jection of a random vector η̄l (r), i.e., |ηl〉 = P |η̄l〉 (see
Ref. [27]).

Once the occupied stochastic functions are prepared then,
completely analogous to the deterministic case, they are per-
turbed

ηλ
l (r, t = 0) = e−iλvpert (r)ηl (r), (14)

and propagated, ηλ
l (t + dt )〉 = e−iHλ(t )dt |ηλ

l (t )〉, and the time-
dependent Hamiltonian is constructed again using Eq. (11) but
now the Hartree potential vλ

H(r, t ) is based on the density of
the propagated stochastic-occupied orbitals,

nλ(r, t ) = Cnorm
2

Nη

∑
l�Nη

∣∣ηλ
l (r, t )

∣∣2
, (15)

where Cnorm is a normalization constant ensuring the correct
total number of electrons [

∫
nλ(r, t )dr = Ne]. Also note that

unlike the deterministic case it is necessary now to repeat the
calculation with λ = 0 and the response is then the difference
of the time-dependent potentials [28]:

uR (r, t ) = vλ
H(r, t ) − vλ=0

H (r, t )

λ
. (16)

To conclude this section note that while the occupied ηl (r)
functions are used to make the effective interaction WR that
acts on |ζ̄ 〉, they are not by themselves a function of |ζ̄ 〉,
except in the sense that, to improve the statistical accuracy,
a different set of ηl (r) is chosen for each choice of |ζ̄ 〉. It
is actually important to choose stochastic orbitals that are
independent of each other (i.e., ηl and ζ that are chosen in-
dependently) to avoid numerical bias—in the same way that in
deterministic nested summations the indices are independent of
each other.

VI. SPARSE STOCHASTIC ORBITALS AND THE CAUSAL
TO TIME-ORDERED TRANSFORMATION

W and WR are related in Fourier space—they are the same
for positive frequencies and are complex conjugates at negative
frequencies [29]. The same properties are true for u and uR , as
long as the source term (ζ̄ φ) in Eq. (10) is real. Practically, this
gives a recipe for obtaining u from uR, which we label as u =
T (uR), meaning FFT uR from time to frequency, conjugate at

negative frequencies and inverse FFT the result back to time

uR (r, t ) → uR (r, ω) =
∫ ∞

0
e− 1

2 γ 2t2
eiωtuR (r, t )dt

→ u(r, ω) =
{
uR (r, ω), ω � 0,

(uR (r, ω))∗, ω < 0

→ u(r, t ) = 1

2π

∫ ∞

−∞
e−iωtu(r, ω)dω. (17)

This procedure is, however, storage intensive since the whole
uR (r, t ) from each core needs to be stored on disk.

A. Stochastic basis

Our previous approach (Ref. [19]) to solving the storage
issue was based on a stochastic resolution of identity [Eq. (3)]
inserted between ζ and u(r, t ) in Eq. (8). Specifically, a third
set of random functions ξ (r) = ±(dV )−0.5 was absorbed into
definition of u(r, t ):

u(r, t ) 	 uaprx(r, t ) ≡ 1

Nξ

∑
ξ (r)uξ (t ). (18)

Here uξ (t ) are obtained by time ordering (uξ = T (uR
ξ ))

the causal coefficients uR
ξ (t ) ≡ λ−1(vλ

ξ − vλ=0
ξ ), where vλ

ξ =
〈ξ |vλ

H(t )〉 [see Eq. (16)].
In Appendix A, we prove that the accuracy of the stochastic

expansion decreases with system size, unless Nξ is increased.
We previously (Refs. [19,20]) used Nξ = 100–300, but for
the very large systems studied here Nξ needs to be increased
to avoid large statistical errors. For large Nξ , however, the
overlaps 〈ξ |uR (t )〉 dominate the computational cost, altering
the linear scaling with system size (see [30]).

B. Sparse stochastic basis

In order to overcome the drawback of the stochastic basis
representation we use random functions in Eq. (18) that are
nonzero only over small number of points (labeled Ns) rather
than extending over the full grid; we label them as a “sparse”
stochastic basis. Note that the label sparse is used rather than
“local,” since the points formally do need not be close to one
another, even if in practice it is easiest numerically to have
them contiguous.

The sparse-stochastic basis expansion is then

u(r, t ) 	 L

Nξ

∑
ξ∈sparse

ξ (r)uξ (t ), (19)

where L ≡ Ng

Ns
and typically we use L ∼ 100–1000. Equiv-

alently we can write Eq. (19) as a formal sparse-stochastic
resolution of the identity, SSRI:

I 	 L

Nξ

∑
ξ∈sparse

|ξ 〉〈ξ |. (20)

In Appendix B we develop this concept in more detail and
show that the numerical error in SSRI is independent of the
vectors length Ns as long as sufficiently many vectors are used.
The total cost in the expansion is (for each time step) only
NsNξ vs NgNξ in the original stochastic expansion [Eq. (18)].
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TABLE I. Estimated QP energies (eV) for a set of finite systems
with a fully stochastic approach. The calculations used dx = 0.35a0,
Nζ̄ = 750, Nξ = 20, 000, and each sparse stochastic function ex-
tended over only L−1 = 1% of the total grid.

System Ne Ng Nη HOMO LUMO

Benzene 30 (48)3 16 −9.18 ± 0.09 0.73 ± 0.09
Naphtalene 48 48 × 52 × 60 16 −8.12 ± 0.09 −0.60 ± 0.09
Tetracene 84 48 × 52 × 82 16 −6.82 ± 0.08 −1.80 ± 0.06
Pentacene 102 48 × 52 × 94 16 −6.49 ± 0.07 −2.28 ± 0.06
Hexacene 120 48 × 52 × 104 16 −6.18 ± 0.06 −2.42 ± 0.06
C60 240 (88)3 8 −7.80 ± 0.04 −3.27 ± 0.04

16 −7.78 ± 0.04 −3.30 ± 0.04

Therefore, a much larger Nξ (10, 000–50, 000) can now be
used keeping the error in Eq. (19) in check.

The use of a sparse stochastic basis completes the stochastic
GW algorithm, which is detailed in Appendix C.

VII. SIMULATIONS AND RESULTS

The stochastic GW simulations were run on a large clus-
ter [31]. The implementation is trivially parallelized with
speedup efficiency that is always greater than 80%.

All simulations used uniform grids with isotropic spacing
dx = dy = dz. For both molecules and periodic solids, the
KS-LDA ground state was computed using Troullier-Martins
pseudopotentials [32], and a kinetic energy cutoff of 28Eh. For
molecules, the Martyna-Tuckerman approach [33] was used to
avoid the effect of periodic images.

A. Finite systems

The new stochastic GW implementation was first tested on
acenes up to hexacene as well as a C60 molecule. Table I lists the
parameters used for each system, and see also [34]. To isolate
the influence of the number of stochastic TDH functions,
Nη, we studied the QP energies of the set of molecules with
deterministic and stochastic TDH propagation (the latter with
Nη = 16). In both cases Nζ̄ was increased till the resulting
statistical error for the HOMO and LUMO QP energies is
�0.05 eV. Figure 1 shows that the stochastic and deterministic
calculations require similar Nζ̄ , so the residual statistical error
due to the use of stochastic TDH is small. The deterministic
version scales quadratically with the size of the system so as
shown in Fig. 1 it quickly becomes much more expensive than
a constant-Nη fully stochastic treatment. Beyond tetracene the
CPU time of the fully stochastic approach (with a constant
Nη) scales linearly with a slope of less than two core hours per
electron.

Further, for large systems the number of propagated
stochastic orbitals Nη can be reduced without increasing the
stochastic error. This is illustrated for C60 where Nη = 8 and
Nη = 16 (Table I) give an almost identical stochastic error.

B. Periodic solids

We next studied the performance of stochastic GW for
periodic systems employing large real space grids (equivalent
to �-point sampling of large supercells in plane wave codes).

FIG. 1. Resources needed to reduce the QP energy stochastic error
to 0.05 eV for acenes and C60. Top panel: wall time (hours); the dashed
and solid lines refer to deterministic and stochastic (with Nη = 16)
TDH propagations. Middle panel: number of stochastic vectors Nζ̄ ;
bottom panel: required CPU core hours. All calculations used Nξ =
20, 000 and L−1 = 1%.

Specifically, we studied the scaling of stochastic GW for
silicon and diamond supercells including several unit cells with
lattice constants taken from experiment [35,36]; for details,
see [37]. Although the systems were large, most time was still
spent on the TDH stage, as mentioned earlier [38].

We generally used Nη = 8 propagated stochastic orbitals
for periodic systems. Higher values barely change the predicted
QP energies (by 0.01 eV or less). Table II, obtained with a
fixed Nζ̄ = 400, shows that the stochastic error of Eg (the gap
between the bottom of the conduction band and the top of the
valence band) decreases rapidly with system size. Further, the

TABLE II. Estimated QP gaps for bulk carbon and silicon using
Nζ̄ = 400, Nη = 8, Nξ = 20, 000, and L = 100. Ncells is the number
of conventional cells in a supercell, Ne the total number of valence
electrons, and Ng the total number of grid points.

Eg (eV)

Ncells Ne Ng Diamond Silicon

8 256 (42)3 5.36 ± 0.09 1.17 ± 0.06
27 864 (60)3 5.28 ± 0.07 1.35 ± 0.05
64 2048 (80)3 5.40 ± 0.06 1.29 ± 0.04
216 6912 (120)3 5.55 ± 0.04 1.24 ± 0.04
343 10978 (140)3 5.51 ± 0.04 1.24 ± 0.03
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FIG. 2. Resources required to lower the stochastic error in Eg to
0.05 eV for silicon and diamond supercells (red and blue, respec-
tively). All calculations used Nη = 8, Nξ = 20, 000, and L−1 = 1%.
Top: CPU hours; middle: required Nζ̄ ; bottom: total CPU core hours.

number of stochastic vectors Nζ̄ required to decrease the error
below 0.05 eV is plotted in Fig. 2. The lower panel shows
that the total CPU time then scales at worst linearly with Ne.
Specifically, calculations for diamond and silicon supercells
with 10,978 valence electrons consumed only about 1900 and
1000 core hours.

Per electron the periodic calculations were much faster (up
to almost 20 times) than for finite systems. One obvious reason
is that it is much easier to pack electrons in a periodic system,
so, for example, the largest supercell of silicon or diamond has
50 times more electrons than C60 but its grid is only ∼4 times
bigger. In addition, the large periodic systems have much more
electrons so they required fewer samples (Nζ̄ ).

VIII. DISCUSSION AND CONCLUSIONS

Our calculations show very favorable scaling of the statis-
tical error in all three types of stochastic samplings. Sampling
of the Green’s function, the stochastic TDH, and SSRI for
efficient sampling and converting the causal to time-ordered
quantity. Specifically as follows.

(i) The stochastic error depends on the number of vectors
used to sample the Green’s function,Nζ̄ . Interestingly, to obtain
a low error of 0.05 eV in the quasiparticle energies, it is enough
to sample the Green’s function with circa 2000 vectors for
small systems and this number even decreases with system
size so for C60 it is only 600 and for large periodic supercells
it decreases to a few hundred. The reason for this is most
likely self-averaging, i.e., for big systems the contributions

of different regions average. It is very likely for systems with
defects and gap states there would be less self-averaging so Nζ̄

should not decrease with system size.
(ii) Similarly, the method benefits from the remarkable fact

that very few propagated stochastic orbitals η are needed for
the TDH propagation. We used Nη = 8 for large molecules and
periodic solids, i.e., in each simulation (i.e., for each choice of a
random vector representing the Green’s function), it is enough
to propagate with only eight vectors that represent the motion
of the whole perturbed occupied electron sea.

(iii) Finally, the main new ingredient in the paper is SSRI,
which makes it possible to easily increase the number of such
sampling vectors (Nξ ) by 100-fold or more, from hundreds
to tens of thousands. The key feature is that the accuracy is
independent of the size of the sparse stochastic vectors as
long as each grid point is sufficiently sampled (i.e., as long
as L � Nξ ). The SSRI expansion [Eq. (19)] adds only a tiny
stochastic error (less than 0.01 eV) and its cost is negligible.
Interestingly, SSRI, is potentially useful for a large number
of applications that are unrelated to stochastic GW , including
long-range exchange, stochastic MP2 (direct and exchange),
and stochastic resolution of the identity [27,39,40].

Taken together, we find a very favorable scaling. Ordered
supercells with 10,978 valence electrons require less than 2000
core hours (and only six wall hours) to yield QP energies with
statistical errors below 0.05 eV. Our method thus makes it
possible to calculate QP energies of extremely large systems
with thousands of atoms on small computer clusters. The over-
all algorithm is straightforward, and an open-source software
(StochasticGW) is freely available [41].

The present method has two ingredients which formally
scale nonlinearly. As mentioned, we use occupied projection,
which scales as O(N2

e ); this by itself however is not a major
issue, since it will not be the dominant part of the calculation
until we would reachNe � 100, 000. But, more importantly, in
most DFT codes the extraction of the occupied states scales as
O(N3

e ) and is prohibitive for very large systems. We therefore
anticipate that when simulating systems with Ne > 50, 000 it
may be necessary to switch back to the Chebyshev projection
approach that avoids the eigenstates altogether, as long as the
underlying DFT potential could be obtained by either linear
scaling DFT [42–45] or stochastic DFT [46,47].

Finally, we note that the stochastic GW algorithm is not
restricted to the common RPA-based G0W0 approximation
which we focused on. Two simple variants can be trivially
implemented. The first is replacing TDH by time-dependent
DFT (TDDFT) [48,49], which is equivalent to modifying the
kernel W and tends to improve the LUMO energies [19,50]);
the second is a postprocessing stretched-scissors modification
of the Green’s function (see Ref. [51] for details).
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APPENDIX A: STATISTICAL ERROR OF A STOCHASTIC
BASIS EXPANSION

Given a stochastic expansion of a general function, analo-
gous to Eq. (18),

|f 〉 	 |faprx〉 ≡ 1

Nξ

∑
|ξ 〉〈ξ |f 〉, (A1)

we show here that the average relative error in the repre-
sentation of f is proportional to the number of grid points.
Specifically, we define

σ 2(f ) = {〈faprx|faprx〉} − 〈f |f 〉

= 1

N2
ξ

⎧⎨
⎩

∑
ξ,ξ ′

〈ξ |ξ ′〉〈f |ξ 〉〈ξ ′|f 〉
⎫⎬
⎭ − 〈f |f 〉, (A2)

where all functions are assumed real. Separating yields

σ 2(f ) = J1 + J2 − 〈f |f 〉. (A3)

Here J1 is the ξ = ξ ′ contribution:

J1 = 1

N2
ξ

⎧⎨
⎩

∑
ξ ′=ξ

〈ξ |ξ 〉〈f |ξ 〉〈ξ |f 〉
⎫⎬
⎭

= Ng

N2
ξ

⎧⎨
⎩

∑
ξ

〈f |ξ 〉〈ξ |f 〉
⎫⎬
⎭ = Ng

N2
ξ

⎧⎨
⎩

∑
ξ

〈f |ξ 〉〈ξ |f 〉
⎫⎬
⎭,

where the definition ξ (r) = ±(dV )−0.5 implies that 〈ξ |ξ 〉 =
Ng (always, not just as an average). The resulting expression
for J1 simply involves a resolution of the identity {|ξ 〉〈ξ |} = I,

so

J1 = Ng

N2
ξ

∑
ξ

〈f |f 〉 = Ng

N2
ξ

Nξ 〈f |f 〉. (A4)

Similarly, J2 is the ξ ′ �= ξ contribution

J2 = 1

N2
ξ

⎧⎨
⎩

∑
ξ

∑
ξ ′ �=ξ

〈ξ |ξ ′〉〈ξ ′|f 〉〈f |ξ 〉
⎫⎬
⎭,

and since the condition ξ ′ �= ξ does not restrict ξ ′, the resolu-
tion of the identity I = {|ξ ′〉〈ξ ′|} is still valid, so

J2 = 1

N2
ξ

⎧⎨
⎩

∑
ξ

∑
ξ ′ �=ξ

〈ξ |f 〉〈f |ξ 〉
⎫⎬
⎭

= 1

N2
ξ

∑
ξ

∑
ξ ′ �=ξ

〈f |f 〉 = 〈f |f 〉
N2

ξ

Nξ (Nξ − 1).

Adding the terms gives

σ 2(f )

〈f |f 〉 = (Ng − 1)

Nξ

	 Ng

Nξ

, (A5)

as stipulated.

APPENDIX B: SPARSE STOCHASTIC EXPANSION:
EXAMPLE AND DETAILS

A simple example clarifies the concept of sparse stochastic
orbitals.

Break the Ng grid points to two sets A, B, each with
NA

g = NB
g = 1

2Ng points. Apply the stochastic resolution
again with Nξ functions, but now the first half of the functions
(ξA) are nonzero only over the A-set points and the other
half are nonvanishing over the B set. Then, in an obvious
notation,

u(r, t ) 	
{ 1

NA
g

∑
ξA

ξA(r)uξ,A(t ), r ∈ A,

1
NB

g

∑
ξB

ξB (r)uξ,B (t ), r ∈ B,
(B1)

where uξ,A(t ) ≡ 〈ξA|u〉A ≡ dV · ∑r∈A ξA(r)u(r) and analo-
gously for B.

The cost of calculating eachuξ,A(t ) is half that of calculating
the original uξ (t ), since the summation includes half the grid
points. But the squared standard deviation of u is unchanged:

σ 2(u) = σ 2
A(u) + σ 2

B (u)

= NA
g 〈u|u〉A

1
2Nξ

+ NB
g 〈u|u〉B

1
2Nξ

= Ng〈u|u〉
Nξ

,

where we used 〈u|u〉A + 〈u|u〉B = 〈u|u〉. This implies that the
use of Eq. (18) instead of Eq. (B1) reduces the numerical effort
by a factor of two without affecting the statistical error.

Obviously, we could continue with this process of using
smaller and smaller segments further, resulting in Eqs. (19)
and (20). In practice, we pick here a small segment size
Ns ∼ 0.001Ng–0.01Ng , so that the ratio of total grid length
and the segment length is L ≈ 100–1000. For simplicity, we
do not even require the segments to be nonoverlapping. The
only requirement is to ensure that each point has the same L−1

probability to be sampled, i.e., to have a sparse basis function
that includes it.

Note the following.
(1) The segments need to sufficiently sample each point;

each grid point has a probability L−1 of being sampled by each
of the Nξ functions so it is important to have 1 � L−1Nξ, i.e.,
L � Nξ.. Put differently, the segment size cannot be too small.

(2) If a segment starting point is chosen near the first or last
point in the grid, then either the function should be wrapped
(so a portion of the segment is near the end of the grid and
another portion is near the beginning of the grid) or it should
be padded (at the beginning or end) with zeros, to guarantee
that all points are equally sampled.

(3) As mentioned, one could envision (although we have
not done it here) that each segment would be noncontiguous,
i.e., made from Ns random points from the full grid. We do
not even have to ensure that the points in each segment are
all different from each other, as long as they are randomly
selected.
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APPENDIX C: FINAL GW ALGORITHM
SUMMARY AND COSTS

The final stochastic GW algorithm is simple.
Choose Nζ̄ ∼ 200–2000 stochastic functions (the wall time

is minimized if Nζ̄ CPU cores are used, i.e., one per ζ̄ ). A larger
Nζ̄ reduces the stochastic errors. Then, follow these steps for
each choice of ζ̄ .

(1) Choose a set of Nξ ∼ 5, 000–50, 000 fractured random
functions ξ (r), each with Ng

L
grid points. Typically L ∼

100–1000.
(2) Choose a set of Nη ∼ 5–30 stochastic-occupied func-

tions ηl (r) [Eq. (13)].
(3) Calculate vpert (r) and perturb the ηl (r) per Eq. (14).
(4) Propagate the perturbed ηλ

l (r, t ) calculating at each time
step vλ

H(r, t ) and constructing and storing in memory the set
of vλ

ξ (t ).
(5) Repeat step (4) for unperturbed functions (using λ = 0),

storing vλ=0
ξ (t ) along the propagation. Then at the end of

the propagation calculate uR
ξ (t ) and apply a time-ordering

operation uξ = T (uR
ξ ) [analogous to Eq. (17)].

(6) Then calculate ζ (r, t ) for negative and positive times
[Eqs. (5) and (6)] and use with Eq. (19) to accumulate the
matrix element of the self-energy [Eqs. (8) and (9)].

Once steps (1)–(6) are finished average the resulting
〈φ|�(t )|φ〉 from each core, Fourier transform the result, and
solve Eq. (1).

The algorithm above, using stochastic TDH, is the most
efficient version for large systems. If deterministic TDH is
used, the steps are similar except that instead of the stochastic
occupied states ηl one perturbs and propagates the deter-
ministic occupied states φn(r) [and then there is no need to
calculate vλ=0

ξ (t ), which is obtained directly from the ground
state density n(r)].

Most of the cost in the fully stochastic GW algorithm is
associated with propagating theNη vectors in timeηλ

l (r, t ) with
and without perturbation. The effort is essentially proportional
to the number of stochastic samples Nζ̄ , the number of
stochastic-occupied functions (Nη ), number of grid points
(Ng ), and the number of time steps Nτ , with a prefactor
associated with the calculation of the kinetic energy operator
at each time step. The only one of this factors which increases
with system size is Ng, since, as shown in the Results section,
the necessary number of stochastic functions (Nη, Nζ̄ ) does
not increase with system size. Therefore, this CPU-dominant
part scales at worst linearly with Ne.
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