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An outline is given of time-dependent wavepacket methods as applied to calculations of molecular collisions 
with solid surfaces. The methods reviewed include numerical integration algorithms for the time-dependent 
SchrSdinger equation, semiclassical wavepacket treatments, and approximations that treat some of the degrees- 
of-freedom quantum-mechanically and others classically. The computational and numerical characteristics of 
these methods are discussed, with emphasis on their particular advantages and relevance in the context of 
certain molecule/surface scattering problems. For the semiclassical and mixed quantal-classical treatments, the 
approximation errors and their physical origins are discussed. For the quantum wavepacket techniques a 
numerical error analysis is presented. The computational efficiency of the various algorithms is considered and 
examined in the context of several applications. The main focus is on diffractive scattering of atoms and light 
molecules from crystalline surfaces, on scattering of atoms from imperfect and disordered surfaces, and on 
rotational excitation of molecules in impact on solids. These are the most quantitative topics in the surface 
scattering field at the present state of the art. Guidelines for future applications are suggested, and some of the 
remaining problems in wavepacket calculations of surface scattering processes are discussed. 
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1. Introduction 

The scattering of molecular beams has developed in recent years into one of the most powerful 
and versatile techniques for studying solid surfaces. Experiments using this method are carried 
out to explore questions such as the structure of the surface on the atomic scale [l], the 
vibrational frequency spectrum of the surface [2], and the physical mechanisms of energy transfer 
and chemical reaction processes in molecular-surface interactions [3,4]. Quantitative understand- 
ing of the dynamics of molecular collisions with surfaces is necessary for the interpretation and 
analysis of such experiments. This need played a major role in motivating much of the intensive 
activity in the theory of molecular collisions with surfaces and in methods of quantitative 
calculations in this field. The present review describes an important class of methods for 
calculating observables and describing the dynamics of certain types of molecule-surface 
collision processes. The methods are directed at cases where a quantitative quantum mechanical 
treatment is required for at least some of, though not necessarily all, the degrees of freedom. The 
aspect common to all the groups of methods considered here is that the dynamics is described in 
terms of wavepacket motion, the latter being computed either by numerical solutions of the 
time-dependent Schriidinger equation, or by semiclassical wavepacket approximations. Although 
relatively recent in use, these methods proved extremely useful, in particular in the field of 
surface scattering, and are attracting considerable interest due both to computational advantages 
and the simplicitly by which physical insight can be extracted from such calculations. The field 
of molecule-surface collisions encompasses a vast variety of processes, which may require 
different methods and approaches. It should be useful to list and briefly discuss the processes for 
which time-dependent wavepacket methods seem particularly useful at the present state of the 
art. 

1.1. Processes and systems treated 

(a) Diffractive scattering from crystalline surfaces: The scattering of light atoms and molecules 
(e.g., He, H, Ne, H,, etc.) from crystalline surfaces at thermal and hyperthermal energies give 
rise to well-resolved diffraction peaks [l]. The measured intensities are sensitive to the interaction 
between the projectile and surface, and can be used to determine this potential [5]. Moreover, 
since the interaction potential itself depends on the structure of the surface (although this 
dependence is neither simple nor fully understood), the measured diffraction intensities are a 
sensitive probe also of the structure of the surface on the atomic scale [l]. To extract either the 
interaction potential or the surface structure from experimentally measured diffraction data, it is 
necessary to have an algorithm for calculating the intensities for an assumed potential. This can 
be done by available time-independent methods, provided that one can treat the surface as a rigid, 
non&rating target. In this case the momentum transfer that takes place in the collision is 
restricted by Bragg’s condition, namely: 

(1.1) 

where K', K are respectively the initial and final momentum components of the particle in 
parallel to the surface plane, G,, are the reciprocal space vectors and a,, aY are the unit cell 
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vectors along the x, y directions of the surface lattice. Eq. (1.1) implies that the number of final 
momentum states in atom scattering from a rigid periodic lattice must be finite. Since (1.1) holds 
also for energetically-closed diffraction channels that can only play a role as intermediate states, 
it is seen that the set of momentum states involved in the process is a discrete one. This is 
explicitly taken advantage of in the time-independent scattering calculations that are routinely 
applied to this problem [5]. In the familiar close coupling technique, for instance, a truncated 
(but sufficient for convergence) set of momentum states is used as a basis for expanding the total 
wavefunction, and the resulting finite set of coupled-channel equations, for the scattering process 
is then solved numerically [5]. In this framework, the available time-independent methods are 
successful, but this depends on the validity of the rigid surface model. For a real, vibrating solid 
the collision involves energy transfer to surface phonons, and in principle a continuum of 
channels, associated with the continuum of phonon frequencies must be dealt with. This is 
beyond the scope of realistic close coupling calculations. The practical time-independent calcula- 
tions hitherto carried out were thus confined to the rigid-surface model, and contact with 
experimental data was made by assuming the (approximate) Debye-Waller relation [6,7]: 

0 4 

where I,,,,, is the intensity of (mn) diffraction peak for the real surface at temperature T, and Ii, 
the corresponding diffraction intensity for a rigid, nonvibrating model of the same surface. 
Several explicit expressions different in details of approximation, were given for the Debye-Waller 
(DW) factor F,,(T) in (1.2) [6,7], and I,‘& can thus be extracted from the ,experimental 
intensities. However, (1.2) is an approximation, and recently significant deviations from the DW 
model were observed and discussed [l]. The theoretical derivation of the DW approximation 
(1.2) is most questionable, for instance, for collisions at near-grazing incidence angles and at low 
energies [7]. For further progress in the field, it should be extremely important to have a method 
for diffraction scattering calculations that can include the contributions of photons to the 
process. It will be seen later that this can be accomplished by the time-dependent wavepacket 
methods, and the latter thus open an important avenue for progress in diffraction scattering 
calculations, and in the extraction of surface structure and atom-surface potentials from 
diffraction data. 
(b) Atom scattering from imperfect and disordered surfaces: Experimental and theoretical activity 
in this topic began only a few years ago, but it has grown very rapidly and the subject is 
attracting considerable interest. Important pioneering experiments by Comsa and collaborators 
[9] indicate that He scattering can serve as a powerful probe of noncrystalline surface systems, 
such as absorbed overlayers (including at very low concentrations), vacancies in crystalline 
surfaces, random steps etc. [9]. Questions of great interest that can be explored via such 
experiments are, for instance, whether adsorbates on a surface attract or repel each other and 
whether they form clusters, what are the interactions between defects on surfaces, what are the 
activation energies associated with diffusion of adsorbates (or vacancies), and what is the nature 
of order-disorder phase transitions in adsorbed layers. A quantitative interpretation of experi- 
ments in this field requires a theory and computational algorithms for scattering from disordered 
surfaces. The development of the required theoretical tools for this subject is confronted by 
several difficulties. As pointed out earlier, in time-independent theories of scattering from 
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crystalline (nonvibrating) structures, surface periodicity is used to derive simplified scattering 
equations. Thus, the stationary scattering wavefunction is expanded in the form 

J/(x, y, z> = C exp[i(G,,*R + K*R)]x,,(z), 
m,n 

(1.3) 

where G,,,, as in (1.1) are the reciprocal space vectors, K is the incident wavevector component 
parallel to the surface, R = (x, y) is the position in the surface plane and z the distance from 
the surface. The discrete nature of the expansion (1.3) results in a manageable set of close 
coupling equations for the x,,, (z) that correspond to the different diffraction channels (m, n). 
The expansion corresponding to (1.3) for a non-crystalline surface involves an integral over 
continuum values of the wavevector component in parallel to the surface plane. Thus the 
scattering problem is equivalent to a continuum of coupled-channel equations. In this case, 
unlike that of the previous topic (a), the continuum arises even at the level of a nonvibrating 
surface model, since scattering from noncrystalline systems is not necessarily diffractive. Time- 
independent approaches to this problem relied on simplifications of the dynamics such as the 
Sudden approximation (at high collision energies) [lo] and the average wavefunction method (at 
low energies) [ll], or employed models restricted to very special cases, e.g. an isolated adsorbed 
atom on a flat, infinitely hard surface [12,13]. Several of the studies reviewed in the present 
article showed that scattering from disordered surfaces can be treated quite powerfully and 
rigorously by wavepacket methods, for which case the occurrence of a continuum of open 
channels does not pose in general major computational difficulties. 
(c) Rotationally and vibrationally inelastic molecule-surface scattering: A wealth of information 
was obtained in recent years in experimental studies of rotational energy transfer in molecular 
collisions with surfaces [3], but much less data are available as yet on the corresponding 
vibrational processes [14]. There are systems for which, at high energy collisions, phonon effects 
on the rotational energy distribution appear to be small, e.g. NO/Ag [15]. If the surface involved 
is also relatively smooth, then close-coupling calculations which neglect the roles of surface 
vibrations and surface corrugation become useful, and are definitely feasible [15,16]. If the rigid 
surface model can still be applied but the effects of surface roughness cannot be ignored, then 
time-independent coupled channel calculations get beyond the reach of presently available 
computers, for all but the lightest molecules, since the number of rotational and diffraction 
channels becomes extremely large. The scattering of H, from LiF(OO1) was studied recently by 
rigorous close-coupling calculations [17], but for most systems one must use approximations, and 
the Sudden method [l&19] seems quite successful in this context. For cases where phonon 
participation affects rotationally inelastic scattering, the only quantum-mechanical calculations 
reported so far utilize the Sudden approximation for both the rotational and the phonon degrees 
of freedom [20]. There is a scope and a need for new, additional methods whenever a detailed 
quantum-mechanical description of the final rotational state is,sought in systems which either 
involve considerable surface corrugation or significant participation of surface vibration in the 
process (as reflected, e.g., in the dependence of the results on surface temperature). We stress 
that both these effects are the rule rather than the exception [3], and most experimental systems 
do correspond to these cases. It will be seen later on in this review that time-dependent processes 
do offer promising possibilities for dealing with phonon participation and with many diffraction 
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channels, hence their considerable potential importance in the study of rotational and vibrational 
energy transfer. 
(d) Excitation of surface phonons and of electron-hole pairs: In the previous topics, the importance 
of treating surface phonons was mentioned in the context of the role these degrees of freedom 
may play in processes such as diffraction or rotational energy transfer. Coupling to phonons may 
significantly attenuate the intensities of such proesses compared with the ideal reference case of a 
non-vibrating surface. However, atom scattering experiments can be used to probe, e.g., via 
time-of-flight techniques, the collisional excitation of the surface itself [2]. Methods for calculat- 
ing the probabilities of such excitations are thus of considerable interest. Intensities for single 
phonon excitations can be calculated by approximate (distorted wave) time-independent quan- 
tum calculations [2], which are pertinent for instance to low energy He scattering from LiF(OO1). 
This method cannot, however, be extended in practical terms to multiphonon processes. It seems 
reasonable to assume that high-order multiphonon processes can be treated classically. An 
approach that can be applied also in the difficult, intermediate case of several phonon processes 
is to employ (time-dependent) wavepackets, in particular to treat surface vibrations by wave- 
packets. Studies of this type will be discussed later on. Time-dependent wavepacket methods 
may have a particularly crucial role in the study of electronic excitation of solids upon molecular 
impact on the surface. The role of electron-hole pair excitations in molecular interactions with 
metals and with semiconductors is a topic of fundamental interest. Recently, important progress 
was made in the direct experimental detection of such processes [21]. Two features make it very 
difficult to develop a computational approach to the study of such processes: The excited states 
form a continuum (as in the case of phonons), and classical approximations are not expected to 
work (unlike the case of phonons). Quantum wavepacket calculations seem a most promising 
route for overcoming these combined difficulties, and may be the only available computational 
tool in this respect in the field. 

1.2. Advantages of wavepacket methods in surface scattering 

The above survey of several types of surface scattering processes, and the computational 
requirements they give rise to, already indicated some of the points of strength of wavepacket 
methods. It should be useful at this point to systematically outline the motivations for pursuing 
wavepacket techniques for molecule-surface collisions. 
(i) Surfaces give rise to problems of treating a continuum of scattering channels. Thus, in dealing 
with surface phonons a continuum of excitation channels is involved. In a topic such as 
scattering from a disordered surface, a continuum of final accessible “diffraction states” (or 
more precisely states labeled by the momentum value parallel to the surface) must be dealt with 
even within the model of a nonvibrating solid. Wavepacket methods offer a powerful tool of 
demonstrated applicability for problems involving a continuum of coupled scattering channels. 
(ii) When solid degrees of freedom must be incorporated in the calculations, the complexity of 
the surface scattering problem is such that it is an enormous advantage to treat most of the 
degrees of freedom classically, whenever physical considerations justify such a simplification. On 
the other hand, the experiments that are being performed provide results that are quantum-state 
resolved for some of the variables (e.g. diffraction, final rotational distribution of scattered 
molecules). Methods that can treat consistently some of the degrees of freedom quantum 
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mechanically and the remainder classically are thus very advantageous for surface scattering. 
Time-dependent approaches which treat some modes by classical trajectories and others by 
quantum dynamics are very suitable in this respect, and are discussed in the present review. 
(iii) One of the most rewarding approaches for incorporating phonon effects in surface scatter- 
ing, pursued primarily in fully classical treatments, is based on using the Generalized Langevin 
Equation [22,23]: The influence of solid vibrations is represented as friction terms and as random 
forces. Quantum-mechanical time-dependent treatments of the scattered particle can readily 
utilize such time-dependent stochastic models of the target surface. 
(iv) The issue of simple visualization and physical interpretation, always important for any 
computational result, seems to us particularly weighty for complicated processes such as surface 
collisions frequently are. Time-dependent wavepacket methods have great merit in this respect, 
and seem to us to offer physical insight much more directly and easily than, e.g., close coupling 
calculations. 
(v) Most of the available, numerically-realized time-dependent wavepacket methods are based 
on algorithms that explicitly employ Cartesian coordinates. For surface scattering (although not 
e.g. for atom-molecule collisions), such coordinates are a natural and preferred choice. This 
technical reason has been an important factor in the many early applications of wavepacket 
methods to surface scattering. 

1.3. Outline of the article 

In section 2 we review grid methods for integrating the time-dependent Schrodinger equation, 
and discuss the computational efficiency and numerical properties of these schemes. Section 3 is 
dedicated to semiclassical wavepackets and their applications, with a discussion of the validity, 
scope and limitations of the approximations involved. Section 4 deals with methods that treat 
part of the degrees of freedom by quantum wavepackets and the remainder by classical 
trajectories. Methods that allow for consistency in the framework of such a mixed treatment are 
reviewed. The computations of the wavefunctions in the “quantum modes” in this framework is 
also discussed. Concluding remarks focusing on open problems and future outlook are presented 
in section 5. 

2. Wavepacket propagations by grid methods 

For surface scattering calculations, grid methods can be extremely useful. These methods are 
accurate and modular in structure. The numerical procedure can be divided in four steps: a) 
Setting the initial wavefunction on the grid. b) Establishing a method to calculate the Hamilto- 
nian operation. c) Propagating the wavefunction in time. d) Analysing in the final propagated 
wavefunction. Because of this modular structure each step can be done separately by a variety of 
techniques, contributing to the versatility of grid methods. Accuracy can be controlled in each 
step separately. Time dependent grid methods resemble actual experiments in the sense that an 
initial state is scattered to a multitude of final states. This situation is equivalent to one column 
of the 6 matrix. As a consequence using grid methods, simulations of actual experiments for 
which e.g. many diffraction peaks are resolved are possible, whereis a full 6 matrix calculation is 



R.B. Gerber et al. / Wavepacket methodr in surface scattering 67 

prohibitively expensive. In grid methods very accurate results can be produced, which can be 
used as benchmarcks to test other approximate methods. Surface scattering problems are easily 
adapted to these methods because Cartesian coordinates can be used and periodic boundary 
conditions can be matched to the unit cell of the lattice. 

2.1. Discussion of grid methods for wauefunction representation 

In quantum mechanics the state of the system is represented by the wavefunction 4. All 
observable information on the system is extracted from this wavefunction. The time evolution of 
the wavefunction is governed by the Schriidinger equation: 

w iA= = A$. (2.1) 

A numerical construction of a solution to the time-dependent Schrijdinger equation follows three 
stages: First the wavefunction $ is discretized by representing it on grid points. (values of $J 
between grid points are obtained by interpolation). Secondly, the Hamiltonian operator: 

(2.2) 

and its operation on \cI, A# are calculated. Thirdly, a time propagation scheme is constructed 
which transforms an initial wavefunction to a final one. Different numerical methods can be 
classified by the way each of these steps is carried out. 

Wavefunctions pertinent to our interest are continuous functions extended in space. All grid 
methods represent such a function at a set of discrete sampling points. The value of the 
wavefunction between sampling points is recovered by interpolation. The interpolation scheme 
chosen is the basis of the classification of different grid methods, the Finite Difference method 
(FD) and the Fourier method. The finite difference methods (FD) utilize polynomial interpola- 
tion schemes [24]. The Fourier method recovers the value between points by the sinc(sin x/x) 
interpolation procedure [25]. Derivatives of these interpolation schemes are the source of 
formulas, representing the different procedures used, for calculating numerical derivatives. 

In grid methods, the size and shape of the grid have to be adapted to the physical problem. 
For two-dimensional surface scattering calculations, rectangular grids with uniform sampling 
points have been used. Although non-uniform grids maybe advantageous in special cases [26] no 
surface calculations have used them yet. The size of the grid must be large enough to contain the 
wavefunction from the initial state to the final one. In three-dimensional calculations the grid is 
matched to the unit cell. A parallelogram shaped grid is then adapted with uniform sampling 
points [27]. 

Boundary conditions of the grid are an important issue. The finite difference method is more 
flexible in the choice of boundary conditions because both fixed or periodic boundaries can be 
employed. The Fourier method is on the other hand restricted to periodic boundary conditions. 
Surface scattering problems require periodic boundaries matching the unit cell parallel to the 
surface and fixed boundaries perpendicular to the surface. In the Fourier method, fixed 



68 R.B. Gerber et al. / Wavepacket metho& in surface scattering 

boundaries are obtained by ending the grid with a strongly repulsive potential. Sor surface 
scattering problems the back side of the repulsive potential of the surface serves this purpose by 
prevending tunneling through the periodic boundaries of the grid. Absorbing boundary condi- 
tions also can be important in surface scattering. If placed at the far end of the grid they 
represent an extended open space. Such boundaries enable separation of the direct scattering 
amplitude from the absorbed amplitude. Absorbing boundaries are obtained by adding an 
imaginary optical potential at the far end of the grid [28]. 

The initial wavefunction 
After the grid has been set up, the initial wavefunction has to be placed on it. For scattering 

calculations, the wavefunctions is placed in the asymptotic region with an average momentum 
pointing to the surface. Because of the finite size of the grid the wavefunction has to be 
semi-localized. Two types of initial wavefunctions have been used for surface scattering calcula- 
tions. Type I wavefunctions are localized both in the z direction perpendicular to the surface and 
in the x direction parallel to the surface. The type I choice is convenient for the study of local 
scattering from different regions of the surface. Type II wavefunctions are localized in the z 
direction, whereas they form a plane wave in the x and y directions. Usually the localization in 
the z direction is done by choosing a Gaussian wavepacket. A typical 3-D wave matched to the 
unit cell will have the form: 

(2.3) 
The i, j and I indices are the spatial indices of the grid in the directions x, y and x. AZ is the 
spatial displacement between grid points in z. Here z = fAz, z0 is the initial average position in 
z, u the width in z. Ax = ax/N, and Ay = a,/N,, where a, and ay are the lattice vectors and 
N, and NV are the numbers of grid points in the x and y directions. k, and k, are the 
wavenumber in the x and y directions. A is the area of the unit cell. The width of the Gaussian 
in z determines the width of the momentum and therefore the spread in energy. For a Gaussian 
of width u the energy spread becomes: 

AELi 
2m a2 (2-4 

By choosing a wide enough Gaussian the spread in energy can be minimized. 

2.2. Hamiltonian operation for the Finite Difference (FD) method 

The Hamiltonian operation can be partitioned to potential and kinetic parts. Because the 
potential energy operator is a local operator in coordinate space its operation is the simple 
multiplication at each spatial grid point. For a two-dimensional problem where i is the spatial 
index in x and I in z the operation becomes: 

O(i, l)$(i, I). (2.5) 

The potential energy operator can be time dependent to take into consideration thermal motion 
of the surface [29,30]. 
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The main difficulty in the Hamiltonian operation arises from the kinetic energy operator 
because of its non-local character. McCullough and Wyatt [31] and later Kulander [32] and 
Askar and Cakmak [33], approximated the kinetic energy operator using a finite difference 
scheme (in 2-D) 

-1 Plj/(i, f) + a2#(iT f> 
i 2m ax2 i3Z2 I 

_ -1 l+l)+#(i, f-I)-2#(i, f) 

2m Az2 
9 

(2-6) 

where i and I are the spatial indices and Ax and AZ are the distances between grid points in x 
and z. This approximation is equivalent to the Laplacian of the quadratic interpolation scheme: 
If one considers the interval x;_~ = (i - 1) Ax G x G (i + 1) Ax = xi+1 the interpolation scheme 
reads 

f(x) = a(x - xi)2 + b(x -xi) + c, (2.7) 

where 

c =f(xi). 

Taking the second derivative of this formula at the point xi, and using a similar formula for the 
z direction the result (2.6) can be recovered. The total Hamiltonian operation is then the sum of 
the potential and kinetic terms. Higher order finite difference schemes can be obtained by 
differentiating higher order polynomial schemes [34], but they have not been used for surface 
work. 

Error analysis 
The main source of error in the finite difference method is the semilocal approximation for the 

kinetic energy operator. The operator of equation (2.6) is a member of the family of convolution 
operators and therefore is diagonal in k space. Performing a Fourier transform on (2.6) the 
spectrum in k space of the FD kinetic energy operator is obtained (in one spatial dimension): 

A* 2(cos(k Ax) - 1) tz2 2 k 2 -- 
2m Ax2 =% 

sin( AX/~) 
Ax (2.8) 

compared to the exact kinetic energy operator spectrum of ( h2/2m)k2, for k + 0 the two 
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formulas coincide. For k = 0.1 x T/AX the relative error for the operation becomes: 0.0041, 
which is tolerable in most cases. This is the origin of the thumb rule that at least 10 grid points 
are needed per wave length for an adequate approximation. For k = 0.4a/Ax the relative error 
becomes: 0.065. 

2.3. Hamiltonian operation for the Fourier method 

The potential energy operation is calculated by multiplying V(i, I) by \cl(i, f) as in the FD 
method. The simplicity of the operation comes about because the potential energy operation is 
local in the coordinate representation of the wavefunction. A local operation of the kinetic 
energy can be calculated in k space. The transformation from the coordinate space to the 
momentum space is the Fourier transform. At this step the k space wavefunction is multiplied 
by - A2k2/2m. The operation is completed by transforming back to coordinate space using an 
inverse Fourier transform. The numerical procedure is as follows: A) Transform +( i, f) to 
J(n, m) in k space by a two-dimensional discrete Fourier transform. B) Multiply $(n, m) by 
-h2(ki + ki)/2m. C) T ransform the result of B to coordinate space by an inverse 2-D Fourier 
transform. Numerical efficiency of the method is the result of the Fast Fourier Transform (FFT) 
algorithm [35,36]. For this algorithm numerical effort grows as 0(N log N) where N is the 
number of grid points. This is compared to a matrix transformation procedure from coordinate 
space to momentum space for which numerical effort grows as 0(iV2) [37]. 

An important advantage of the method is that the communication relations of quantum 
mechanics, [p, f(x)] = iI$( ) x are preserved in the discrete representation [38,39]. This means 
that the discrete Hilbert space used for modeling the problem has the same commutation 
relations as the continuous Hilbert space and the correct operator algebra is mapped to the 
discrete world. 

Error analysis 
For a band limited function with finite support, the Fourier method is exact [25,37]. But for 

realistic wave functions, errors in the Fourier method are a result of two sources: a) The grid is 
not large enough to contain the wavefunction or does not matche the periodic boundary 
conditions. b) The grid is not dense enough which results in undersampling of high momentum 
components of the wavefunction. For Gaussian type wavefunctions, the convergence of the 
method is exponential when increasing the grid size or grid density. Practically when construct- 
ing a grid care should be taken that the maximum momentum in the wave function does not 
exceed: p,, < ~rtt/Ax. 

2.4. Time propagation scheme 

The next step in the grid methods is to propagate the wave function in time. The general 
solution of eq. (2.1) has the form: 

$(t + dt) = exp(-ifi dt/h)$(t). (2-9) 

For grid methods time propagation schemes have to be simple because they are applied on each 
grid point. This fact usually rules out predictor-corrector variable step integrators. 
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The Second Order Differencing scheme (SOD) 
The simplest scheme for propagating eq. (2.1) is to expand the evolution operator 

a = exp( - ifi dt/A) in a Taylor series: 

exp(-ifidt/n)=l-iAdt/A+ *.a. (2.10) 

It has been found that a numerical scheme based on this expansion is not stable. This instability 
comes about because the scheme does not conserve the time reversal symmetry of the Schriidi- 
nger equation. With a symmetric modification of the expansion stability is obtained. One way to 
formulate the scheme is to use second order differencing (SOD) to approximate the time 
derivative in eq. (2.1). Another formulation uses the symmetric relation: 

#(t + dt) -#(t - dt) = (eeiAdrlh - ei”d’/V)#(t) (2.11) 

and then by expanding 0 = exp( - ifi dt/li) and 0 * in a Taylor series the explicit second order 
propagation scheme is obtained: 

#(t + At) = #(t - At) - 2iAtAJ/(t)/A. (2.12) 

This formula is equivalent to the SOD form: 

a$ $(t+At)-$(t--At) 

at= 2At 
(2.13) 

This is the time propagation scheme used in the finite difference method of Askar and Cakmak 
[33] and also in the Fourier method [38,39,40]. The advantage of the method is that it can 
propagate Hamiltonians which are time dependent. 

Error analysis 
Because the Schrbdinger equation and also the SOD scheme are symmetric in time the error in 

propagation grows as 0( At3). If the Hamiltonian operation is Hermitian which is the case for 
both the FD method and the Fourier method the SOD propagations scheme preserves the norm 
and energy. A good way to investigate this scheme is to write it as a discrete mapping 
propagation scheme: 

1 - 4At2A2/k2 - 2i2;Atfi/tz I( 4*-l 
- 2iAtA/ti 1 q-2 i ’ 

where n is the index of the time step. The eigenvalues of this propagation matrix are: 

A,,, = 1 - 2At2fi2/h2 + 
l)1’2 2?ti [ A;p2 

(2.14) 

(2.15) 

Because X,X, = 1 this mapping is an area preserving mapping which is equivalent to the norm 
conservation (see next section) : 

(4~ I k+,> = const- (2.16) 
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In order to obtain the correct oscillatory solutions one obtains the stability criterion of the 
discrete map: 

AtW 
p-l<0 

A2 

i.e., 

At< “, (2.17) 
max 

where E,, is the largest eigenvalue of the discrete Hamiltonian. E,, can be estimated as the 
sum of the maximum potential and kinetic energ. For the Fourier method one obtains (for a 2-D 
problem) : 

E 

where Ax and A y are the spatial grid intervals. And for the FD method: 

E ii2 

(2.18) 

(2.19) 

(The difference between (2.18) and (2.19) comes from eq. (2.4) where the hight k values of the 
FD method have lower eigenvalues of the kinetic energy). If the time step exceeds the stability 
limit exponential solutions take over resulting in a numerical overflow. This fact can be used to 
empirically obtain the stability limit [38,39]. 

The norm and energy conservation of the SOD scheme is a consequence of the time reversal 
symmetry of the scheme and of the Hermitian property of the Hamiltonian operator both for the 
FD and Fourier methods. Consider first the conservation of the norm, eq. (2.1) is multiplied by 

*n. \c, * 

Next the conjugate of equation (2.1) is taken and multiplied by $” to get 

(2.20) 

(2.21) 

After subtracting (2.20) from (2.21) and the summing over all points of the mesh, the result is: 

(2.22) 
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Because fi is Hermitian the rhs vanishes, likewise eq. (2.13) implies 

- = ( Gn+l$*n + ,,b*n+l#n - #n#*n-l _ ,/,*“4,“-1)/z&_ 
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(2.23) 

The norm conservation will read: 

Re( #n+l I#“) = const. (2.24) 

The energy conservation is obtained in a similar way by multiplying eq. (1.1) by a $*“/at. The 
result is: 

Re(JI”+‘]fi]G’) =const. (2.25) 

Because of this norm and energy conservation the error in propagation accumulates in the phase. 
In order to obtain an estimate of this error consider the propagation of an eigenfunction +, with 
eigenvalue E,. The eigenvalues of the propagation matrix become: 

h,,, = 1 - (2.26) 

Comparing with the exact expression of e-2iEmAt/h, one finds that the error in propagation by the 
SOD method per time step is 

(2.27) 

Propagating N times this error accumulates N times. First one should notice that the error is not 
uniform and is large for large eigenvalues of $. To minimize the error in phase it is customary to 
choose a time step At five times smaller than the stability limit. At < A/5E,,. The resulting 
error for N steps becomes: error = N/375 which allows a few hundred propagation steps before 
error in interference terms become important. For calculations pertaining to a thermal surface, 
phase coherence is important only for relatively short periods of time. Therefore the SOD scheme 
is a good choice for these problems. One should notice that by shifting the energy and by adding 
a constant to the Hamiltonian one can predetermine the region in energy with minimum error. 

Although there are other existing ecplicit and implicit propagation schemes based on a Taylor 
expansion of the evolution operator U such as the Crank-Nicholson method [31] or an implicit 
split method [32], none have been used for surface calculations. 

The split time propagation scheme 
Feit and Fleck [41] have introduced a split time propagation scheme in which the kinetic 

operator and potential operator are used to propagate the wavefunction separately: 

e-ihAt/h ~ e -i(p2/2m)(At/2h) e-itiAt/211 e-ivAt/2h e-i(P2/2m)(At/2h) (2.28) 

Each of these propagations is done in a local representation: First, the wave is transformed to k 
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space by an FFT procedure; then multiplied at each grid point by exp[ - i(p*/2,)( At/2A)]; and 
then the wavefunction is transformed back to coordinate space by an inverse FFT procedure. 
Afterwards the wavefunction is multiplied by exp( - io At/2 tz), and one time step of propagation 
is complete. The next propagation step is done in reverse order the potential energy propagation 
before the kinetic energy propagation. 

Error analysis 
Norm is strictly conserved by the split time scheme, because each split time step is unitary. 

Error is due to the non-commutability of the kinetic and potential operators. Because of the 
alternating propagation scheme. The first term in the expansion At*[p*, 9]/(8mA*) cancel. 
Therefore errors are of O( At3). 

error = max 
i 

-i$ [O, [O, e’]], -ij$[B’, [P*, Q]])/h’ (2.29) 

This error accumulates in the phase and energy of the wavefunction. 

The Chebychev time propagation method 
For time-independent Hamiltonians, a propagation scheme exists which can eliminate the 

error in propagation almost completely [42]. The strategy chosen for the propagation scheme is 
to expand the evolution operator 0 = exp( - ifi d t/h) in a polynomial series in the operator: 
- ifi dt/A. The problem then becomes a choice of the best polynomial approximation for this 
series. It has been shown [20] that this problem reduces to approximating the scalar function eZ 
by a polynomial expansion where z belongs to the domain which includes all the eigenvalues of 
the operator -ifi dt/A. It is known [43] that the best approximation is achieved by an expansion 
based on the complex Chebychev polynomials +k. (The reason is the uniform character of the 
complex Chebychev polynomials in distributing the errors in the interval [-i, il.) These 
polynomials are a complex version of the Chebychev polynomials and they are defined as: 

G,(W) = ikTk( -iw), w E [-i, i] (2.30) 

and the Tk are the Chebychev polynomials of the first kind. The Qk are orthogonal on the 
imaginary interval [ -i, i] with respect to the following inner product. 

(f, g) = -iii f(w)g*(w) da. 

-i/m 
(2.31) 

The domain of the eigenvalues of the Hamiltonian 6I = b2/2m + 0 depends on the discretization 
scheme. In the Fourier method the eigenvalues are real because the Hamiltonian is Hermitian 
[28]. (This is also true for the FD method.) The domain of the eigenvalues can be estimated as 
follows. The maximum kinetic energy is P&/2m. If the minimum of the potential (represented 
on the grid) is Vd, and its maximum V,,, the range of the eigenvalues of fi is 

h2T2 

2m( AX)* 1 (2.32) 
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Where Ax is the spatial grid interval in one dimension, and the Fourier method is assumed. The 
scalar function z is choen to be in the range of ih dt. Defining 

R=dt 
A2rr2 

2m Ax2 
+ V,ax- G = Vmi,, dt/h 

and 

w=(z-iR-iG)/R 

one obtains: 

ez = ei(R+G) eRw 
> wE[-i,i]. 

At this step eZ is expanded in the Chebychev series: 

eZ= 5 Q,,(w), 
k=O 

where: 

do = ei(R+G)CkJk( R) 

(2.33) 

(2.34) 

(2.35) 

and C, = 1 for k = 1 and C, = 2 for k > 1. Jk are Bessel functions of the first kind of order k. 
The high accuracy of this expansion can be traced to the fact that when k is greater than R, 
Jk( R) goes to zero exponentially fast. Thus the degree N of the expansion has to be at least R. In 
this work N was chosen to be aR where (Y > 1. The value of (Y depends on the degree of 
accuracy needed and can be chosen to bring errors below the accuracy of the computer. The 
propagation scheme is obtained by substituting -ifi dt/tt for z in (2.34) and using (2.35) 

6(dt) = 2 a,$*( -t”‘), 
k=O 

(2.36) 

where the Chebychev polynomials in the operator ifi d t/AR are computed by the recurrence 
relation satisfied by the polynomials @k(g) 

+,#) = 2’+&,(@ + @k-2@) (2.37) 

and 

+() (f) = i, +i (iz) = f, 

where f is the operator -ifi dt/hR and where I’? is shifted by -AR/(2dt) + Vmin, in order to 
distribute the eigenvalues evenly in the interval [-i, i]. As a result R + G = 0 in eqs. (2.34)-(2.36). 
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The basic algorithm is then used as a one step propagator obtaining the solution at the final time 
t + dt directly from the initial data, or as a marching scheme if one is interested in intermediate 
results. The size of the time step dt depends only on the info~ation one wants to get out of the 
numerical procedure. R and the order N are determined accordingly. The refinement of the 
scheme is then based on increasing the order of the expansion and not by decreasing the time 
step. 

A modification of the Chebychev method enables to obtain bound states on the grid. This is 
done by propagating an initial wavefunction in negative imaginary time. This wavefunction 
relaxes to the ground state. Excited states are obtained by projecting out the lower states from 
the ~~ltonian operation and repeating ‘the propagation 1441. 

Error Analysis 
In the above Chebychev propagation scheme errors are both in phase and in energy. The 

errors are distributed uniformly in the domain of the eigenvalues. Because of the exponential 
decay of the Bessel expansion coefficients this error can be chosen to be lower than the 
numerical precision of the computer by using enough expansion coefficients. 

2.5. Examples using the FD method: 2-D scattering from a dynamical surface 

Agrawal and Raff [29] and Smith, Agrawal and Raff [30] introduced the FD method to surface 
scattering. The system that was investigated is a model for the scattering of a beam of hydrogen 
atoms by a dynamical tungsten surface, 

The initial wavefunction was chosen to have a uniform momentum distribution in the 
direction of the beam and a flat distribution in coordinate space perpendicular to the motion. If 
the incident angle is Bi, then 

\IIbv Y, 0) = G(q,)F(q,), (2.38) 

where 

q,=xcos8,+ysin8, 

and 

q,=ycosB,-xsin8. 1) 

x is the direction parallel to the surface, and y perpendicular to it. The following functions were 
chosen for G and E 

G(q,) = 
eYiko@ sin~A~(q~ 7 q:)) 

( 41 - ql”)ww” 
(2.39) 
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and 

F(q,)= t"'- 

i 

‘I2 for -alq,<a, 

for q2-= -a or 92>aT 

where 

a==(R,/2 + Ay) COS Bi 

and R, is the equilibrium lattice spacing, A grid of 240 X 520 was used with Ax = Ay = 0.2 A 
covering an area of 12 x 26 A*. Fixed boundary conditions were used, which is the reason for the 
large grid to ensure that the wavefunction did not reach the boundary during the propagation. 
The initial average energy was ( Fi) = 0.089 eV. The average momentum as:ociated with this 
energy required a grid with 0.165 A spacing compared to the used grid of 0.2 A. This meant that 
the calculation included much numerical dispersion. The choice of the initial wave function was 
not optimal. A uniform dist~bution in momentum space in the q1 direction meant that the wings 
of the distribution in coordinate space decay only as l/q,. This meant that a significant portion 
of the wave is on the surface before the beginning of the collision. Also the rectangular 
distribution in coordinate space in the q2 coordinate meant a momentum distribution of the 
shape 

sin( a~2)/~2(~a)1'2 (2.40) 

having significant contributions from high momentum states for which numerical dispersion is 
high. 

The potential used in the calculation was a time dependent potential describing the thermal 
motion of the solid. The surface atoms were assumed to move according to a harmonic force 
field (see section 4). Only a set of primary atoms were moved, three in the case of the two 
dimensional surface calculation [29], and nine in the case of the 3-D surface calculation [30]. A 
Runge-Kutta propagator was used to propagate the classical motion describing the motion of 
the solid atoms. The lattice motion was assumed to be classical and unperturbed by the incident 
atomic beam. Such a treatment does not conserve energy for the total system. The atom surface 
potential was chosen as the sum of pair-wise W(12, 6) potentials with minimum position CJ = 2.74 
A and well depth E/k* = 38.5 K. The initial surface state was taken to be the symmetric set of 
outer classical turning points with initial surface energy equipartitioned into all pairwise bonds. 
Phase averaging over initial surface states has been omitted. 

The propagation of the initial wavefunction was carried out by the FD method of Askar and 
Cakmak [33] with a time step of dt = 4 X lo-l6 s. Upon the completion of the collision the wave 
function was analysed by calculating the average final kinetic energy, the probability density and 
the probability current density. Also a Fourier transform to momentum space was carried out to 
examine the momentum distribution. 

A linear relation between the final kinetic energy, and the surface temperature and initial 
kinetic energy was found for both 2-D and 3-D surface calculations. (The wavefunction in both 
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cases was 2-D.) This is in qualitative agreement with the experimental result of Janda et al. [45] 
for Ar scattering from a tungsten surface. In the momentum distribution inelastic peaks from 
multiphonon processes could be identified resembling the power spectra of the solid. 
Debye-Waller factors were extracted by calculating the average momentum transfer in the z 
direction. 

To summarize: this work is significant in the sense that it demonstrates the possibility of using 
grid methods to obtain physically relevant information corresponding to scattering from thermal 
surfaces. The actual numerical results have only semiquantitative value because of the large 
numerical dispersion and undersampling. 

2.6. Examples using the Fourier method in surface scattering 

The Fourier method has been applied to scattering both from static as well as from dynamical 
surfaces. 

Scattering from static surfaces 
2-D calculations using the Fourier method have been applied to scattering from stepped 

surfaces [40], disordered surfaces [46,47] and surfaces with impurities [48]. Also surface calcula- 
tions using the Chebychev method were reported (42,501. In all cases the initial wavefunction was 
constructed by a Gaussian in the z direction and a plane wave in the x direction {and y direction 
for 3-D calculations), utilizing the periodic boundary conditions of the grid. First, a comparison 
was done with established coupled channel calculations {CC) 1511. A two-dimensional repulsive 
Lennard-Jones-Devonshire potential was employed [40] with parameters of the He-W system. A 
small grid of 32 X 32 with Ax = 0.97125 a.u. and AZ = 0.6 a.u. was used. In order to compare to 
fixed energy CC calculations a wide Gaussian in the z direction was used. The Gaussian width 
was 7 a.u. and the mean momentum was 3.43 a.u. This means a relative spread in energy of 
0.17%. The propagation was done by the SOD scheme was At = 50.0 a.u. Diffraction peak 
intensities were within 0.4% of the CC calculation. Even more accurate result were obtained by 
using the Chebychev propagation method [42]. A grid of 64-64 was used, with Ax = AZ = 0.6475 
a.u. The propagation was carried out for 80000 atomic time units which means a Chebychev 
expansion of order 580. The third diffraction peak could be resolved althou~ it is by six orders 
of magnitude less than the specular peak. Also the results compared very well with the CC 
calculations. In these calculations one should notice that the mean momentum was 70% of the 
maximum, with a spread of 4%. This means that the error due to the finite momentum 
representation is minimal. 

The same method was then used to study surface scattering from very rough surfaces. The 
system He-Cu(l, 1, 7) was studied, where the unit cell is large due to the stepped structure. Both 
for high and low energies multiple rainbows could be distinguished. For low energy selective 
adsorption occurred. By employing absorbing boundary conditions the rate of adsorption was 
calculated. The fraction adsorbed (13.7%) was found to be larger tan for classical trajectory 
studies (8.4%) at the same energy. 

The effect of an isolated impurity on the diffraction pattern was also studied by the same 
method 146,471. The system studied was the He-Cu system with an Ar impurity. A Lennard- 
Jones-Devonshire potential was used with a pair potential between the Ar and the He atoms. 
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The main results are: The diffraction peaks of the pure He-Cu system prevail but a broad 
shallow background peak is superimposed on each diffraction line. Diffraction peaks due to the 
impurity could be resolved. These peaks correspond to classical rainbows. Scattering intensities 
thus contain useful detailed information on impurity location. 

A study of IIe scattering from a mixed disordered surface overlayer consisting of two species 
was carried out [48]. This is a first example of an exact scattering calculation from a disordered 
surface. The surface was modeled by 18 Xe or At atoms chosen randomly from a distribution of 
different average compositions. The results were averaged for the different possible atom 
dist~butions. The potential was a sum of atom-atom gas phase pair potentials. The main results 
are: Peaks at the Bragg position of the pure Xe layer persist even for the 50% Xe: 50% Ar. On 
the other hand, the peaks at the pure Ar positions disappear already for the 80% Ar : 20 Xe ratio. 
For 70% Ar : 30 Xe all diffraction features have collapsed by the intensity has some structure of 
weak oscillations due to scattering from structure of the type Xe-Ar-Ar-Xe. 

These studies showed the ability of the Fourier method to calculate diffraction patterns from 
very large finite surfaces clusters. Due to the continuum of the momentum states this calculation 
would be pro~bilitively expensive in a CC method. 

The 3-D parallelogram 
In 3-D calculations the unit cell may have a skewed shape. It is desirable to match the grid to 

the unit cell using periodic boundary conditions to represent an extended perfect surface. This 
unit cell forces a non-Cartesian set of coordinates in x and y. The Fourier method is able to 
cope with this situation [27,49]. The kinetic energy operator is still diagonal in momentum space 
but includes mixed derivatives in x and y which are calculated by multiplying the transformed 
wavefunction by ik,ik,. The Laplacian in these coordinates has the form 

a2 2 y7L-.-- - 
i 

-ta 
ax2 ay2 

-2cospaa 
1 

1 a2 
ax aY sin2p -f$?’ (2.41) 

where /3 is the skewing angle of the unit cell. 3-D calculations of He scattering from metal and 
rare gas surfaces are in progress. Also bound states of He on a Pt(ll1) surface were calculated 
using the Chebychev bound state method [44]. 

3-D ~otationa~~ inelastic molecular surface scattering 
3-D H, surface scattering is a major computational problem. There are six degrees of freedom 

which have to be treated simultaneously. On the other hand good experimental data exist which 
makes it worthwhile to overcome the computational challenge. The Fourier method has been 
applied to the problem [49,50] as well as CC [52] and semiclassical methods [53]. A straight 
forward approach would put a grid on r, 6 and $. But for low energy collisions it was found that 
a hybrid method which uses the Fourier method for the translational degrees of freedom and an 
expansion in Yf,( 8, #) for the rotation is more economical. The wavefunction has the form: 

rc/b, Y, 2, 6 44 = c qmw +p>~~,b, Y, 2, t) 
jm 

(2.42) 



80 R.B. Gerber et al. / Wavepacket methodr in surface scattering 

A set of time dependent coupled equations is obtained by substituting eq. (2.42) in eq. (4.1) and 
then multiplying by y.Ym, and integrating over 9 and Cp. In matrix form the equation become: 

(2.43) 

where R is the vector x, y, z, ? is the identity matrix, 2 is a column vector, r” is a diagonal matrix 
with the elements cj =j(j + 1)/2py2, and a(R) is the potential energy matrix: 

‘/tm’,jm (R) = P”/” qc,(t9, +)V(R, 8, +)$(f?, +) sin 8 df? d+. (2.44) 
0 

The time propagation has been done by the Chebychev scheme equation (2.36) which has been 
adopted to integrate coupled equations. This technique has been termed by Mowrey and Kouri 
as the close coupling wavepacket approach (CCWP). 

An important observation of Mowrey and Kouri is that from one time dependent calculation 
scattering amplitudes can be obtained for a range of energy values. In the asymptotic region far 
from the potential energy can be determined by the momentum alone. The transition probabili- 
ties are obtained by calculating the moments of the final wavefunction with the asymptotic 
eigenfunctions of the Hamiltonian. The asymptotic wavefunction which describes a molecule in 
the rotational state j’m’ and diffractive state 1’ and n’ with total energy E is: 

+;Y,,(R, 0, $,) = ( kf:“;,)-1’2 ei(k~~;:r+(K+Gr”)R-E’/h)~,m,(e, $), (2.45) 

where: G,, = (2&/a, 21~n/b) is the reciprocal lattice vector and 

Aki’,$ = [2m( E - ej) - (K+ ~t~)‘]~‘~. 

Multiplication of eq. (2.42) by the complex conjugate of (2.45) and integrating over spatial 
coordinates gives the amplitude for the transition as: 

LZ~,~,,,~,,~~,~( E) = ( k~;~,)-1’2Se-i(ki:;:i+(aiGr.)R-tl/h,Xim,~(R, t) dR, (2.46) 

x carried the index of its initial state. The S matrix element for the transition from state j, m, 0, 

0 to j’m’, 1, n becomes: 

Sj.m,O,O~~'.m',l,n(E) = 
aj'm'l'n', jmln CE ) 

[ C I Qjrmfi’k’,jmnl(E) I 2]1’2 ’ 

(2.47) 

Results 
The method was applied to scattering of H, from a flat and corrugated surface. The potential 
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used was the surface-dumbbell model: 

v(R, 8, +) = 2A e-a’[cosh(ay cos e/2) 

+p(cosh( (YT cos 8/2)(cos(2~x/a) cos(qr sin 8 sin +/a) 

+ cos(2ay/b) cos( OTT sin B sin +)) 

+ sinh( ar cos 8/2)(sin(2Tx/a) sin( Tr sin 9 cos $/a) 

+ sin(2T_y/b) sin( 7Tr sin 0 sin $/b)))] , (2.48) 

where (Y = 1.94012a;‘, r = 1.4011a,,a = 4A &b = 2A A and A = 1.5 eV. For the flat surface 
calculation j3 = 0. The initial wavefunction was a Gaussian in z in the j = 0 m = 0 state. The 
grid was of 128 points with an interval AZ = 0.25 a.u. The initial position was 8.0 a.u. with a 
width of 1.118 a.u. The average energy was of 0.1 eV which corresponds to an initial momentum 
of - 5.195 au. Considering the grid interval of AZ = 0.25 a.u., the maximal momentum which 
could be represented on the grid is 4a. Considering the mean energy of the calculation the results 
of the computation are converged. The results were compared to CC calculations with an 
exeelent agreement. One run was sufficient to obtain results in a wide range of energy. 

Basically the same method was applied to a corrugated surface with p = 0.1. The other 
potential parameters as in the flat surface calculation. The grid parameters were: A grid of 
8 x 8 x 64 with 7 rotational channels, Ax = 0.944804 a.u., Ay = 0.472433m a.u., AZ = 0.25 a.u. 
The same initial wavefunction was used. A comparison was made with CC and semiclassical 
calculations and the CCWP method was the most exact differing only a few tenth of a percent 
from the CC calculation and 29% from the semiclassical calculation. 

Comparing the amount of computer time needed to carry out the calculation the CC 
calculation took approximately 12 times longer. Increasing the number of rotational channels to 
j = 4 (15 channels) the calculation was feasible for the WPCC method (50.4 minutes of CPU of 
FPS-164) but prohibitively expensive for the CC method which scales as the number of channels 
cubed (approximately 40 hrs). As a conclusion it seems that the CCWP is as accurate as the CC 
method and much more efficient especially when a large number of scattering states are 
participating. 

3-D Scattering from dynamical surfaces 
This type of calculation is quite close to a true simulation of an inelastic atom-surface 

scattering. This means that the surface phonons are included in the calculation. The system 
chosen [54] was He on Pt(lOO). The initial wavefunction was chosen to be a Gaussian in z and a 
plane wave in x and y. For scattering calculations the wavefunction was positioned out of the 
reach of the surface potential z0 = 16.5 a.u. For desorption calculations, the wavefunction was 
put in the potential well. A grid of 64 X 16 X 16 was used with: Ax = 0.45 a.u. A y = 0.45 a.u. 
and AZ = 0.4 a.u. Absorbing boundaries were used at the far end of the grid. The potential was a 
sum of pair potentials between the he and the first layer of Pt atoms plus a background 
contribution of a (3, 9) potential in the z direction. The calculation was carried out using a mixed 
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quantum-classical method where for the He coordinates a wave packet representation was used 
and for the heavy Pt atoms classical mechanics were used. Such mixed classical-quantum 
calculations are discussed in section 4 of the review. 

To take into consideration thermal motion of the surface, a generalized Langevin approach 
was adopted. The equation of motion of the surface motion were the same as in the work of 
Grimmelman, Tully and Helfand [55]. The propagation method was SOD combined with a 
fourth-order Runge-Kutta propagator for the classical Langevin motion of the surface atoms. A 
time step of 5 a.u. was used which was determined empirically as l/5 of the stability limit. 

Results 

Diffraction peaks for two temperatures were calculated. The effect of the temperature was to 
broaden the peaks due to inelastic processes. Strong out-of-plane scattering was observed 
indicating the importance of full 3-D calculations. 

Desorption calculations were performed and compared to 1-D classical and quantum calcula- 
tions. Absorbing boundary conditions were used and the desorption rate was calculated by the 
loss of amplitude as a function of time. Two mechanisms for desorption were identified: A low 
temperature ladder mechanism, and a high temperature direct mechanism. The 3-D rate of 
desorption was found to be 10 times slower than the 1-D rate pointing to the dominant role the 
out-of-plane modes contribute to desorption. It is important to emphasize the ability of a 
quantum mechanical calculation to describe the rare event of desorption naturally. 

For lower temperatures a quantum mechanical treatment of the phonons must be carried out. 
A 1-D model calculation of energy accommodation for low temperatures can be found in ref. 
[46]. This calculation shows the importance of sticking to the correct calculation of energy 
accommodation in low temperatures. 

In this work the possibility of a 3-D simulation of scattering from a thermal surface was 
demonstrated. A moderate grid of 16 x 16 x 64 was adequate to describe an experimentally 
realistic energy (the initial momentum was a third of the maximum allowed by the grid spacing). 
The classical description of the motion of the surface atoms is realistic for high temperatures but 
would need modification for describing scattering experiments done on cold surfaces because of 
the zero point motion of the surface atoms. 

2.7. Comprehensive assessment of grid methods 

Considering the vast amount of experimental and theoretical effort devoted to surface 
scattering and the ability of experiments to resolve high order diffraction peaks, grid methods are 
only at the first stage of their development A critical evaluation of grid methods is due, 
considering the following aspects: 1) Adaptability to realistic experimental surface scattering 
problems. 2) Relative comparison of different grid methods. 3) Comparison of grid methods to 
alternative schemes such as CC on the one hand and Semiclassical and Sudden approximation on 
the other. 

Experimental problems for which one would expect grid methods to be advantageous are 
limited to low and moderate momentum. This means either a low mass of the colliding particle 
like He or H, or very low energy, measured from the minimum of the potential well. Systems of 
this type are He and H, scattering from ordered and disordered surfaces. This experimental 
situation will be used for comparison between different grid methods. 
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The grid 
The grid size is a critical parameter in determining the feasibility of a calculation. This size is 

determined by the surface to be covered and by the maximum momentum of the incoming 
particle acquired in the potential tiell. The surface grid size varies from one unit cell to an area 
consisting of 20-30 atoms in a moderate disordered surface calculation. The momentum is 
determined by the mass and energy of the incoming particle. This limits most calculations to H, 
He or H, scattering. Energy, typically 0.1 eV, is mostly determined by experimental considera- 
tions. This means for He a momentum of = 7 a.u. For an FD calculation needing 10 grid points 
per wave length the grid displacement would becomes Ax = 0.04 a.u., while for the Fourier 
method a displacement of Ax = 0.2 a.u. would be adequate. To cover a unit cell of 4 X 4 a.u. and 
a distance of 16 a.u. in the z direction would require a grid of 100 x 100 x 400 = 4000000 points 
for a finite difference calculation and a grid of 16 x 16 X 64 = 16 384 for the Fourier method. In 
both methods the storage requirements are at least four times this number. Moreover, because 
the wavefunction is complex the storage requirements are doubled. On existing computers this 
fact prohibits the use of FD methods for 3-D calculations because of limitations on storage. 
Considering scattering from disordered surfaces which is currantly being studied a grid of 
64 x 64 x 64 is being used. This means that only the Fourier method is feasible. 

Hamiltonian operation 
Two issues should be considered; accuracy and efficiency. For very accurate calculations the 

Fourier method has no alternative. The convergence of the Fourier method upon increasing the 
grid is exponential [37] while the convergence of the FD method is only cubic. 

Efficiency depends on the number of operations. In the FD method two multiplications and 
two additions per grid point complete the operation. In the Fourier method 2 log,N operations 
are needed [35], which is significantly more operations. But considering that the FD method 
requires 5 times more grid points per spatial dimension the number of operations becomes equal 
for 2-D calculations. For 1-D calculations the Fourier method is inferior and for 3-D calcula- 
tions the Fourier method is superior from the point of view of numerical efficiency. These 
considerations are altered by the existence of very fast machine dependent FFT routines, as on 
the Cray, CDC 205 or the FPS-164. These routines are up to 10 times faster than equivalent 
Fortran routines. Moreover the introduction of new parallel computers such as the hyper cube 
architecture, optimizes the data flow in the FFT routine. This fact can reduce the numerical 
effort from N log N to log N with N parallel processors. This availability of optimized FFT 
routines shortens the period a code can be optimized on a new architecture, and eliminates 
expensive assembly coding. 

Time propagation 
For time-dependent problems the Chebychev propagation scheme is the choice scheme 

because it is more efficient and more accurate than other methods. This method is also adaptable 
to the FD scheme. Together with the Fourier scheme for calculating the Hamiltonian operation, 
an accurate and ‘highly efficient general method thus exists for solving the time-dependent 
Schrijdinger equation. One of the main advantages of this combined method is the slow increase 
in numerical effort with the increase in the size of the problem. As a function of M (the total 
number of grid points) numerical effort grows as O(M log M). As a function of the energy, 
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numerical effort grows as 0(E312). This is a slow rate compared to other methods. 
For scattering from time-dependent potentials, the SOD scheme has to be used with the 

drawback of reduced accuracy and speed. 
The basic features which make these methods adaptable to surface scattering is the flexibility 

of these methods to describe the single collision event in which an initial state evolves to a 
multitude of final states. This description is equivalent to one column of the 6 matrix. Moreover 
scattering matrix elements for a whole range of energies can be obtained from one time 
dependent calculation. 

3. Semiclassical wavepacket computations 

3. I. Physical considerations 

Classical dynamics is often an adequate tool for treating various types of molecule surface 
collision processes. Basically, typical conditions realized in molecular beam scattering experi- 
ments (e.g., the energies used) imply that the classical limit is approximately attained, at least in 
the sense that the de Broglie wavelength is small on the scale of the potential range. However, it 
is essential in several respects to be able to provide a treatment at the quantum mechanical level: 
(1) There are quantum effects such as tunneling, interference etc. that may play a role. It should 
be noted that interference, for instance, can be pertinent also to cases where the incident 
momentum is high (short de Broglie wavelength). (2) Even when interference, tunneling etc. are 
absent, a quanta1 treatment may be required. Such cases typically occur when the experiments at 
hand focus on individual quantum states e.g. the diffractions measured and resolved in light 
atom scattered off periodic surfaces. A quantum mechanical approach is also necessary in the 
study of specific rotational states measured in molecule-surface scattering. These examples 
emphasize that it is imperative in studies of surface scattering to have a method at hand that may 
handle both classical and quantal effects. Semiclassical methods fulfill this goal by providing an 
elegant and efficient route for treating this combination of classical and quanta1 motion. 

Two alternative avenues of approaching the semiclassical limit of quantum mechanics to 
surface scattering have emerged. The first involves time independent scattering theory. Expan- 
sion in powers of tZ [57,58] leads to a WKB type of approximation. A more general treatment has 
used the correspondence between the stationary phase approximation apphed to the quantum 
mechanical propagators and classical paths [59-611. The classical S-matrix approach has been 
applied to the surface scattering problem by Doll [62,63] and by Masel et al. [64,65]. The second 
trend involves the idea of a time dependent wavepacket picture. The wavepacket approach to 
semiclassical scattering has been introduced to molecular dynamics by Heller and his coworkers 
[66-811 and into surface scattering by Drolshagen and Heller [82-851 and used by Drolshagen 
and Vollmer [87]. A similar approach has been suggested by Weissman and Jortner [86]. This 
pioneering work utilizes the localized nature of classical motion. Semiclassical wavepackets are 
thus governed at each instant by a small portion of the potential only. 

The purpose of a semiclassical wavepacket theory is to solve the Schrijdinger equation by 
representing the wavefunction in terms of approximate wavepackets having an apriori chosen 
form. These approximate wavepackets (e.g. Gaussians) depend on several time dependent 
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parameters. The “time evolution” of these parameters often resembles classical equations of 
motion, but this alone does not mean that the physical classical limit has been reached. Rather, 
important quantum mechanical effects may still be present, e.g. interference. What is gained is 
some intuitive physical insight as well as computational efficiency usually present in classical 
mechanics. This point has been emphasized by Metiu and his co-workers [88-921 when applying 
the wavepacket methods to surface scattering. 

The semiclassical limit is properly reached only under more restrictive conditions. As asserted 
by Heller [66], the correspondence between classical dynamics and quantum mechanics is 
obtained for localized wavepackets on smooth potentials. This correspondence has led Heller to 
use locally harmonic potentials with narrow wavepackets. Gaussian wavepackets prove to be a 
natural form to chose in this case, as for harmonic potentials an initial Gaussian wavepacket 
remains Gaussian. 

Consider the collision of a structureless particle (atom) with a rigid nonvibrating surface, 
which for simplicity is taken to have a square lattice structure. To treat such processes, the initial 
states are represented by a superposition of wavepackets. The wavepackets are propagated and 
after the collision they are projected onto the final asymptotic states, the center of the individual 
packets following classical trajectories. The initial positions of these centers are chosen to form a 
grid ,that covers the surface area of one unit cell. The initial finite superposition of Gaussian 
wavepackets G(r, k, t) takes the form [82,83] 

1 ‘in(r, k,, to) = - 
4-G 

exp[ik,-r] =c F Gp(r, $, kg, to), 
p=l 

(3.1) 

with k,P being the initial momentum of an individual Gaussian wavepacket chosen to be identical 
for all p’s i.e. k,P = k, in (3.1). In addition, the parameters r[ = (x,P, y,$‘, zgP) are chosen such 
that z[ = zO and -a/2 I xi I a/2; -a/2 < y,$’ I a/2; a being the lattice constant i.e. xOp, &’ 
cover the surface area of the unit cell, and zO is the distance from the surface and has to be taken 
sufficiently large i.e. far from the surface to be outside the range of the potential. After the 
collision has been completed at time t, ~ik;, evolves into \k,,, which is assumed also to be 
expressible as a superposition of propagated Gaussian packets: 

(3.2) 

The equations of motion for the parameters describing the Gaussian GP are presented in 
subsections (3.2) and (3.3). It will be seen that the equation for the parameter 5 is closely related 
to classical dynamics. 

The semiclassical S-matrix can be obtained by projecting ?P,,,, onto qiki, in the usual way in 
scattering theory: 

Defining S in terms of individual diffraction states such that 

(3.3) 

%“h) = C%, l -exp[i(k,““z + (K+ G,,)R], 
mn &= (3.4) 
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where K = (k,, k,), R = (x, r) and the reciprocal lattice vector G is given by: 

G,,=(Ak,, Ak,)=(m$, +) (3.5) 

and k,“” is given by 

)k,““j* = k* - (K+ Gmn)*, (3.6) 

S,,,, is the scattering matrix element and 1 S,,,, I* is the probability for scattering into the final 
diffraction states (m, n). 

The scattering matrix elements S,, may be obtained by matching the propagated superposi- 
tion of Gaussian wavepackets eq. (3.2) with the known asymptotic form eq. (3.4) to give: 

P-7) 

where k”” = (kz + m2q/a, k.z + n21~/a, k,““). The integration in eq. (3.7) may be performed in 
closed form for \k,,, of eq. (3.2) as it amounts to Fourier transforming the Gaussian functions GP 
in (3.2). c in (3.2) and c’ in (3.7) are constants containing the normalization factors as well as 
some parts of the phase, and therefore do not affect the scattering intensities. 

The ensuing section is organized as follows. In subsection 3.2 we review the usage of locally 
quadratic potentials as introduced by E.J. Heller. Subsection 3.3 discusses the Minimum Error 
Method (MEM) introduced by Metiu and his co-workers to extend the original pioneering work 
of Heller, (3.2) and (3.3) are meant to provide the working equations of the methods. In (3.4) we 
include a discussion of the approximations involved in the semiclassical wavepacket methods and 
examine their reliability and applicability. Subsection (3.5) describes the numerical implementa- 
tion of the semiclassical methods. In (3.6) we present applications to stepped crystalline surfaces, 
scattering from imperfect and disordered surfaces and collisions with a linear vibrating chain. 

3.2. Locally quadratic potentials and the equations of motion for systems of several variables 

Following Heller 166-851 let us assume that the scattering of an atom from a static surface 
may be described by an effective Hamiltonian 

Heff( t) = g+?&J + Tff(q), 

where vff(q) replaces the exact potential V(q). vff(q) is a time-dependent 
obtained by a Taylor expansion of V(q) about the point qr at time t. 

y”(4) = J%l,) + wdb7 - 4J + a7 - 4t~w%)(q - 4th 

(3.8) 

harmonic potential 

(3.9) 

It will be seen later than qr has the significance of a classical trajectory describing motion of the 
wavepacket center. 
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It is well known that for harmonic potentials, nonstationary Gaussian wavefunctions remain 
Gaussians. The form of the wavepacket is taken to be 

(3.10) 

The classical coordinates qr and momenta pt give the central location of G(q, t) in q space and 
the Fourier Transform \k(p, t) in p space, respectively. A, is a complex matrix giving the q 

distribution spread and the q,qj correlation of the wavepacket. The complex scalar yt gives the 
normalization and phase of the wavepacket. 

Inserting (3.10) into the time dependent Schriidinger equation 

ift ‘G(q, t) 
at 

= Heff(t)G(q, t) 

leads to the following “equations of motion” for the parameters of the wave packet 

aHeff 
4,= ap 

p=p = m-lP*, 
, 

eff 

d, = - “k 4’4, = - wzt)7 

(3.11) 

(3.12) 

(3.13) 

A, = - 2A,m-‘A, - 2 V”(q,), (3.14) 

i; = itz Tr( rn-‘A,) +p/4,-E, (3.15) 

where E = iptmP1pt + V(q,) is the classical energy. If the true potential in (3.9) is at most 
quadratic i.e. V(q) = vff(q) then the eqs. (3.12)-(3.15) give the exact solution of the problem. 

Heller has derived eq. (3.9) and (3.10) and proposed their use for an arbitrary V(q). The 

potential is thus expanded about the instantaneous center of the wavepacket and q, and pt 

follow a “classical motion” on a smooth potential. 
The effective Hamiltonian Heff(t) may serve to construct a basis of Gaussian wavepackets 

Gj(q, t). Hence the exact wave function may be expanded in this propagated set in the form 

*(q, t) = 2 ‘j(t)G’(q, t)* 
j=l 

(3.16) 

If the propagated wavepacket ?P(q, t) remains localized about its center qt at all times, only a 
few (N) terms may suffice in eq. (3.16). 

The time dependent Schrijdinger equation for ?P(q, t) reads: 

i,aQ(q’ t, 
at = [T+ V(q)] ‘%, t) = (H’“(t) + [V(q) - v”(q)])\k(q, t). (3.17) 
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Using the Frenkel-McLachlan [93] Variational principle, Lee and Heller [78] obtain the time 
dependence of the coefficients dj(t) for a non-overlapping set of Gaussians from: 

This set of equations is integrated with the initial conditions d,(O) defining the initial wavepacket 

W&O). 
In the above described scheme, each basis function GJq, t) is independently propagated to the 

time t, as if its center moves along a classical trajectory. The advantage of such a scheme is that 
it retains the computational efficiency and physical intuitive insight of classical dynamics. 

3.3. Minimum Error Method (MEM) 

In the previous section we have seen how the choice of locally quadratic potentials has 
motivated the use of Gaussian wavepackets. One may wonder whether keeping the same 
Gaussian form yet relaxing the quadratic approximation in the potential, may improve the 
results. This line has recently been taken by Metiu [88-921 and his co-workers. 

Let us focus on the case of a single Gaussian G(q, t) in a one-dimensional space q. In the 
MEM one assumes that this Gaussian packet remains Gaussian at all times and one tries to 
minimize the error functional, defined by: 

Err = (3.19) 

Err is a quadratic form in the variables qr, pt, ai, and ?I where a(t) = A,,(t) for a one-dimen- 
sional Gaussian in eq. (3.10). 

The “equations of motion” for the parameters q,, pt, (Y,, yt are then: 

4, = p,/m 2 

A = ~=-~((;;~~))=-(~l~lG). 

ift 
+t -prqt - maf + +rnp: = - 

(WV, - Mz2) 

(M,M,-ML?) ’ 

d, + 
24 - @42K,-MA/,) = 1 a2 

m @4.& - ML3 
-,---&GIVjG)= -+ 

f 1) G , 

(3.20) 

(3.21) 

(3.22) 

(3.23) 
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vi(Q) = (G I v(d(q - Qji IG) = j-W’(d(q - Q)iG*(dG(d, (3.24) 

Mi(Q> = (Gl(q- QIilG) = Jdq(q- QIiG’(q)G(q), (3.25) 

J%(Q) = 1. (3.26) 

These equations reduce to eqs. (3.12)-(3.15) for a one-dimensional Gaussian, if one expands the 
potential V(q) up to a quadratic term about the center qt of the Gaussian. 

If the wavepacket is taken to be constructed of a sum of Gaussians, i.e. 

*(q, t) = CGj(q, t), (3.27) 
j 

one may repeat the minimum error procedure (3.19)-(3.26) and obtain “equations of motion” 
for the various parameters of the different Gaussians. The resulting equations may be sum- 
marized in the condensed matrix form: 

MX=V, (3.28) 

where 

M = (M(lo:~;).** 1, 

M(AnIBj)= /* dr(r-q,)“(r-q,)‘G,_,(r)*G,(r), 
J_ 

(3.29) 

(3.30) 

2 
Pl . itt . 

- -P141 - ;a’+ Yl 2m 

(3.31) 
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V= 

where 
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: v(10 1 io) 
i=l 

5 v( NO 1 i0) 
i=l 

: V(ll] io) 
i=l 

2 V(Nl(i0) 
i=l 

V(An I&) = lx drV(r)(r- q/,)“(~- c#G,$(~)G,(~). 
--x 

(3.32) 

(3.33) 

3.4. Discussion on the approximations 

The minimum error method (MEM) provides the best set of equations for a wavepacket 
constructed from a superposition of Gaussians. However, the physics of the problem may require 
the use of many Gaussians. In such a case, the complexity of the problem may increase rapidly 
so that eventually one is led to propagate an enormous number of parameters. For each 
individual Gaussian additional four parameters are added, c.f. eqs. (3.19)-(3.23). For a three-di- 
mensional problem the number of parameters is accordingly enlarged. The disadvantage of such 
a brute force approach is the loss of simplicity which motivated the use of the method in the first 
place. 

In this subsection we follow the presentation of Metiu and his co-workers [88-921, in which 
the approximations inherent in Heller’s work emerge from the more accurate MEM method. 

Two main approximations leading to Heller’s approach are: (1) The assumption that the 
Gaussians GJq, t) in (3.27) are linearly independent at all times (Independent Gaussian 
Approximation IGA). (2) The premise that each independent Gaussian is narrower’ than the 
spatial range over which the potential changes appreciably throughout the collision event. In 
such a case one may expand the potential in a power series around the center of the Gaussian 
and retain the terms up to quadratic, i.e. the potential is given by eq. (3.9). This approximation is 
termed the Local Harmonic Approximation (LHA). It is our task in this subsection to examine 
the two approximations mentioned above. 

Metiu and his coworkers have viewed these two approximations through the following 
physical analog. One may imagine a set of trajectories coupled to one another and to “external 
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time dependent fields” (or * - * aN, y1 . . - yN, which are responsible for the width and phase of the 
individual Gaussians. Independent Gaussian Approximation eliminates the coupling among the 
trajectories whereas Local Harmonic Approximation eliminates the coupling to the external 
fields. 

The Independent Gaussian Approximation 
As stated in the previous subsection, the various Gaussians in eq. (3.27) are coupled to one 

another in eq. (3.28). The Independent Gaussian Approximation (IGA) is obtained by neglecting 
all the coupling terms in (3.28)-(3.33). This amounts to using only the diagonal part of the 
matrix M(Am 1 Bn) = M(Am 1 An)S,, and using the matrix V( Am 1 Bn) = V( Am 1 An)6,,. The 
elements of the vector X are decoupled and the equation for each element is identical to eqs. 
(3.20)-(3.25) for a single Gaussian. 

The most obvious case for the IGA to be valid is when the Gaussians do not overlap. If the 
wavefunction of the problem splits into spatially disjointed pieces, the off diagonal integrals 
M( Am 1 Bn) and V( Am 1 Bn) above vanish. 

An example in which the validity of the IGA seems reasonable is the case where the integrals 
M( Am I Bn) and V( Am 1 Bn) oscillate rapidly around zero. The oscillatory behaviour may arise 
from the phases of the product of two different Gaussians, or from a time-dependent oscillation 
around zero due to the time-dependent phase value of these complex integrals. In both cases, 
IGA is justified if the oscillation of these integrals is characterized by a wavelength much smaller 
than the characteristic length of the quantities of interest (e.g. the width of the product of two 
Gaussians). 

A second valid application of IGA to apply is the case of imposing the Local Harmonic 
Approximation. This may be intuitively expected when remembering that a Gaussian wavefunc- 
tion maintains its form if the interaction is described by a quadratic Hamiltonian. As shown by 
Metiu et al. IGA indeed follows exactly when LHA is imposed. 

The Local Harmonic Approximation 
The Local Harmonic Approximation (LHA) is defined in eq. (3.9) where the potential is 

expanded up to quadratic terms around the center qt of the wavepacket. Clearly this expansion is 
valid as long as the potential changes slowly as a function of q around qr over a range equal to 
the width of the Gaussian. 

In order to quantitatively examine the LHA, Metiu et al. have compared it to the MEM 
equation. They show that by adding the next order term (third order) in the expansion of the 
potential and plugging it into the MEM eq. (3.21) one obtains: 

. . 
PMEM-PLHA _ 

PLHA 
(3.34) 

Here bLHA is given by eq. (3.13) and is the Local Harmonic Approximation for the momentum 
pt of the wavepacket fiMEM is the Minimum Error Method value of p, when the third order term 
is included in the expansion of the potential. The length l(t) of the Gaussian is given by 
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I(t) = (A/(2lmcu(t)) . 1/2 The error made by using firHA instead of PMEM is less than say 10% if 

12 a3v -- ii av 
4 aq3 4r % 

1 <o 

* 

1 

* 4, 
(3.35) 

Metiu and his co-workers have found by a similar analysis, that the errors in other quantities of 
the LHA (eqs. (3.12)-(3.15)) are smaller than 10% if (3.35) is satisfied, i.e. the LHA eq. (3.13), 
which describes the “classical motion” of the center of the Gaussian, is the one giving the largest 
error. 

It turns out that the expectation value, i.e. average of - llV/Clq in eq. (3.21) and the classical 
force - aV/aq 1 4, of eq. (3.13) can differ considerably in calculations of scattering of He atoms 
from solid surfaces [89] and for other systems involving significantly anharmonic potentials, and 
low collision energies. 

Both the original Heller and the MEM extension of Metiu are subject to the following 
limitations. 1) These methods are expected to fail in cases where resonances occur. Also for 
nonresonant scattering at low energies, the approximations used in the methods may breakdown. 
2) It is not clear how to apply or extend the methods to cases where the wavepacket breaks into 
many small peaces. 3) When the center of the wavepacket penetrates into the classical forbidden 
region, it is not possible to use these methods. These limitations are still open for further 
investigations. 

3.5. The numerical implementation 

In both the MEM and Heller’s original method, one is faced with solving a closed set of 
coupled-first-order differential equations, these equations determining the propagation in time of 
the values of the parameters of the Gaussians. Once these parameters are known at the 
asymptotic limit, the scattering information may be extracted, see e.g. eq. (3.7). To solve these 
equations one may choose one of the standard methods such as the Runge-Kutta, a 
Prediction-Corrector or the Adams method with variable step size. 

A grid of wavepackets has to be chosen to define the initial conditions. The choice of the 
width of the Gaussians is the most problematic one as it is rather arbitrary. It may be done by 
using a least-square-fit to a given initial state and determining the initial parameters. This 
procedure has proven efficient in minimizing the number of Gaussians to be used. Drolshagen 
and Heller [82-841 have observed that improved convergence may be achieved when the width of 
the wavepacket is chosen such that it “collects itself” in the vicinity of the target surface. This 
may be approximately obtained if one chooses the initial conditions in such a way that the 
original packet when propagated via the free hamiltonian is of minimal width at the surface. In 
any case the procedure of choosing the initial conditions is delicate due to the arbitrariness 
inherent in the particular combination of Gaussians used. One has to make sure that the final 
results are rather insensitive to the particular combination of Gaussians chosen. 

In the implementation of the MEM method, extra caution has to be exerted, to avoid the 
singularity of the equations when linear dependencies of the various Gaussians emerge. The 
problem is that at a particular time the set of Gaussians may behave perfectly well in 
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representing the wavefunction, but at a later (or earlier) time the representation could be 
disastrous due to linear dependencies. This demands the manual interference of the programmer 
in the course of the computation - an undesirable feature. 

Another source of numerical difficulty is the quadratic dependence of the width parameter in 
eqs. (3.14) or (3.5), i.e. the term containing (Y,. 2 This term demands very small time steps to 
account for the oscillatory behaviour. In some cases this oscillatory behaviour leads to a dramatic 
failure in the attempt to solve the differential equations. These problems are caused by the 
instability of the equations due to the cllf term. A transformation designed by Heller to overcome 
this difficulty introduces two new matrices X, and 2, in such a way that A, in eq. (3.14) is given 
by: 

A, = +X,z,‘, (3.36) 

where 

2, = m-lx,. (3.37) 

Inserting (3.36) into (3.14) one finds: 

f, = - .“( &)Z,. (3.38) 

Equations (3.37) and (3.38) are first solved with the initial conditions +X,, = A,, 2, = 1, and A, 
is then determined from (3.36). Direct solution of the coupled matrix equations (3.37), (3.38) has 
shown best numerical stability at low scattering energies and high surface corrugation. At higher 
energies it has been shown that the matrices X, and Z, may be extracted better directly from 
adjacent trajectories. This may be seen by inspecting the transformed Hamiltonian 

H = $Xp-lx, + Z,V”( q,)Z, (3.39) 

which results in the following equations for X,, Z,: 

I 

x* la,,1 aP f 
ah 4. tie po 2AQ I” ’ 

zt =&a4 * 
\ I 

I I f 
ape,, %P,,, 1 , 

(3.40) 

The partial derivatives in eq. (3.40) may be constructed directly from ordinary classical 
trajectories, centered about r0 and p,,. For example finite differences may approximate these 
derivatives. 

3.6. Applications 

The discussion in the present section focuses attention on diffractive scattering from a static 
crystalline surface and on a model for collisional excitation of surface vibrations [82--S]. First 
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the test case of He + LiF scattering is presented and semiclassical calculations are compared to 
quantum mechanical ones. Next, the more challenging cases of diffraction from surfaces with 
imperfections are considered. Various stepped surfaces are regarded as examples of imperfec- 
tions distributed regularly or randomly. A study of scattering off corrugated surfaces with 
adsorbed atoms is also presented once again with regular and random distributions. Finally the 
collision induced energy transfer in a linear chain is considered, this example serving as a pilot 
model of phonon excitation in atom surface collisions. 

(a) He + LiF scattering 

In order to test the wavepacket (WP) method, Drolshagen and Heller [82] have applied it to 
He scattering off the LiF surface. The results have been compared to quantum mechanical 
coupled channel (CC) calculations. Over a wide range of energies and several orders of 
magnitude of the diffraction probabilities, the comparison has been remarkably good. The 
behaviour of the diffraction peaks due to surface corrugation has also been tested, showing that 
the wavepacket method may reproduce the CC calculations. While for low incident energies (in 
this particular study below k = 10 a.u.) the CC calculations are still feasible, the semiclassical 
WP approach has permitted extending the energy up to any desired large value. For such high 
energies even several hundred diffraction channels may be open and a converged CC calculation 
would be almost impossible. This emphasizes an advantage of the WP method. 

An interesting question arises regarding the performance of the wavepacket method in 
classical forbidden regions. Penetration of the wavefunctions to such regions may in some cases 
be the origin of observed transitions. The comparison has shown that the WP method may 
reproduce the classically forbidden transitions encountered at high energies, as the tail of the 
wavepacket penetrates into the classical forbidden region. At lower energies, the results of the 
WP method predict too small diffraction probabilities. This may be due to the insufficient 
penetration into the target vicinity. 

Another interesting issue emerges when considering pure crystalline surfaces. It is intrinsic in 
the CC method that the diffraction probabilities appear as delta function Bragg peaks. The 
periodical symmetry of the crystal is taken into account exactly, thus assuring that the correct 
behaviour is built in. In the WP method there is no need to include the assumption of an infinite 
perfect surface so that it may be applied to surfaces with imperfections in a straight forward 
manner. However, in the case of vibrating crystalline surfaces one has to include more and more 
unit cells in order to approach the limit of delta peaks. For such vibrating periodical and large 
surfaces, the feature of a necessary finite width in the WP method is a limitation, since it 
introduces a complication of separating the width due to phonon effects from the width due to 
the finite size. On the other hand, with the very new techniques now appearing [94-971, it 
becomes feasible to consider portions of the surface having the size of about 1000 A. In such 
cases it is advantageous to have a method which may obviate the need for the assumption of a 
perfectly periodic surface. 

(b) Scattering from stepped crystalline surfaces 
In this section, a report of an application of He scattering is presented again. In this study, 

Drolshagen and Heller have used a stepped Pt(997) surface describing the scattering by the 
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potential [82-841: 

V(z)=Dexp[2a(z,-z)], 

a<xsa+b, 

ma - h)x* + mx - h; Olxla, 

(3.41) 

(3.42) 

with the parameters: D=lO meV; ar=l.O A-‘; a=2.5 A; b=17.5 A; h=2 A; m= -h/b. 
The two-dimensional potential v(x, z) is periodic in the x-direction, and for simplicity, no 

corrugation is introduced in the y-direction 

zO(x + (a + b)) = zO(x). (3.43) 

The relative scattering intensities as functions of momentum exchange in the x-direction have 
been calculated at several incident angles. The qualitative features of the physical effects 
observed by Lapujoulade et al. [98] have been reproduced. The main point is that the method is 
capable of handling a complicated case in which as many as 49 Bragg peaks are open. Moreover, 
even the effect of multiple scattering can be traced. In this respect, one should stress that these 
are short range multiple scattering events and it is doubtful whether the method could handle 
multiple scattering in the presence of long range attractive forces, where resonances may emerge 
[40,99]. We anticipate that in such a case the assumption of local harmonic forces will break 
down. Moreover, the Gaussians should interact coherently upon entering the resonance region of 
the trapped state. This type of interaction is beyond the scope of the GWP approaches. We note 
that the asymmetry in the intensity distribution caused by scattering off the step edges is 
reflected by the method. 

The effects of a random mixture of steps of different sizes have also been tested. Steps twice as 
large (i.e. a’ = 2a, b’ = 2b, h’ = 2h in eq. (3.42) have been inserted gradually into the sample, 
this resulting in a distortion of the regular pattern of Bragg peaks. Furthermore, the background 
between the Bragg peaks has increased. The buildup of half order peaks due to the double sized 
steps has appeared smoothly without any sudden jumps. Due to the finite size of the surface 
sample, the diffraction pattern has shown heavy oscillations. Thus, only the average of these 
size-dependent oscillations may be compared to experimental data. 

(c) Scattering from imperfect and disordered surfaces 
In this discussion we return to the scattering of He atoms off the LiF surface. In this example, 

the wavepacket approach is applied by Drolshagen and Heller to a full three-dimensional surface 
modeled by the potential: 

JG, Y, 4 = Jc, + K& 

V, = D exp[2ar(z0 - z)] + v,(z)Q(x, Y), 

J”h=A exd-yd), (3.46) 
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with: 

Q(x, y, z) = exp(2ax/a) + cos(27ry/a), (3.47) 

V,(z) = -2PD det[2a(z, - z)], 

d(x, y, z)=[x2+y2+(z-z2,)2]1’2. 

(3.48) 

(3.49) 

The parameter values used are: D = 7.63 meV, (Y = 1.1 A-‘, /? = 0.8,~ = 2.84 A, A = 3 eV, y = 6 
A-‘, z,=O.8 A, z,=l A. 

The model still oversimplifies a realistic description of scattering of atoms off surfaces with 
adsorbed particles as the various interactions are non-additive, but serves as an excellent example 
of the capability of the wavepacket approach. 

Inspection of the relative scattering probabilities has made it possible to identify the effect of 
adsorbed atoms. In between the well separated Bragg peaks, a background emerges when 
addatoms are introduced. Furthermore, for the specific simple model used, a well-organized 
monolayer can be constructed having an intensity distribution very similar to the original bare 
surface. By looking at the scattering intensity for various choices of momentum transfer, the 
results have shown preference to scattering in certain directions. It is useful to have a method 
capable of tracing such trends in the scattering probability distribution. One should mention in 
this respect, that further study is needed, in order to assess the ability to cope with a more 
realistic model in which attractive forces are included, and in cases where the potential is 
distorted due to the presence of an addatom over a range longer than a single unit cell. One way 
to tackle the latter case is to try and extend the area of sampling of the wavepacket over several 
unit cells. There is a need to design a preaveraging procedure for the wavepacket method to 
avoid the oscillations obtained due to the finite size of the sample which tend to obscure fine 
structure of physical relevance and broadening of the Bragg peaks. These delicate effects are 
detectable by present experimental techniques [36-391. 

(d) Collisions with a linear vibrating chain 
The ability to probe phonon excitation and collision-induced energy transfer has long been a 

challenge in surface scattering. The linear vibrating chain may serve as a pilot model for 
describing these complicated effects. 

Drolshagen and Heller [28,39] have inspected the translational energy spectrum for various 
chain lengths, different projectile masses and local potentials to force the individual atoms in the 
chain to remain near their equilibrium position. The potential parameters have been chosen to 
represent scattering of Ar atoms on the W(100) ,surface. In these studies the energy distribution is 
calculated by Fourier Transforming autocorrelation functions using directly the time dependence 
in the method. That allows calculating an energy spectrum with finite resolution without explicit 
use of final target states. The results show that it is possible to obtain the intensity distribution 
for large targets as a function of energy and it is possible to trace normal mode excitation of 
various chain lengths. A detailed study as to the accuracy of the Frozen Gaussian Approximation 
has shown that this approximation is encouragely good for most cases, especially in the high 
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energy regime. We stress that in all these calculations trapping does not occur and cannot be 
treated by Gaussian Wavepacket Methods. 

The observation that the Frozen Gaussian approximation is a reliable one in the direct 
scattering regime is very important, as the computational effort required in the Frozen Gaussian 
Approximation is comparable to that needed in classical trajectory calculations. Thus, in the 
Frozen Gaussian Approximation it would be permissible to treat almost any scattering system 
quantitatively where classical trajectory calculations can be performed. The more accurate wave 
packet calculation with non-frozen Gaussians is probably still considerably easier to compute 
than a full quantum mechanical calculation. In closing we mention that calculations of correla- 
tion functions have been applied only to the case of a zero temperature. Calculations for finite 
temperature are still difficult and reflect a limitation of the method. 

4. Methods mixing ctassical and quantal degrees of freedom 

It is inherent in the physical properties of many realistic molecule/surface scattering systems 
that some (often most) of the degrees of freedom involved can be treated adequately at the 
purely classical level. This gives importance to the methods that treat by wavepackets those 
modes for which quantum effects are expected while describing all other degrees of freedom by 
classical dynamics. The choice as to which degrees of freedom may be treated classically obvious 
depends on the system and on the scattering conditions (e.g., surface temperature, collision 
energy). Low energy scattering of He or H, from a solid of heavy-mass atoms calls for a 
quantum description of the projectile combined with a classical description of the surface 
vibrations. On the other hand, the study of electron-hole pair excitations in heavy-molecule 
impact on metal surfaces requires a quantum approach to the dynamics of the solid electrons, 
while the projectile may be adequately described in the classical framework. Similarly, a 
quantum-mechanical treatment may be required for surface phonons at low temperatures of the 
solid even in the collision processes at high energies, when the colliding atom or molecule 
behaves classically. The detailed considerations involved will be clarified in the context of 
examples mentioned below. The main issue common to all these problems is how to combine the 
classical and the quantum-mechanical treatments of different degrees of freedom in a consistent way. 
This question is familiar from corresponding methods in gas-phase scattering [loo], and pro- 
posed approaches must be examined with regard to energy conservation, time-reversal invariance 
and other properties that may be pertinent in a given process. In any case, methods that treat the 
quantum degrees of freedom by time-dependent wavepackets can relatively easily be combined 
with a classical trajectory description of the other modes. Time-independent quantum mechani- 
cal algorithms do not generally have the same advantage of being easily combined with a 
classical calculation for part of the system. Once an approach for coupling classical and quantum 
wavepacket dynamics is adopted, this may impose restrictions on the algorithm for solving the 
time-dependent equations of motion. For instance, the potential that governs the wavepacket 
evolution is typically a “dynamical”, i.e., time-dependent one, representing energy exchange with 
the classical modes. This excludes the Chebychev algorithm for the time propagation of the 
wavepacket (see section 2) that requires a stationary Hamiltonian for the quantum-mechanical 
part of the problem. 
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4.1. Scattering of a quantum-mechanical projectile from a classical vibrating surface 

The methods discussed in this subsection are pertinent to the scattering at low energies of a 
light atom or molecule from a solid surface of heavy constituent atoms. It is supposed that the 
solid temperature is sufficiently high to justify a classical treatment of surface vibrations. It is 
also assumed at the background of all these methods that electron-hole pair excitations can be 
neglected, and thus excluded from the model Hamiltonians used. The objective of the methods 
discussed here is to treat processes such as diffraction and those of rotationally inelastic 
scattering (when the projectile is a molecule) within a framework that includes the effects of 
lattice vibrations at the classical level. 

Mixed classical/quanta1 Time-Dependent Self-Consistent Field (TDSCF) approximation 
This method is one of the general schemes for treating consistently some degrees of freedom 

classically, other quantum-mechanically, allowing at least approximately for energy exchange 
between the two groups of modes. The basis of the approach is the quantum-mechanical TDSCF 
approximation, which dates back to the earliest stage of quantum theory [lo]. Mixed quantal- 
classical TDSCF was developed in recent years for a variety of gas-phase collision and 
unimolecular dissociation processes, e.g. by Schatz [102] and by Gerber et al. [103,104]. Consider 
the method in the specific context of an atom colliding with a vibrating surface. Let r be the 
position vector of the atom, and denote by q the phonon coordinates. In the TDSCF approxima- 
tion it is assumed that the time-dependent wavefunction of the whole system can be approxi- 
mately factorized as follows: 

WY 4, t) =&a(‘, t)$h(4, t) 

This is substituted in the time-dependent Schrijdinger equation for \k( r, q, t): 

(4.1) 

iAz = Hph(q) - EVf + V(r, q) ‘k, 
[ 1 (4.2) 

where H,,(q) is the surface (phonon) Hamiltonian, V( r, q) the molecule-surface interaction, 
and p the mass of the colliding atom. This leads to the quantum-mechanical TDSCF equations 
for the scattered atom and for the phonons: 

[ 
- GVj? + Vaff(r, t) &(r, t) =ift 1 a&,<r, 1) at , 
[ %(4) + v$(4, t>]Gph(4, t> = iA G&h?, t> at , 

(4.3a) 

(4.3b) 

where 

&Jr, t) = exp[io,(t)] +a(r, t), 

6rtAqY t) = exp[ia,&)] +&7, t). 

(4.4a) 

(4.4b) 
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The phase factors exp[iu,( t)], exp[io,,(t)] are of no physical importance and the explicit 
expressions for these quantities will not be given here. The effective, mean field potentials 
Vlff( r, t), V;,ff(q, t) are given by 

(4Sa) 

Eqs. (4.3) (4.5) are the quantum-mechanical TDSCF equations. 
The wavefunctions and effective potentials associated with the q and r modes must be solved 

self-consistently. It is the time-dependence of the effective potentials that allows for the energy 
exchange between the modes within the TDSCF scheme, since the effective Hamiltonians for the 
r and for the q subsystems do not separately conserve energy. For a range of gas-phase problems, 
it was found that energy transfer with the TDSCF framework is roughly of the correct magnitude 
[103,104]. However, this can definitely not be regarded as a general conclusion, and it remains to 
be established also for surface scattering problems that the TDSCF does not underestimate or 
overestimate systematically the amount of energy transferred between the modes involved. This 
requires a test against “exact” calculations for suitable model systems, and such computations in 
the context of surface scattering have not yet been reported. The availability of formally separate 
Hamiltonians for the r and the q subsystems respectively, makes it possible to treat very simply 
any one of them (or both, when justified) classically without leading to any inconsistency in the 
treatment of the second subsystem. The classical equations of motion for the phonons are: 

(4.6b) 

where 

(4.7) 

is the cluxsicul effective Hamiltonian for the phonons, and i is a label for the phonon modes. The 
mean-field acting on the atom becomes, when the phonons are treated classically, 

(4.8) 

where (Y is an index labelling the various initial values used in sampling over the different initial 
conditions in the q-modes, nr is the number of q-trajectories calculated. The mixed 
classical-quanta1 TDSCF equations involve solving self-consistently the trajectory eqs. (4.6) for 
the q-modes with the time-dependent Schrodinger eq. (4.3a) for the atom, and with eqs. (4Sa), 
(4.8) for the effective potentials involved. General properties of these equations are discussed by 
Gerber et al. [103] in the context of gas-phase dissociation processes. The classical-quanta1 
TDSCF conserves total energy, time-reversal invariance, and other symmetry properties implied 
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by the full, true Hamiltonian of the system. Since this is quite a general approach for coupling a 
classical and a quanta1 subsystem, it can also be applied (as will be discussed below) to problems 
where surface modes must be handled quantum m~hanically while the behavior of the projectile 
may be described by classical dynamics. 

Mixed quantum mechanical/classical trajectory calculations that use the TDSCF approxima- 
tion to couple classically-described surface vibrations with the quantum-mechanical scattering of 
a light’ particle were reported by Kosloff and Cerjan (541. They studied the dynamics of He 
desorption and scattering from a Pt surface at the temperature range of 100-800 K. To integrate 
the time-dependent Schrijdinger equation for the scattered atom, Kosloff and Cerjan employed 
the Fast Fourier algo~thm, with the second-order differencing for the time propagation (see 
section 2). Note that in this case only a propagation method which is applicable to an explicitly 
time-dependent potential can be used. To calculate the motions of the solid atoms. Kosloff and 
Cerjan use the Generalized Lange% Equation (GLE) method as developed by Adelman and 
Doll f22] and by Tully {23]. In this approach, the solid atoms are divided into “primary zone” 
and “secondary zone” atoms. It is assumed that only the “primary zone” atoms (typically those 
at the outermost surface layer) are directly coupled to the incoming particle. The secondary-zone 
atoms, pertaining to inner layers of the solid, interact and exchange with the surface layer, but 
are assumed not to be directly coupled to the scattered particle. The GLE scheme assumes the 
harmonic approximation for the secondary zone atoms, and then models their effect on the 
motions of the primary zone particle via a time-dependent friction term, and a stochastic 
fluctuating force. Using matrix notation, the equations of motion take the following form in the 
GLE scheme [22,23]: 

@j= Gi[I;:(t)] - I,“( t - t’)&‘) dt’ + R(t), 

4 = hl;‘p,( t). 

f4.9a) 

(4.9b) 

Here pi, q are, respectively, the momentum and position of the primary-zone atom i, Mj is its 
mass. Gj[c] is the local force function acting on atom i. R(t) is a fluctuating “stochastic” force 
representing part of the influence of secondary zone atoms on the motions of the primary zone 
particles. Another effect is given by the integral in (4.9a), which is a friction term representing 
energy dissipation into the secondary zone, and which includes memory effects. The friction 
kernel A( t’ - t) and the fluctuating force are related by the “‘Second Fluctuation-Dissipation 
Theorem”, familiar from nonequilib~~ statistical mechanics: 

A(t) = W’Y~(t)~@)). (4.10) 

i.e., A(t) is a correlation function of the random force. In the GLE, the atoms that are treated 
explicitly by equations of motion are only those of the primary zone (in addition to the scattered 
particle}, the number of which in practical applications is of the order of S-50 [23]. However, the 
GLE as applied in real cases is not exact in the classical framework, but rather uses various 
models to construct simply the random force and the memory kernel. (The kernel is constructed 
e.g. to represent approximately the phonon spectrum of the solid.) A detailed discussion of the 
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GLE scheme lies outside the scope of the present review, which focuses on the quantum part of 
the problem. We only note here that the GLE equations for the solid particles as employed in the 
calculations of Kosloff and Cerjan [54] use a local force function G, which is obtained from the 
TDSCF potential field (4.5b), that is an average of the full potential function of the system over 
the time-dependent wavepacket of the scattered atom. A summary of the results is contained in 
section 2. 

For low temperatures the classical description of the GLE is not adequate because of the 
quanta1 effects due to zero point motion of the solid surface. An attempt to overcome this 
difficulty employed a semigroup representation for the phonon motion [56]. In this method The 
Liouville-Von Neumann equation of motion is solved for the phonons including relaxation 
terms which lead to the correct temperature effect. A semigroup description of the dynamics in 
the Heisenberg picture reads: 

k = L(X) = LH(X) + L,(X), (4.11) 

where X is an operator in the Hilbert space of the system. L is the superoperator governing the 
dynamics. 

LH(X) = i[H, X] (4.12) 

and 

L,(X) = &&xv,t - +[v;q x] +), 

where [A, B], = AB + BA, Vi is an operator in the Hilbert space, and the parameters y, 
determine the rate of relaxation and the equilibrium state. 

In the description of the surface motion, the phonon motion was assumed harmonic with a 
relaxation rate leading to equilibrium. If one excludes the relaxation terms this description is 
similar to the forced-oscillator method described in section (4.3). A TDSCF description was used 
to couple the phonon motion to the he degrees of freedom. 

The importance of mixed semigroup/quantal TDSCF calculations of the type reported by 
Kosloff and Cerjan [56] is that they are capable of predicting the large energy accommodation 
effects in very low energy collisions of atoms with surfaces of temperatures close to zero. 
Time-independent quantum-mechanical approximations that were applied to such processes in 
the past [e.g. 1051 gave an artificial result of energy accommodation which goes to zero as both 
the surface temperature and the collision energy tend to zero. The difficulty stemmed from the 
use of the distorted wave approximation for the scattered particle (with a rigid surface model 
employed to define the zero-order wavefunctions), and of the approximation of a one phonon 
process [105]. The mixed semigroup/quantal TDSCF approach avoids these approximations, 
and seems to yield reasonable magnitudes for energy transfer at low surface temperatures and 
collision energies. 

Semiclassical stochastic trajectory method This approach was developed in recent years by De 
Pristo and his coworkers [106-1101 and applied to a wide range of molecule-surface collision 
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problems. The method makes the assumption that the motion of the colliding molecule, or atom, 
along its distance coordinate from the surface z, can be treated classically. Similarly, a classical 
trajectory description, in the specific form of the GLE scheme discussed earlier, is used for the 
surface vibrations. Other degrees of freedom such as the diffraction coordinates (the coordinates 
(x, y) of the molecular center of mass motion in parallel to the surface), the vibrational and 
rotational degrees of freedom of the colliding molecule, are all treated by time-dependent 
quantum mechanics. To couple the classical z-motion in perpendicular to the surface to the 
other, quantum-mech~ical modes, a condition representing energy conservation in the collision 
is imposed. For the case of a nonvibrating surface, this condition implies that the energy flow 
from or into the z-motion of the molecular c.m. equals the gain (or loss) of energy by all the 
other, quantum-mechanical, degrees of freedom. As for handling the equations of motion for the 
quantum modes, this is done by expanding in a basis of stationary states, and solving for the 
time-dependent coefficients. 

We give explicit dynamical equations of this mixed quantal/classical method for one of the 
simplest cases to which it was applied, namely that of atom scattering from a nonvibrating 
crystalline surface, as presented by Grote and De Pristo [106]. The motion in the diffraction 
coordinates R = (x, y) which are parallel to the surface, as described by a time-dependent 
wavepacket 

+(x9 YY t) = Cc,.(t) exp(i[ K + G,,] l R) X exp(iE,,t/h) (4.13) 
mn 

where Emn is the energy in the R-coordinates corresponding to the (mn) diffraction state: 

E mn = $K+ Gm,)2, 

here p is the mass of the scattered atom, K - the component of the incident wavevector along 
the surface plane, and G,, the (IPZ~) reciprocal space vector defined in section 1. The probability 

(4.14) 

of scattering into the (nan) diffraction state is given by 

I,, = I cm& + + f-4 I 2, 

while initially: 

c,,(t + - 99) = S,$,,. 

The dynamical equations for the C,,(t) in De Pristo’s method are: 

iA&&) = C J%,,,>,(ztt)) exp(iu,,,,,J), 
m’n’ 

where 

(4.15) 

(4.16) 

(4.17) 

Vmn,m’n’ (z(t)) = fJe-i[Gmn -G~,+]‘RV(r, z(t)) dR, (4.18) 
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where the integral is over the unit cell of area A w,,.,,,, is defined by: 

Cd mn .m’n‘ = (E,, - E,,,,)/A. 

The equation of motion in the classical degree of freedom z is given by: 

103 

(4.19) 

(4.20a) 

with 

pi = P,. (4.20b) 

Eqs. (4.17) and (4.20) are solved simultaneously. The method is thus of the TDSCF type in the 
way it coupled the classical z mode with the quantum degrees of freedom R. In test calculations 
for He scattering from LiF(OO1) at low initial kinetic energies (E = 20 meV and E = 60 meV), 
the method produced results in semiquantitative agreement with exact quantum (close coupling) 
calculations, and with experimental data available for this system. Nevertheless the results are 
not of the quantitative accuracy required in diffraction calculations, and at the lower energy of 
20 meV some of the individual diffraction peak intensities are very seriously in error (the 
specular (m, n) = (0, 0) peak is too small by a factor of 5). However, the real force and purpose 
of the method is in applicability to problems which cannot be tackled by more rigorous 
algorithms. In this context, De Pristo’s method proved to be one of considerable computational 
efficiency and versatility. The introduction of surface vibrations via the GLE scheme is feasible 
and was pursued in several applications [107-1101, and the method was used also to study 
vibrationally and rotationally inelastic scattering of molecules from surfaces. Thus, Clary and De 
Pristo [109] carried out calculations on vibrationally inelastic scattering of CO, from Pt(ll1) (in 
this case the large manifold of rotational states involved was treated in the Sudden approxima- 
tion). Lee et al. [108] calculated vibrational and rotational transition probabilities in H, 
scattering from Pt(lll), and De Pristo et al. [llO] calculated physisorption probabilities for H,, 
D,/Cu(lOO) and H,/Ag(lll), processes in which rotationally inelastic scattering is involved. In 
fact, in a recent study De Pristo et al. incorporated also the effects of electron-hole pair 
excitation in the treatment, albeit in a very heuristic way, by introducing pertinent terms in the 
GLE friction forces and calibrating the latter to fit information available on the electron-hole 
pair interactions. 

De Pristo’s method has, however, several limitations and problems. Conceptually, it does not 
seem satisfactory in general to treat the z-motion classically, while all other molecular degrees of 
freedom (the R = (x, y) coordinates, the rotation) are approached quantum mechanically. Such 
a distinction between the modes seems justifiable physically if, e.g., the energy in the z motion is 
throughout the collision much higher than that associated with the (x, y)-coordinates. However, 
this condition is not satisfied at least for some of the systems and scattering conditions to which 
the method was applied. Obviously, the method is expected to break down when quantum effects 
in the z-motion are important. One pertinent case is when the potential for the motion of the 
molecule towards the surface has a barrier, and tunneling in the z-direction occurs. More 
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frequently found in actual applications are systems that give rise to quantum interference along 
the z axis. Such cases are well known, e.g. in He scattering from stepped surfaces [98]. Consider, 
for another example, a model surface consisting of a layer of spheres: The specular scattering 
from the tops of the spheres can interfere with the scattering from the “valleys” between the 
spheres. Such effects take place for surfaces of high corrugation, thus the applicability of the 
method to such systems is questionable. Interference effects in the z motion may also be 
important in resonance (trapping) processes. Grote and De Pristo [106] drew attention to another 
difficulty which may arise in the case of trapping: eqs. (4.17), (4.20) couple the z and the 
R = (x, y) motions by a TDSCF type of approximation. For at least some of the resonances in 
He scattering from LiF(OO1) strong correlations occur between the z and the R motions, to the 
point that the above approximation is no longer valid. 

In conclusion, the semiclassical method of De Pristo offers an efficient algorithm which is 
feasible also for collisions of small polyatomic molecules with surfaces. The method seems on the 
whole justifiable on physical grounds and by the success of test calculations in the regime of 
direct scattering. Strong correlations between the classical and the quantum degrees of freedom, 
and also the possible occurrence of interference may lead to failure of the method in cases of 
collisions that involve trapping. 

Mean trajectory semiclassical method This approximation was proposed and pursued in the 
context of surface scattering by Metiu and coworkers [53,111]. We consider here the method in 
the specific context of rotationally inelastic and diffractive scattering of molecules from a static, 
corrugated surface as presented by Jackson and Metui [53]. In this scheme, the molecular center 
of mass motion is described by semiclassical Gaussian wavepackets, as in Heller’s method, while 
the rotational degree of freedom is treated quantum-mechanically, using an expansion in a basis 
of stationary states. The rotational and translational wavepackets are separated by a TDSCF 
approximation, hence the trajectory describing the propagation of the center of the Gaussian is 
obtained from a potential function averaged over the quantum-mechanical degrees of freedom. 
Therefore the name Mean Trajectory Approximation (MTA) used by the authors. Jackson and 
Metiu [53] employ the following wavefunction for a rotor scattered from a surface: 

N n 

#(r, 0, $9 t) = C C,(t)G,(r, t) C C,i(t)y(e, +) exp(iEit/h), (4.21) 
a=1 i=l 

where the y(8, +) = &(0, +) are the spherical harmonics, used as a basis for the rotational 
wavepacket, and Ei are the rotational energies. The Gaussian wavepackets have the form (see 
section 3 on Heller’s method): 

(4.22) 

where the matrix A, and the vectors pat, rat are time-dependent. (Note that an addition time 
dependent complex phase factor which appears in Heller’s scheme is here incorporated in C,(t)). 
The coefficients C,( t = 0) are so chosen that the sum C, C,(O)G,(r, t = 0) represents a plane 
wave in the coordinates R = (x, y) parallel to the surface, and a normalized Gaussian in the z 



R.B. Gerber et al. / Wavepacket methods in surface scattering 105 

coordinate. The equations of motion for this method are obtained by substituting (4.21) in the 
time-dependent Schriidinger equation for the molecule/surface system, and also by simplifying 
the expressions using the locally quadratic approximation for the potential pertaining to the 
semiclassical degrees of freedom. The equations for propagating the parameters rat, par, A,, are 
thus the same as in Heller’s method. The effective potential which appears in these dynamical 
equations in the present case is: 

(4.23) 

where V( r, 8, $I) is the full molecule/surface interaction potential and the C,.(t) are the 
coefficients of the rotational wavefunction defined in (4.9). The dynamical equations for the 
C,,(t) derived in this method are: 

itzCi,(t)=B,(t)Ci,(t) + CCaky:.k(raf) exp[-i(ek-ri)t/fi], (4.24) 
k 

where 

B,(t) = $pzt -p,& - iA Tr A/p.. (4.26) 

Thus, in this method eqs. (4.22) for the coefficients of the wavepacket of the “quantum” mode 
are solved simultaneously and consistently with the Heller equations for the Gaussian parameters 

r,,, Par, A, that describe the propagation of the semiclassical degree of freedom. 
The MTA can be viewed as an improvement of De Pristo’s scheme, to which it is closely 

related, since it does include also quantum interference effects in the motion perpendicular to the 
surface. For systems where such influence is important, e.g. in diffraction scattering from 
stepped surfaces, the method can be expected to give results that differ significantly from those 
of De Pristo. In test calculations by Jackson and Metiu [53] on H, scattering from a model of 
LiF(OOl), the deviations between the two methods were not large (and the above possible 
physical cause for substantial differences is not present). However, the Gaussian wavepackets fail 
to describe resonance scattering, as discussed in section 3, so the MTA can be relied upon only 
for direct scattering. (This limitation applies also to De Pristo’s scheme.) Also cases where the 
wavepacket breaks up in the z direction, or when tunneling in that coordinate is involved, are 
outside the scope of the MTA. As in De Pristo’s method, the MTA involves a TDSCF 
approximation through which the full quantum and the semiclassical modes are coupled, and 
cases involving strong correlations between the two types of degrees of freedom could result in a 
breakdown of the approximation. This can definitely arise in scattering resonances, but may also 
occur in some direct collision problems (little is as yet known on this). More exhaustive studies 
on the validity regimes of both De Pristo’s scheme and the MTA seem strongly desirable. 
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4.2. Excitation of metal electrons by impact of a classical particle 

Electron-hole pair excitation in atomic impact on surfaces are processes of fundamental 
importance in gas-solid interactions. Very little is known on the role of electronic degrees of 
freedom in energy transfer and chemical reaction processes in molecule-surface collisions, and 
tentative arguments were presented that such effects could be of major significance. From the 
methodological point of view central to the present article, such processes are of interest because 
they demand quantum treatment of surface degrees of freedom. The de Broglie wavelength of 
electrons occupying the Fermi level of a metal, typically of the order of 1 A, is too long (on the 
scale of the interactions involved) for either classical or semiclassical treatments to be valid. 
Furthermore, it turns out that the classically forbidden region for the electron, somewhat outside 
the outermost layer of solid ions, plays a dominant role in the process. Excitation of metal 
electrons in atom-surface collisions thus requires a quantum mechanical treatment of the 
electrons. Although this subject was pursued in many theoretical studies, e.g. [112-1151, nearly 
all these investigations employed relatively crude methods such as first-order perturbation theory 
as well as highly simplified models for the atom-electron interactions and for electronic surface 
states. The most quantitative treatment presented so far for solving the dynamical equations, 
although carried out for a simplistic model of the electronic states and interactions, was 
presented by Kirson et al. [116,117]. In this study the metal electrons are described as particles in 
a potential box, and the independent-electron approximation is assumed to hold for the 
excitation process during the collision. Thus, the dynamical problem becomes one of a single 
electron undergoing excitation upon impact of an atom or molecule on the surface. Fermi-Dirac 
temperature averaging over the initial electron states is carried out in the calculations. The 
method used involves a TDSCF approximation in which the motion of the colliding atom is 
described classically, while a time-dependent wavepacket treatment is used for the electron. As 
stressed above, semiclassical wavepacket algorithms are inapplicable in this case, since the 
coupling between the atom and the electron comes mainly from the classically forbidden region 
of the latter particle. Kirson et al. [115] employed a variational principle for solving the 
time-dependent Schrodinger equation for the electron, having used a variational trial form for 
the wavepacket with explicit time-dependent parameters, Frenkel’s variational functional is 

[93,118]: 

(4.27) 

where the integration is over the entire configuration space (a 1-D model is treated here). I 
vanishes if 8 = i A a $/at. The variational property of I{ #, 0 } is that it is stationary in 68, i.e., to 
first order in 68: 

61=2 Re 
1 

Se*(H$-0) dz=O. (4.28) 

To apply the method a time-dependent trial function is chosen on physical grounds. Assume the 
initial state $(to) is given at t,, then for a small time-increment: 

$(z, t, + At) = I,!J(z, to) - ie(z, t,)At/A. (4.29) 
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Eq. (4.28) is solved for t9(z, to), eq. (4.29) is used and the process is repeated until the entire 
time-evolution is obtained. In the study of Kit-son et al. the following form was used for the 1-D 
model of an electron in a metal: 

(4.30) 

where f,(z) are stationary eigenstates of the electrons in the metal and gk( t - to) is taken to be a 
Gaussian in the wavevector, the center and the width of which are employed as time-dependent 
variational parameters, and solved for. Kirson et al. [116], carried out such wavepacket calcula- 
tions of electron-hole pair excitation for He, Ar and H in collisions with a model of a Li surface 
for collision energies in the range of [O.O-1.0 eV]. In another study, I&son et al. [117] examined 
electron-hole pair excitations by this method for the collisions of molecular dipoles, representing 
CO and HCl, with an Al surface. One of the main conclusions drawn from these studies is that 
electron-hole pair excitation due to He collisions is of negligible importance (at a collision 
energy of 0.01 eV, the fraction of energy converted into electron excitations is = 0.2%). On the 
other hand, for H atom collisions with metals the energy transfer can be rather large ( = 10% of 
the incidence energy at 0.01 eV). Also, electron-hole pair excitations can lead to large trapping 
probabilities in very low energy impact of H on a low-temperature metal. Physically the low 
excitation probability in He collisions is due to the fact that the He is stopped by the repulsive 
part of its interaction with the surface far outside the Jellium edge. The short range He/electron 
interaction then couples significantly to, the electron only in the deeply classically forbidden 
region where electron density, determined by the nonclassical tail of the wavefunction is very 
low. H has a much nearer turning point to the surface, and its interaction with the metal electron 
is chemical, and much longer in range. Hence in the case of H the atom/electron coupling occurs 
over regions of relatively large electron density. 

It should be remembered that calculations for physically realistic systems of electron-hole pair 
excitations in atom/surface collisions were not carried out yet. Evidence from the simplistic 
models suggests that methods treating the electrons by time-dependent quantum-mechanical 
wavepackets should prove a very useful tool also for the realistic cases. 

4.3. Forced-oscillator methods for the excitation of surface phonons 

Several models were proposed for studying phonon excitations which are based on the 
availability of an analytic solution for the forced harmonic oscillator problem. These models are 
related to those developed previously for vibrational excitation in gas-phase atom-diatom 
collisions [loo]. A feature common to all these methods is that a classical trajectory R(t) for the 
incoming atom is generated using some reference potential, or the full potential function of the 
system. This, when substituted in the expression for the forces acting on the surface atoms, and 
when the motions of the latter are treated in the harmonic approximation, gives rise to a 
forced-oscillator problem for each surface mode. From the solution of the quantum-mechanical 
forced oscillator problem, probabilities are obtained for the single and multiple quantum 
transitions in each phonon mode. These methods are time-dependent wavepacket methods only 
in an implicit sense, as they are based on the availability of an analytic solution for the 
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time-dependent Schrijdinger equation for the forced harmonic oscillator. In practical terms, the 
methods employ directly the final solutions for the transition probabilities. There are several 
available forced oscillator methods for phonon excitation in molecular impact on surfaces, which 
differ e.g. in the choice of the potential function used to determine the trajectory of the molecule, 
by either including or not including the effect of energy transfer on the trajectory obtained, etc. 
[119-1241. We describe here the scheme of Park and Bowman [121,122] which is based on the 
DECENT approximation [loo] for vibrational excitation in gas-phase atom-molecule collisions. 
The procedure of Park and Bowman [121,122] is the following: First a classical trajectory 
calculation is carried out for the atom-surface collision. In this calculation the solid atoms are 
initially at rest in their equilibrium positions, i.e. uj( t = 0) = 0, lij(t = 0) = 0, where uj is the 
displacement vector from equilibrium of the j atom. Having propagated the trajectory calcula- 
tion until the end of the collision, the final energy transferred to each phonon mode can readily 
be computed. The phonon modes are related to the atom displacements by a linear transforma- 
tion, i.e. 

Qjp= J$ 5 (Lp1)j/31a4/a, 
a=1 I=1 

(4.31) 

where qrm, (Y = 1, 2, 3 are the Cartesian components of the vector q, = fiu,, m, is the mass of 
the l-surface atom, and L is the transformation matrix from atom displacements to normal 
(phonon) modes. The post-collision energy in any normal mode is obtained from 

(4.32) 

Generally, a whole ensemble of trajectories must be calculated, each corresponding to a different 
initial lateral position of the incoming atom within the surface unit cell. Denote by ( Ejp) the 
mean energy transfer over the nT trajectories used. The quantum-mechanical transition probabil- 
ity expression for a forced harmonic oscillator can now be used. It gives the probability P/F: for 
exciting the (la) mode from an initial state i to any final state f in terms of the mean energy 
transfer (E,,) : 

where 

hNi,f) 
K/f,“;= c (-i)'c&l 

f=o (i-Z)!Z!(f-Z)! 

and 

(4.33) 

(4.34) 

(4.35) 

From the elementary, single mode transition probabilities, one can readily compute multimode 
transition probabilities, thermally averaged results, etc. 
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Bowman and Park applied their DECENT-type forced oscillator method to phonon excitation 
in He scattering from Si(lOO)-(2 X 1) [121,122]. They found a high specificity of the energy 
transfer for different types of phonon modes. The geometric nature of the displacement appears 
to be a critical factor in determining the effectiveness of the coupling to the colliding particle, 
and it is very different for different groups of modes. 

Other forced oscillator methods for phonon excitation were proposed by Billing [119,120] by 
Newns [123] and by Brenig [124]. Billing’s approach involves a TDSCF-type of approximation 
through which the motion of the projectile and the solid vibrations are coupled. Billing 
considered also simplification of the basic method by a stochastic approximation for the collision 
dynamics. Another interesting feature of Billing’s approach is his derivation of an effective 
potential for the colliding atom that depends on surface temperature [119,120]. 

Newns developed a force oscillator approximation for multiphonon excitation that starts from 
path-integral representation of the transition probabilities [123]. Explicit, practical expressions 
are then obtained by applying an expansion based on the stationary phase approximation to the 
integral. Newns then derives a hierarchy of approximations which include the influence of the 
energy transfer to the oscillators on the collision trajectory through a certain effective, optical 
potential [123]. Forced oscillator methods for phonon excitation should be most helpful when 
applied to collisions with a very low temperature solid, in which case quantum effects may arise. 
The DECENT and related forced oscillator techniques proved quite successful in applications to 
various processes of vibrational excitation in atom-molecule collisions. One may reasonably 
expect satisfactory results also for phonon excitations. Note, however, that high-impact energy 
collisions may result in very anharmonic shock-wave like excitations as demonstrated e.g. in the 
case of Hg/MgO(lOO) [125]. In such cases the forced-oscillator approach is clearly invalid. The 
validity of the approach remains also to be tested for low energy collisions, when trapping effects 
can play a major role. A treatment on different footing of the surface vibrations and of the 
projectile dynamics is probably not justified in this case. 

5. Concluding remarks 

The weight of available results suffices to establish time-dependent wavepacket methods as 
tools of great power and versatility for surface scattering calculations. Perhaps the greatest asset 
of these methods from a computational point of view is that they can be used to tackle problems 
that involve a continuum of scattering channels. This is an important requirement for many 
surface scattering problems, obvious examples being processes involving phonon or electron-hole 
pair excitations. From a broader perspective, not less important is the convenient physical insight 
and interpretation offered by wavepacket methods which resembles the usefulness of trajectory 
calculations in the classical regime. 

Applications of wavepacket methods are, however, very new and therefore still at a relatively 
early stage of development. We list several of the open problems, where progress can perhaps be 
expected before long. 
(1) Non-Cartesian coordinates: The available, practical algorithms for both semiclassical and 
quantum-mechanical wavepacket calculations are confined to Cartesian coordinates. There are 
several applications of importance, e.g. rotational excitation, which should best be described by 
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angular degrees of freedom. Early steps for extending wavepacket methods for such coordinates 
were recently taken (both in the semiclassical framework [128] and the quantum-mechanical 
one). Progress in using non-Cartesian coordinates, could be of impact on molecule-surface 
scattering, since the rotational mode is often of major importance. Presently the best approaches 
for such problems are those mixing a wavepacket treatment of the translational modes with a 
close-coupling treatment of the rotation. 
(2) Resonance scattering: The semiclassical Gaussian method available does break down in this 
case. The exact quantum-mechanical algorithms (e.g. the Fourier method) were demonstrated to 
work, but their efficiency is in question, mainly due to the long integration times required and 
the great sensitivity in the reasonance regime to even small numerical errors. Development of 
new wavepacket methods geared to be effective in the resonance regime seems a challenge of 
considerable importance. It is conceivable, in our opinion, that e.g. variational methods could 
prove useful in this respect. 
(3) Tunneling effects in surface scattering: Such effects exist in several systems, e.g. due to the 
corrugation barrier to motion of the colliding atom in the direction parallel to the surface. As 
with resonance scattering, the available Gaussian semiclassical wavepacket schemes cannot deal 
with such processes, and “exact” wavepacket algorithms may be very time-consuming when 
“deep” (i.e. very slow) tunneling is involved. Also in this case new wavepacket methods capable 
of adequately dealing with such processes are desirable. 
(4) Mixed quantum-mechanical/semiclassical wavepacket treatments: It should be very useful in 
many surface scattering problems to deal with most degrees of freedom (e.g. solid vibrations) by 
the very efficient Gaussian wavepacket algorithm, while applying the exact quantum treatment to 
only few coordinates (the scattered particle, for instance). This will be a natural improvement 
over the mixed classical/quantum-mechanical treatments discussed in Sec. IV. Work along this 
line is in progress, e.g. [126]. 
(5) Electron processes: Two types of electron processes may benefit from the applications of 
wavepacket techniques: Scattering of electrons from surfaces, e.g. LEED [127]; and excitation of 
surface electrons by collisional impact. The latter topic, collisional excitation of electron-hole 
pairs was briefly discussed in section 4. The Gaussian semiclassical wavepacket methods are not 
suitable in general for these electron processes, and the quantum-mechanical grid methods have 
not yet been applied to such systems. It should be very useful to apply available quantum-mecha- 
nical algorithms for these electronic processes and to develop new ones, if necessary. 

We believe, in light of the above, that not only will wavepacket methods remain important 
tools of application to surface scattering, but they are likely to grow as a field of research, with 
ample scope for improvements of existing schemes and with prospects of completely new 

approaches being injected. 
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