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H I G H L I G H T S

• A method to simulate strong-field photodissociation of diatomic molecules was developed.

• Novel features of the model include:

• Carefully designed absorbing boundary conditions.

• Thermal initial conditions
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A B S T R A C T

An ab initio simulation of strong-field photodissociation of diatomic molecules was developed, inspired by recent
dissociation experiments of −F2 . The transition between electronic states was modeled with thermal initial
conditions. Carefully designed absorbing boundary conditions were applied to describe the boundary conditions
of the experiment. We studied the influence of field intensity on the direction of the outcoming fragments and
laboratory-fixed axis, defined by the field polarization. At high intensities, the angular distribution became more
peaked with a marginal influence on kinetic energy release. The study is the first step in a complete simulation of
strong field control of photodissociation.

1. Introduction

High-intensity time-domain spectroscopy can be modeled by ex-
plicitly solving the time-dependent Schrödinger equation, for which
knowledge of the full Hamiltonian of the process is essential. Employing
the Born–Oppenheimer approximation, the Hamiltonian is separated
into electronic and nuclear terms [1]. The nuclear degrees of freedom
are represented by vibrational and rotational terms. Coupling the ex-
ternal electromagnetic field and the transition dipole moment, induces
transitions between electronic states. Each electronic transition is ac-
companied by an angular momentum change of one unit of ℏ.

In this paper, we study strong-field spectroscopy of diatomic mo-
lecules [2]. The most studied molecule of these molecules is the dia-
tomic anion −I2 , which has been subjected to ultrafast photoelectron
spectroscopy. Models describing its photoelectron distribution have
been constructed under different approximations [3]. It is quite cus-
tomary to neglect the rotational dependency of −I2 , due to iodine’s
significantly heavy nuclei and slow dynamics within the fsec pulse time

scales.
To include rotational effects a semi-analytical theory of photo-

dissociation processes was first developed by Zare [4], and then further
discussed and extended [5,6]. The semi-analytical assumptions include
only one photon transitions. Hence, the results were suited to low-in-
tensity radiation, where only single-photon processes are considered to
lead to the dissociation of the molecule.

An extended theoretical treatment was developed by Ben-Itzhak,
with Esry’s collaboration, employing ab initio simulations to interpret
the experimental results of +H2 photodissociation [7–9]. Initially, they
considered only electronic and vibrational modes, assuming that the
influence of the nuclear rotational states was negligible [7]. This as-
sumption was revisited by Anis and Esry in a later study [8], where they
concluded that the rotational states are essential. Note, that the initial
state was set as the ground rovibrational state, practically setting the
temperature to zero, an assumption that is justified for such species at
low temperatures. Furthermore, they employed the Floquet dressed-
states picture which is appropriate when the laser field is characterized
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by a single frequency. The general issue of diatomic dissociation is
currently active studied applying different approximations [10–14].

In this paper, we had two main goals: first, to acquire a more fun-
damental comprehensive understanding of the high-field dissociation
process on a quantum scale; and second, to simulate the angular dis-
tribution of the photo-fragments resulting from this process. The cur-
rent simulation uses the physical parameters of −F2 . The motivation to
use the −F2 molecule as a benchmark follows from a recent experimental
study by Strasser et al. [15,16]. Furthermore, its electronic structure is
rather simple: there are only four low-lying states before reaching the
detachment continuum. The photoelectron detachment channel is thus
ignored, due to the 10 eV energy gap to the closest electronic state.

We present a first principle model, which includes a numerically
exact solution of the time-dependent Schrödinger equation. All of the
nuclear rotational and vibrational states, and the couplings between
them, are included. We simulate a finite temperature ensemble, and
therefore the initial state is thermal. The option of the Floquet dressed
picture is not employed here for the reason that it is limited to relative
long pules. The angular distribution of the fragments, as well as other
observables, are extracted directly from the calculated wavefunction.
We used the freedom of setting the model to explore fundamental
processes and simplify the −F2 system into a two-electronic-state system,
presented in inset (b) Fig. 4. The simplified model an enable clear and
informative bench-marking before going down the rabbit hole of the
complete and details simulations of the photodissociation process.

2. Model

We consider a model of a diatomic molecule in the gas phase. The
quantum dynamics takes place on n electronic states and three ro-vi-
brational internal nuclear degrees of freedom. The spin was assumed to
be zero, and thus does not contribute to the system complexity.

The Hamiltonian of the system contains the nuclear Hamiltonian of
all of the electronic states, and coupling elements between the states
due to the transition dipole moment. The Hamiltonian in a
Born–Oppenheimer expansion [1] of electronic and nuclear coordinates
becomes:

̂ ̂∑ ∑= ⎛

⎝
⎜ ⊗ 〉〈 + ⊗ 〉〈 ⎞

⎠
⎟

≠

μ εH H n n n k| | · | |sys
n

n
k n

n k,
(1)

where ̂Hn is the nuclear Hamiltonian operator of the electronic state
μn, n k, is the transition dipole operator between the states n and k, and

ε t( ) represents the laser field. Note that both ε and μ are vectors, and
the scalar product between them results in different transition schemes,
which depend on the involved states’ symmetries and the field polar-
ization. In cases where the transition between the states is forbidden,
the dipole element vanishes. Non-adiabatic coupling can be added to
the Eq. 1. The nuclear Hamiltonian of each electronic state can be
written as

̂ ̂= + +H P
m

V r H r
2

( ) ( )n
r

r
n rot (2)

where r is the internuclear distance, ̂Pr is the corresponding momentum,
mr is the nuclear reduced mass, V r( )n is the electronic potential of the
state n, and ̂Hrot is the rotational Hamiltonian. The molecular and lin-
early polarized laser field axes define the internuclear axis, ̂z , and the
laboratory axis, ̂Z , respectively.

The rotational Hamiltonian is

̂ ̂= RH r B r( ) ( )rot
2 (3)

where B r( ) is related to the moment of inertia, = =B
μr I
1

2
1
22 and ̂R is

the nuclear rotational angular momentum operator, equal to
̂ ̂ ̂ ̂ ̂= − −R JJ L S ; is the total angular momentum of the molecule, ̂L is

the electronic orbital angular momentum, and ̂S is the electronic spin

angular momentum.
In Hund’s case (a) [17] – the most common case and the one used

here, ̂L and ̂S are coupled to the internuclear axis, ̂z , and the projec-
tions on it are Λ and Σ, respectively. The projection of ̂J on the la-
boratory axis, ̂Z , is m and on the internuclear axis, = +Ω Λ Σ.

2.1. Basis set representation

The state of the molecule is described by a nuclear and an electronic
state. In the present work, we concentrate on cases in which all elec-
trons are paired, and therefore the spin quantum number is ̂ =S 0. In
this situation, the projection of the electronic orbital angular mo-
mentum on the internuclear axis is similar to the total projection,

=Λ Ω.
The internuclear degree of freedom of the molecule is described by

r, the distance between the atoms. The orientation is defined by the
angles θ and ϕ, expanded in terms of the Wigner rotation matrix,
D ϕ θ( , )m

j
,Ω . At =Ω 0, the matrices are equal to spherical harmonics

functions, Y ϕ θ( , )j m, . In this basis set each state is described by different
r j m, , and Ω values.

The molecular state at time t can be written by the density matrix:

∑′ ′ ′ ′ = ∣ 〉〈 ′∣ ⊗ ′ ⊗ ∣ 〉〈 ′∣
′

′ρ r r θ θ ϕ ϕ n n t n n a r r t ζ ζ( , , , , , , , ; ) ( , ; )
ζ ζ

ζ ζ
,

,
(4)

where ∣ 〉ζ is the wavefunction with the quantum numbers ∣ 〉j m, , Ω ,
expanded by the Dm

j
,Ω matrices.

2.2. Coupling elements

The coupling elements are calculated by vector multiplication be-
tween the laser field ε t( ) and the transition dipole between the elec-
tronic states, μ. The transition dipole elements depend on the sym-
metry, Σ or Π, and the parity, Gerade or Ungerade, of the states.

For a linearly polarized field, the rotational coupling elements are
given by:

∫
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where μ q0 is the transition dipole moment proportional to D θ ϕ( , , 0)q0
1

[18]. The value of q is determined for a given transition case and is
equal to = − ′q Ω Ω .

The first term is the initial state ′ ′
′D θ ϕ( , )m

j
,Ω , the second term is the

coupling operator of the transition D θ ϕ( , )q0
1 , and the third term is the

final state D θ ϕ( , )m
j
,Ω . The coupling components are calculated by the

given − j3 symbols.
We will consider two transition cases:

• Transition between two Σ electronic surfaces: in this case,
= − =q 0 0 0 hence the coupling D matrix is D00

1 . Note that the
transition between two Π electronic surfaces gives the same cou-
pling elements, = − =q 1 1 0.

• Transition between Σ and Π electronic surfaces: in this case,
= − =q 1 0 1, hence the second D matrix is ±D0 1

1 .

For the two cases:

∝ ⎧
⎨⎩

∝ −
∝ −±

μ ε
με D θ ϕ cos θ
με D θ ϕ sin θ

·
( , ) ( ) Σ Σ

( , ) ( ) Σ Π
00
1

0 1
1

(6)

In all the calculations, we assumed that μ is independent in the inter-
nuclear distance r.

Additional insight into these results can be obtained by decom-
posing the transition dipole into a component in the internuclear di-
rection μ‖ and a component in the perpendicular direction ⊥μ . The
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scalar product between the transition dipole and the field becomes:

= + ⊥μ ε ε μ θ μ θ· ( cos sin )‖ (7)

Therefore, the transition dipole is parallel in the first case and
perpendicular in the second case to the internuclear direction. An il-
lustration of the two coupling cases is presented in Fig. 1.

The transition between the electronic states changes the total an-
gular momentum state. For linearly polarized light, the projection of
the laboratory axis m on the Z spatial axis is conserved. The quantum
number Ω can change with the change in value of q, depending on the
transition case. The quantum number j changes by one unit of angular
momentum ℏ or remains the same (Q branch at the −Σ Π transition).

2.3. Initial state

The model is constructed to mimic a hypothetical experiment: a
molecular beam with a fixed temperature is subjected to a pulsed laser
source. The ensemble’s temperature was taken to correspond to the
initial state of −F2 at 20 K. At this temperature, the electronic and vi-
brational degrees of freedom are in their ground state. The initial state
can be written as follows:

= = ⊗ρ t ρ ρ( 0) electronic rovibration (8)

where = 〉〈ρ ψ ψ| |electronic
e e
0 0 . The vibrational projection is conditioned on

the rotational quantum number =j ρ, rovibration
= 〉〈= =P r r r( ) |Φ ( ) Φ ( )|j n j n j0, 0, 0,i i . The vibrational ground state for each

value of j is obtained by imaginary time propagation [19], in-
dependently for each j. Note that the vibrational wavefunction can be
different for different quantum numbers.

The initial rovibration state is a Boltzmann distribution of several
rotational components.

∑ ∑= + − 〉〈 = 〉

〈
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i

0, 0,

i
i

i

(9)

where ξ j( )i is the normalized probability for state ji with the partition
function = ∑ + −Z l exp β E(2 1) ( ( ))l l . E j( )i are the rotational energy
eigenvalues, ̂ 〉 = 〉H ψ E j ψ| ( )|rot ζ i ζi i

, that depend only on the total angular
momentum j as explained above. The index i describes the initial
quantum numbers of the state and will be used in this notation from this
point on.

The total initial state is:

∑′ ′ ′ = = = 〉

〈 ⊗ ⊗ 〉〈

ρ r r θ θ ϕ ϕ n n t ξ j a t

P r ζ ζ
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2.4. Propagation in time

The dynamics of the state is carried by a first principle approach.
The evaluation of the state is described by a unitary transformation:

̂ ̂ ̂= =ρ t U t ρ t U t( ) ( ) ( 0) ( )†
(11)

where ̂U t( ) is the propagator which is generated by the time-dependent
Schrödinger equation:

̂ ̂ ̂=i d
dt

U t H t U tℏ ( ) ( ) ( )
(12)

and the Hamiltonian is the generator. The density operator, ρ t( ), pro-
vides all observable data. For example, the observable result that cor-
responding to the operator ̂A , will be calculated as follows:

̂ ̂ ̂ ̂ ̂〈 〉 = = =A tr A ρ t tr A U t ρ t U t( ( )) ( ( ) ( 0) ( ))t
†

(13)

Under common molecular beam conditions, typical incoherent
processes such as collisions or spontaneous decay take place on the time
scales of ⩾t 1 nsec. The dissociation process is completed by ∼ 100 fsec.
We can therefore assume that the dynamics is fully coherent. The ex-
pectation values can be evaluated by using the basis where the initial
density operator is diagonalized ̃ 〉 = 〉 ⊗ 〉 ⊗ 〉ψ ψ ψ ζ| | | |n ν i n

e
ν
ν

i, , , giving:

̂ ̂ ̃ ̂ ̂ ̃∑〈 〉 = 〈 = = 〉A U t ψ t A U t ψ t( ) ( 0)| | ( ) ( 0)t
n ν i

n ν i n ν i
, ,

†
, , , ,

(14)

Eq. 14 can be decomposed into the expectation values of the individual
components. Each component requires the solution of the time-depen-
dent Schrödinger equation for a wavefunction: ̂=i ψ H t ψ( )d

dt , which is
then computed by employing short time steps and solving for each step
by the Chebyshev approximation [20–22] assuming that ̂H t( ) is pie-
cewise constant. The basic evaluation of ̂Hϕ for Eq. 1 is carried out
using the Fourier grid method for the internuclear coordinate r [23,24]
and angular momentum algebra for the rotation. Details of the para-
meters are given in Table 1.

The propagation is therefore decomposed into independent wave-
functions. The initial state for a wavefunction representation becomes:

∑∣ 〉 = ∣ 〉 ⊗ ∣ 〉 ⊗ ∣ 〉r θ ϕ t ξ j a t r t n ζΨ ( , , ; ) ( ) ( ) Φ ( ; )i i
n ζ

ζ n ζ n n ζ
,

, , , ,
(15)

Fig. 1. The two transition cases - semi-classical illustration. Upper panel: transition between two Σ electronic surfaces. Starting at a bound electronic surface, Σg, the
laser excites to the un-bounding electronic surface, Σu, then the molecule dissociated. The fragments are obtained in the direction of the polarization of the light.
Lower panel: Transition between Σ and Π electronic surface. Starting at a bound electronic surface, Σg , the laser excites to the un-bounding electronic surface, Πu,
then the molecule dissociated. The fragments are obtained in the perpendicular direction to the polarization of the light.

B. Ezra, et al. Chemical Physics Letters 756 (2020) 137845

3



2.5. Absorbing boundary condition

In a typical photodissociation experiment, the fragments are de-
tected far from the dissociation point. At the detection point, the par-
ticles are characterized by their momentum, which is detected by ve-
locity map imaging [25,16]. Comparable information can be calculated
by the asymptotic momentum, amplitude, and direction, at far inter-
nuclear distance. We can employ the fact that the position information
is not detected and restrict the computation grid in r up to the region
where the potential becomes flat. To extract the direction, the phase
information must be conserved, since the wavefunction is encoded in
angular momentum components and not in direction.

To achieve these goals, we constructed an auxiliary grid in r for each
wavefunction component. This grid is flat with potential energy
matching the asymptotic potential of the primary grid. The two grids
overlap in the asymptotic flat part of the primary grid. At constant time
intervals τ , a portion of the asymptotic part of the wavefunction is
moved to the auxiliary grid. This is achieved by a smooth transfer
function which eliminates spurious reflections. This decomposition is
possible due to the linearity of the wavefunction = +Ψ Ψ Ψprimary aux.
Both wavefunctions are propagated simultaneously. The auxiliary wa-
vefunction is stored in momentum space where the time propagation is

just a phase shift by ̂ ̂= −U t t( ) exp( )i P
mℏ 2

2
.

At the end of the propagation, all of the dissociated portion of the
wavefunction is stored in the auxiliary grid:

∑ ∑= = ∣ 〉 ∣ 〉r θ ϕ t t η b r n ζΨ ( , , ; ) ( ; )i final
n η ζ

ζ η
i

τ
,

,
τ (16)

where nτ is the time index for the wavefunctions that are transferred at
different times, η denotes the auxiliary surface (corresponding to the

coupled surface n), and we composed the coefficients and the de-
pendency of r. More information describe at the appendix section
Appendix A.

All of the observables are calculated based on Eq. 14, which can be
decomposed to individual wavefunction propagations, leading to the
final state, Eq. 16. The thermal average observables are obtained by
summation over the individual thermal components calculated for
different initial states.

∑〈 〉 = 〈 〉A A
i

i
(17)

When more than one excited state potential is included, each channel is
calculated separately.

The next sections contain the results of several calculations, for
description for each observable see appendix section Appendix B. The
model was set with the parameters from Table 1.

3. Theoretical analysis of experimental observables

The model is designed to provide a full description of a photo-
dissociation experiment in a strong laser field. The system is initiated in
a thermal state. The initial state resides on the ground bounded elec-
tronic and vibronic states with a thermal distribution of rotational
states. The external pulse field couples the rotational states in the
ground electronic to rotational states in the excited un-bounded elec-
tronic states. We systematically increased the radiation intensity to gain
insight on strong field effects.

In all calculations, the ground electronic state was set as the singlet
Σ bound electronic surface. The excited electronic surface was set to
either Σ singlet or Π singlet with the same potential form. In all si-
mulations, the electromagnetic-radiation was chosen to be a transform
limited Gaussian pulse with a width of 30 fs. Wavelengths and in-
tensities were varied.

3.1. Σ excited electronic surface

We first examine the dissolution outcome of radiation coupling two
Σ electronic surfaces. Fig. 2a presents the angular distribution of the
fragments’ momentum in the parallel and perpendicular directions with
respect to the polarization. For the weak field one-photon transition in a
parallel excitation, the resulting distribution resides mainly in the
parallel direction, and is proportional to θcos ( )2 , as expected.

Fig. 3 presents the dissociation probability as a function of wave-
length. Neglecting spontaneous emission, the dissociation probability is
equal to the excited state population. The excited state population is
also proportional to the absorption energy [26,27] =ω N Eℏ Δ Δ . By

Table 1
Model parameteres

parameter value

μ-reduce mass of −F2 9.5 amu
Bond length 6.8 Angstrom

Rotational Constant −8.88 cm 1

rΔ 0.0464 bohr
tΔ −5·10 fsec2

Pulse width 30 fsec
Central wavelength 320–390 nm

Intensity −10 1011 16 W
cm2

μ̄- dipole moment 0.2 au
Electronic potentials private communication

Temperature 20 K

Fig. 2. Angular distribution of the outgoing momentum shown as a density plot. The results are for fragments emitted from the transition between two Σ electronic
surfaces with different intensity, (a) low intensity- =I 1010 W

cm2 , (b) high intensity - =I 1016 W
cm2 .

B. Ezra, et al. Chemical Physics Letters 756 (2020) 137845
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fitting the action spectrum (dashed line), we conclude that the peak of
the transition is at 346 nm.

The coupling between the ground state and the excited state de-
pends on the laser wavelength, which determines the Condon point.
The Condon point is defined as the radius in which the two coupled
potentials cross for a given vertical resonance energy. The vertical re-
sonance energy value is the Condon energy. The inset in Fig. 3 displays
the correlation between the fragments’ average kinetic energy at dif-
ferent wavelengths and the corresponding Condon energy.

Nonlinear multi-photon processes develop when the laser intensity
is increased. To explore these processes, we carried out a series of
calculations with increasing pulse intensity. The simulations were
conducted with the same wavelength, close to the peak of absorption.

Fig. 4 presents the dissociation probability as a function of laser
intensity. The figure includes results of Σ and Π excited electronic states
(see forward). For the case of an Σ excited electronic state, the dis-
sociation probability increases with the laser intensity and saturates.
The inset (a) in Fig. 4 presents the dissociation probability for low field
intensity. As expected, the dissociation probability is linear with the
intensity, fitted in the inset (a) by a black line. Note that a log–log scale
was used for the main frame, while a linear one was used for the inset
(a).

The number of photons involved in the process reshapes the angular
distribution. Each photon transition multiplies the distribution by

θcos ( )2 . Therefore, for example at the three-photon transition, ex-
citation–emission–excitation, the angular distribution becomes pro-
portional to θcos ( )6 . Considering the DC component of the distribution,
the outcome distribution form three-photon transition has a component
of θcos ( )4 .

The full angular distribution can be written as a series of Legendre
polynomials θ(cos( ))NP , each one caused by different number of pho-
tons transition. The series is forgathered at the highest photon transi-
tion of the process. Therefore, fitting the angular distribution to a
polynomial series indicates the highest multi-photons transition in the
process.

∑=
=

p θ P α P θ( ; ) ( ) (cos( ))
N

N N
2,4,6..

P
(18)

An example of angular distribution at high intensity is presented in
Fig. 2b. Here, the stronger coupling with the field leads to a con-
centration of the probability in the parallel direction. This observation
fits the classical intuition: when modulation in a particular direction,
the dissociation becomes selective in this direction.

The difference between the angular distribution at different in-
tensities can be examined by fitting the distribution at the most prob-
able momentum, P θ( )mp . Fig. 5a presents the coefficients of =N 2 to

=N 10 for the Σ excited electronic state as a function of laser intensity.
The fitting was done using a Fourier transform to expand the angular
distribution to π2 .

Increasing the intensity has a small effect on the kinetic energy of
the fragments. Fig. 6 presents the mean value and the variance of the
kinetic energy release (KER) for different laser intensities. The KER, for
the transition between two Σ states (solid blue line), initially decreases
with the intensity. This could be a result of the photon-locking process.
At very high intensity, we observe an increase in the KER accompanied
by a narrow distribution. The order of change in the KER is from low
intensity to 1·10 [W/cm ]15 2 is ∼ 0.1%.

It is essential to note that the extremely high intensities shown are
beyond the validity of the Born–Oppenheimer model employed.

3.2. Π excited electronic surface

The quantum number Ω changes during the →Σ Π transitions. As
explained in the previous section, at the Σ electronic surface =Ω 0,
whereas at the Π electronic surface, = ±Ω 1. Since each excited state
level is now doubly degenerate, and the Q branch is allowed, each ro-
tational state in the ground electronic surface is coupled to six states in
the excited surface. In this case, the angular distribution of the frag-
ments is expected to be proportional to θsin ( )2 for one-photon transi-
tions.

Fig. 7a presents the angular distribution of the fragments. A com-
parison to Fig. 2a reveals that the center of the momentum distribution,
and thus the average kinetic energy, is similar for the two symmetries.

The dissociation probability is influenced by the change of in the
excited electronic surface to Π. The dissociation probability as a func-
tion of the intensity is presented in Fig. 4. The slope at low intensities,
the inset (a) in Fig. 4, is larger compared to the previous case of on Σ
electronic surface, this was also observed by Csehi et al. [29]. The ex-
planation to this observable is the larger number of excited states, at Π
state case, that are coupled to each ground state. Furthermore, this
change impacts the saturation intensity of the dissociation probability.

In the −Σ Π transition, each absorbed photon multiplies the dis-
tribution by θsin ( )2 . This can be compared to the −Σ Σ case where each
absorbed photon multiplies the distribution by θcos ( )2 . It is customary
to fit the angular distribution to = +I θ βP cos θ( ) 1 ( ( ))2 . For single-
photon excitation, this is also the appropriate form for →Σ Π transi-
tion. For multi-photon transition this form cannot fit the results.
Therefore, the angular distribution was fitted to a polynomial series in

θ(sin( ))NP , which for even N can be written also as − θ1 (cos( ))NP .
Fig. 7b presents the results for coupling between the Σ and Π electronic

Fig. 3. Action spectrum represent the dissociation probability as function of
wavelength for −Σ Σ, blue data, and −Σ Π, red data, electronic transfer. The
action spectrum calculated with high intensity in the one photon transition
range, 1·10 [W/cm ]11 2 . The inset: Average kinetic energy of the photo-fragments,
〈 〉Te , as a function of Condon energy. The Condon energy is defined as the
vertical energy minus the dissociation energy.

Fig. 4. Dissociation probability as a function of laser intensity for −Σ Σ and
−Σ Π transition in blue and in red respectively. The intensity and the dis-

sociation probability are presented in logarithmic scale. Inset (a): the linear
range, linear fit to the data at black line. Inset (b): Electronic state potentials
surfaces.The excite state, red, is chosen as either Σ or Π. These potentials re-
present the computed σu and σg state taken from [28].

B. Ezra, et al. Chemical Physics Letters 756 (2020) 137845

5



states with high-intensity laser.

∑=
=

p θ P α P θ( ; ) ( ) (sin( ))
N

N N
2,4,6..

P
(19)

Fig. 5b presents the coefficients of =N 2 to =N 10 for the Π excited
electronic state as a function of the laser intensity and the fitting order.
By comparing this result to those of the Σ excited state, Fig. 5a, we
conclude that the multi-photon transition is achieved at a higher in-
tensity for the Π excited state. This difference is a result of the larger
effective Hilbert space for the Π excited state.

The KER observations for the transition between Σ and Π states are

presented in Fig. 6 (dashed blue line). The KER shows non monotonic
variations compered to the smooth dependence on intensity for the two
Σ states. In addition, the overall variation is larger, ∼ 0.6% but still quite
small. This behavior could be a result of interference between the ex-
citation pathways in a strong field.

4. Discussion and conclusion

The presented model for the photo-dissociation process is based on
the exact solution of the time-dependent Schrödinger equation. Our
survey of existing models of photodissociation showed that they typi-
cally employ very limiting simplifying assumptions. In this paper, we
present a new model that aims to describe generic model systems,
comparing different electronic state symmetries. The model contains a
description of the nuclear rotational motion, and the coupling elements
between rotational states.

Using this model, we presented the dissociation outcome for two
processes, the transition between the Σ singlet electronic state to the Σ
or Π singlet electronic state. For each case, we simulated the final
momentum distribution of fragments. For weak-field one-photon tran-
sitions, we observed a momentum distribution proportional to cos θ( )2

for the −Σ Σ transition and sin θ( )2 for the −Π Σ transition. This is in
accordance with previous models[4,6,9] based on perturbation theory.
A detailed inquiry into the differences between the velocity maps for
the two cases reveals that in the mainly parallel cosine transition the
probability to dissociate at the perpendicular direction vanishes. For the
second case, the probability to excite in the non-classical direction re-
mains non-zero for all intensities. As was shown and explained by Csehi
et al. [14], this results from symmetry of the occupied J states during
the transition.

Fig. 5. The coefficients of fitting the angular distribution into a polynomial function as function of the intensity and the fitting order. The fitting is done to polynomial
function of Legendre polynomials. Note, the coefficients display after cube root for convenience only.

Fig. 6. The average kinetic energy release, solid line, and its variance dis-
tribution, dashed line. The figure separate to two Y axis, left for the average
kinetic energy and the right for the variance distribution. The figure include
data of −Σ Σ transition, in blue, and of −Σ Π transition, in red. (For inter-
pretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Fig. 7. Angular distribution of the outgoing momentum shown as a density plot. The results are for fragments emitted from the transition between Σ and Π electronic
surfaces with different intensity, (a) low intensity- =I 1010 W

cm2 , (b) high intensity - =I 1016 W
cm2 .
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Our new model simulates high-laser-intensity processes that lead to
multi-photon transitions. We showed that the main effect of increasing
the number of photons involved in the process reshapes the angular
distribution. For parallel transitions, the angular distribution becomes
sharper, indicating a more aligned distribution. In addition, the average
KER and its distribution are only weakly dependent on the laser in-
tensity.

In conclusion, we constructed a new model that can describe form
first principle diatomic dissociation a wide range of radiation intensity.
We advocate the view that the key to understanding a complex dyna-
mical system is to rely on experience gained from small and simple
models. Therefore, the results here are presented for two transition
cases, between two Σ states and between Σ and Π states. Consistent
with prior knowledge, the main difference between the two cases is the
angular distribution symmetry. Furthermore, our new model shows that
the threshold on the intensity were multi photon transition occur is
lower in the Σ excited state then in the Π case.

Our model opens the way to explore the dissociation process of
systems with high complexity. For simplicity, the current model in-
troduces singlets as its electronic states. In future studies, we will de-
scribe the system using doublet states, which are more suitable to the

−F2 case. Moreover, spin effects should be taken into account, such as
spin–orbit interactions. One might also notice that the model takes
advantage of a lower temperature to reduce the size of the required

Hilbert space. Higher temperature enlarges the number of potentially
populated rotational states, resulting in a larger Hilbert space. Such a
simulation will require modified methods such of the use of random
phase wavefunction[30]. Furthermore, employing coherent control can
lead to new and fundamental results[12,31].
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Appendix A. Absorbing boundary conditions

To minimize computation effort the computation grid has to be cut at a predetermined radius. Since we want to analyze the outgoing asymptotic
data, we cannot use the common option of absorbing the wavefunction at the end of the grid [32,33]. As an alternative we employ an auxiliary grid
which overlaps the primary grid which we term transition window. The position of this window is optimized to minimize the primary grid without
damaging the momentum distribution. The average kinetic energy is then calculated for different window radius points. Fig. 8 presents the average
kinetic energy as a function of the window’s starting radius. The propagation of the state at the auxiliary surface is a free propagation; hence the
momentum distribution will not change with time for large r. Therefore, the part that absorbs at each time can be restored independently.

The total dynamical calculation was stopped when at least 99% of the excited state population moved to the auxiliary surface.

Appendix B. Theoretical analysis - observables

For each excited electronic surface we calculated the dissociation probability on the corresponding virtual surface η. The accumulated probability
for initial state i

= 〈 = = 〉=r θ ϕ t t r θ ϕ t tΨ ( , , ; )|Ψ ( , , ; )i η i η final i η final, , ,P (20)

∫ ∑ ∑=
∞

r dr b r τ( ; )
m τ j

ζ η
i

0
2

,Ω,
,

2

i η,P is a joint probability starting in initial state i and dissociation at electronic state η. Note that the wavefunction is normalized with Boltzmann
coefficients. The first summation, over the quantum number j, is due to the coherence between different components of a given initial thermal state.

Asymptotically the total dissociation probability is equal to the missing probability at the ground state, this was been verified for consistently.
The momentum angular distribution is proportional to the experimental velocity distribution. The calculation requires to change the re-

presentation from the radial degree of freedom to the corresponding momentum, the change is done by using Fourier transform. Additionally, each

Fig. 8. Left axis: Final average kinetic energy calculated for different final states as a function of the starting position of the transfer window. Right axis: Represents
the transfer operator between the grid n to the respectively auxiliary grid.
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rotational state is explicitly written in the angular variables.

̃ ̃∑ ∑= = 〉ψ p θ ϕ t t b p τ η D θ ϕ( , , ; ) ( ; )·| · ( , )i final
η ζ τ

ζ η
i

m
j

,
, ,Ω

(21)

It is important to notice that in the momentum representation, there is a relative phase between different virtual time parts, τ .
The distribution of each virtual surface and initial state is calculated as follows:

̃∑ ∑ ∑= ⎛

⎝
⎜

⎞

⎠
⎟p θ ϕ b p τ D θ ϕ( , , ) ( ; ) · ( , )i η

m j τ
ζ η
i

m
j

,
,Ω

, ,Ω

2

D

(22)

The summation over j is a quantum summation and conserve phases, due to the coherence between different values that generate during the
dynamic. In contrary, the summation over m and Ω are classical since there are no physical coherences between different values.

̃∫ ∑ ∑ ∑ ∑= ⎛

⎝
⎜

⎞

⎠
⎟p θ dϕ b p τ D θ ϕ( , ) ( ; ) · ( , )

i m η j τ
ζ η
i

m
j

,Ω,
, ,Ω

2

D

(23)

We integrate over ϕ since there is no dependency on this angle.
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