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ABSTRACT
A comprehensive approach to modeling open quantum systems consistent with thermodynamics is presented. The theory of open quantum
systems is employed to define system bath partitions. The Markovian master equation defines an isothermal partition between the system
and bath. Two methods to derive the quantum master equation are described: the weak coupling limit and the repeated collision model. The
role of the eigenoperators of the free system dynamics is highlighted, in particular, for driven systems. The thermodynamical relations are
pointed out. Models that lead to loss of coherence, i.e., dephasing are described. The implication of the laws of thermodynamics to simulating
transport and spectroscopy is described. The indications for self-averaging in large quantum systems and thus its importance in modeling
are described. Basic modeling by the surrogate Hamiltonian is described, as well as thermal boundary conditions using the repeated collision
model and their use in the stochastic surrogate Hamiltonian. The problem of modeling with explicitly time dependent driving is analyzed.
Finally, the use of the stochastic surrogate Hamiltonian for modeling ultrafast spectroscopy and quantum control is reviewed.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5096173

I. INTRODUCTION
Any quantum system is influenced by its environment. As a

result, dynamical modeling of molecular encounters has to incor-
porate open system strategies where the primary part of the sys-
tem is treated explicitly and the rest, the bath implicitly. This
approach is termed “reduced description” and is the subject of this
overview.

Sound theoretical modeling ideally should be based on the
controlled approximation based on the laws of nature. Open sys-
tem dynamics is a quantum theory with the additional caveat
that it should be consistent with thermodynamics. For exam-
ple, in transport, does heat always flow from a hot to a cold
reservoir?

A central issue in open quantum systems is defining the bound-
ary between the system and its environment. We will follow ideas
from thermodynamics and define ideal partitions, partitions that
separate the system and bath but allow transport. The isother-
mal partition is a primary example allowing mutual heat flow but
maintaining the definition of system and bath variables. Another

example is a chemical partition allowing the “in and out” flow of
particles.

We will show how the theoretical framework of quantum ther-
modynamics is incorporated in dynamical simulations of open sys-
tems. A molecular context can illuminate these concepts. Molecular
spectroscopy in solution is the theme of a chromophore absorbing
radiation and sharing the excitation with the surrounding solvent
where it is dissipated. The consequence is that we focus on externally
driven open quantum systems.

In molecular physics, open quantum systems are prevalent.
Molecular spectroscopy in the condensed phase,1 in particular,
ultrafast pump-probe2–7 and 2-D spectroscopy.8,9 Quantum biology
is also a typical example.10–12

A. The von Neumann mathematical formalism
of open systems

von Neumann was the first to realize that the wavefunction for-
mulation of quantum mechanics is incomplete.13 The source of the
discrepancy is due to quantum entanglement. Even if a combined
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system is pure where its state is described by a wavefunction ψSB,
due to entanglement, a subsystem state cannot be described by a
wavefunction. By measuring only local system observables, one can-
not distinguish between an entangled system and a statistical mix-
ture. To solve this issue, von Neumann established the following
fundamental structure of quantum probability:13

(i) Quantum observables are represented by self-adjoint (Her-
mitian) operators (denoted by Â, B̂, . . .) acting on the Hilbert
space H.

(ii) Quantum events are the particular yes-no observables
described by projectors (P̂ = P̂2).

(iii) The state of the system is represented by density matrices,
i.e., positive operators with trace one (denoted by ρ̂, σ̂, . . .).

(iv) Probability of the event P̂ for the state ρ̂ is given by

P = Tr(ρ̂P̂). (1)

(v) An averaged value of the observable Â at the state ρ̂ is equal
to

⟨Â⟩ρ = Tr(ρ̂Â). (2)

The dynamics of a closed quantum system is described by a unitary
map Ut ,

ρ̂(t) = Ut ρ̂(0) ≡ Û(t)ρ̂(0)Û†
(t), (3)

where Û is a unitary operator generated by the Hamiltonian operator
Ĥ(t),

d
dt
Û(t) = −

i
h̵
Ĥ(t)Û(t) (4)

with Û(0) = Î. For time independent Hamiltonians,
Û(t) = exp{− i

h̵ Ĥt}. An equivalent differential form of the dynam-
ics is described by the von Neumann evolution equation with the
time-dependent Hamiltonian Ĥ(t),

d
dt
ρ̂(t) = −

i
h̵
[Ĥ(t), ρ̂(t)]. (5)

Quantum entropy was also introduced by von Neumann now
known as the von Neumann entropy, defined by

Svn(ρ̂) = −kBTr(ρ̂ ln ρ̂) = −kB∑
j
λj lnλj ≥ 0, (6)

where ρ̂ = ∑j λj∣j⟩⟨j∣ is a spectral decomposition of the density oper-
ator. The von Neumann entropy is an invariant of the state ρ̂ and
invariant to unitary dynamics [Eq. (5)]. In addition, it is the lower
bound for all possible diagonal entropies SA(ρ̂) ≥ Svn(ρ̂), where
SA = −kB∑j pj ln pj is the Shannon entropy defined by the probabil-
ity distribution obtained by a complete measurement of the operator
Â.

The quantum counterpart of the canonical (Gibbs) ensemble,
corresponding to the thermodynamic equilibrium state at the tem-
perature T, for the system with the Hamiltonian Ĥ, is described by
the density matrix of the form

ρ̂β =
1
Z

e−βĤ, β =
1

kBT
, Z = Tr{e−βĤ}. (7)

FIG. 1. System embedded in a bath. Ĥ = ĤS + ĤB + ĤSB.

The Gibbs state maximizes entropy under the condition of a
fixed mean energy (internal energy in thermodynamic language)
E = Tr(ρ̂Ĥ) or minimizes E for a fixed entropy Svn. In this case,
Svn = SH .

We now consider a bipartite system to describe the system and
bath. The combined state is defined by ρ̂SB and the system state is
obtained by a partial trace over the bath ρ̂S = TrB{ρ̂SB}.

There is a hierarchy of correlation relations between the system
and the bath. We adopt a concentric approach where the outer-
most boundary has no system-bath correlation and therefore can be
described as a tensor product ρ̂SB = ρ̂S ⊗ ρ̂B. This is also a classical
boundary since all system observables can be measured simultane-
ously with bath observables. External time dependent driving can
be considered as a classical limit of an interaction with a quantum
field.

The next level of system-bath correlation is classical mean-
ing that global observables can be measured simultaneously with
local observables [ρ̂SB, ρ̂S ⊗ ÎB] = 0. Finally, we consider quantum
correlation or entanglement.

The approach adopted is to telescope i.g., partitioning
the system bath scenario starting from the outer boundary
(cf. Fig. 1).

II. THE MARKOVIAN MASTER EQUATION
AND ISOTHERMAL PARTITION

The quantum description adopts the assumption that the entire
world is a large closed system and, therefore, time evolution is gov-
erned by a unitary transformation generated by a global Hamilto-
nian. For the combined system bath scenario, the global Hamilto-
nian can be decomposed into

Ĥ = ĤS + ĤB + ĤSB, (8)

where ĤS is the system’s Hamiltonian, ĤB is the bath Hamiltonian,
and ĤSB is the system-bath interaction. The state of the system at
time t becomes ρ̂S(t) = TrB{ρ̂SB(t)} = TrB{Ût ρ̂SB(0)Û†

t }, where Ût

is generated by the total Hamiltonian Ût = e−
i
h̵ Ĥt .
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Reduced dynamics is a dynamical procedure concentrating
only on system observables therefore utilizing system operators.
An important assumption is that at t = 0 the system and bath are
uncorrelated

ρ̂SB(0) = ρ̂S(0)⊗ ρ̂B(0). (9)

This assumption can be moved to t → −∞ and will be scrutinized
later.

Assuming unitary dynamics generated by the total Hamilto-
nian (8) and starting from an uncorrelated initial system-bath state
[Eq. (9)], the reduced map ΛS(t) has the structure

ρ̂S(t) = ΛS(t)ρ̂S(0) =∑
j
K̂j(t)ρ̂S(0)K̂†

j (t), (10)

where K̂ are system operators and ∑j K̂jK̂
†
j = Î. This general result

has been derived by Kraus14 and is termed a completely positive
trace preserving (CPTP) map.

The CPTP map is contracting meaning that the dis-
tance between two states diminishes. This distance between ρ̂1
and ρ̂2 can be defined by the conditional entropy S(ρ̂1∣ρ̂2)

= Tr{ρ̂1 ln ρ̂1 − ρ̂1 ln ρ̂2}. Applying the map Λ leads to a quantum
version of the H-theorem,15

S(Λρ̂A∣Λρ̂B) ≤ S(ρ̂A∣ρ̂B). (11)

If the map has a unique fixed point Λρ̂st = ρ̂st , then using Eq. (11) it
becomes clear that repeated applications of the map will lead mono-
tonically to this fixed point, a mathematical property associated with
thermal equilibrium.16

A differential form of the CPTP map can be obtained by impos-
ing a Markovian and stationary property: ΛS(t + s) = ΛS(t)ΛS(s). The
differential generator of the dynamics can be defined by ΛS(t) = eLt

leading to the quantum master equation

d
dt
ρ̂S = Lρ̂S. (12)

An important milestone was the derivation of the most general form
of the generator of Markovian dynamics by Gorini-Kossakowski-
Lindblad-Sudarshan (GKLS).17,18 The differential generator L of the
map becomes

d
dt
ρ̂S = (LH + LD)ρ̂S = −

i
h̵
[ĤS, ρ̂S] +∑

j
(L̂jρ̂SL̂

†
j −

1
2
{L̂†

j L̂j, ρ̂S}),

(13)

where L̂ are system jump operators and ĤS is a renormalized system
Hamiltonian.

The dynamics generated by the GKLS form (13) based on Kraus
mapping [Eq. (10)] implies a tensor product form between the sys-
tem and bath at all times ρ̂SB(t) = ρ̂S(t) ⊗ ρ̂B(t). This structure is
equivalent to a partition between the system and bath. All system
observables are defined by the system state ρ̂S: ⟨Â⟩ = Tr{Âρ̂S}.

The GKLS equation describes irreversible dynamics with posi-
tive entropy production leading to a fixed point19,20

d
dt
S(ρ̂(t)∣ρ̂st) = −Tr[Lρ̂(t)(ln ρ̂(t) − ln ρ̂st)] ≥ 0, for Lρ̂st = 0,

(14)

where the fixed point for the dynamics is ρ̂st .
The formal mathematical structure of CPTP maps and the

GKLS master equation leave open the choice of the Hamiltonian ĤS
and the jump operators L̂ in Eq. (13). We will employ this structure
to define the outermost boundary between the system and bath (cf.
Sec. IX B).

III. THE BORN-MARKOV WEAK COUPLING
APPROXIMATION

A constructive approach to derive the GKLS master equation
from first principles is desirable allowing us to address directly phys-
ical reality. The method known as Davies construction21 is based on
a second order expansion where the small parameter λ scales the
system-bath interaction

Ĥint = λ∑
k
Ŝk ⊗ B̂k, (15)

where Ŝ are system operators and B̂ are bath operators. The rig-
orous derivation of Davies21 leads to the GKLS form and has the
property of thermodynamic consistency.22 The derivation is based
on the weak coupling limit (WCL), which includes the heuristic
ideas of Born, Markovian, and secular approximations. These tech-
niques were previously applied to examples of open systems such
as nuclear magnetic resonance by Bloch23 and later by Redfield.24

Other approaches to the open system master equation include the
projection technique of Nakajima-Zwanzig.25,26

A basic step in the derivation is to transform to the
interaction representation generated by the free evolution Û(t)
= e−

i
h̵ ĤSt

⊗ e−
i
h̵ ĤBt . At this point, the system coupling operators

Ŝk in Eq. (15) are expanded by eigenoperators of the free system
propagator

US(t)Âω = e
i
h̵ ĤStÂωe−

i
h̵ ĤSt

= e−iωtÂω (16)

({ω} denotes the set of Bohr frequencies of ĤS). Then,

e
i
h̵ ĤSt Ŝke−

i
h̵ ĤSt

= ∑
{ω}

sk(ω)Âωe−iωt . (17)

Adding to the WCL method a renormalization procedure which
allows us to use the physical Hamiltonian ĤS of the system, con-
taining lowest order Lamb corrections, one obtains the following
structure of the Markovian master equation which has the GKLS
form:

d
dt
ρ̂S = −i[ĤS, ρ̂S] + LDρ̂S, LDρ̂S =∑

k,l
∑
{ω}

Lωlkρ̂S, (18)

where

Lωlkρ̂S =
1

2h̵2 R̃kl(ω)sl(ω)sk(ω){[Âωρ̂S, Â
†
ω] + [Âω, ρ̂SÂ

†
ω]}. (19)

The eigenoperators Âω become the “jump” operators L̂j in the
GKLS equation (13). These are eigenoperators of ĤS, [ĤS, Âω]

= −iωÂω [Eq. (16)].
The rate matrix R̃kl(ω) is the Fourier transform of the bath

correlation function ⟨R̂k(t)R̂l⟩bath, computed in the thermodynamic
limit
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R̃kl(ω) = ∫
+∞

−∞
eiωt

⟨B̂k(t)B̂l⟩bathdt. (20)

The derivation of (18) and (19) imposes additional thermodynami-
cal properties of the master equation:

(1) The Hamiltonian part [ĤS, ●] commutes with the dissipative
part LD.

(2) The diagonal (in ĤS-basis) matrix elements of ρ̂S evolve
(independent of the off-diagonal ones) according to the Pauli
master equation with transition rates given by the Fermi
golden rule.27,28

In addition, if the bath is a heat bath,29,30 then

(3) Gibbs state ρ̂β = Z−1e−βĤS is a stationary solution of (18).
(4) Any initial state relaxes asymptotically to the Gibbs state: The

0-Law of Thermodynamics.16

The derivation of (18) and (19) can be extended to describe
driven systems with a time dependent system Hamiltonian ĤS(t).
The jump operators Âω become eigenoperators of the free time
dependent propagator US(t). The adiabatic case of a slowly varying
time-dependent Hamiltonian is the simplest case. The jump opera-
tors become the eigenoperators of the instantaneous propagator or
[ĤS(t), Âω(t)] = −iω(t)Âω(t).31

A quantum dynamical version of the first law of thermody-
namics is obtained by examining the energy conservation law in the
adiabatic case22,32

E(t) = Tr(ρ̂S(t)ĤS(t)). (21)

Taking the time derivative of Eq. (21) results in the change in energy
partitioned to power and heat currents,

d
dt

E(t) = J(t) −P(t), (22)

where the power provided by the system becomes

P(t) ≡ −Tr(ρ̂S(t)
dĤS(t)

dt
). (23)

The heat current becomes

J(t) ≡ Tr(ĤS(t) d
dt ρ̂S(t)) = ∑

k
Jk(t),

Jk(t) = Tr(ĤS(t)Lk(t)ρ̂S(t)).
(24)

The heat is the sum of net heat currents supplied by the individual
heat baths where we consider the possibility of more than one bath.

Employing the property of positive entropy production,
Eq. (14)19,20 applied to individual generators Lk(t) reproduces the
second law of thermodynamics in the form

d
dt
Svn(t) −∑

k

1
Tk

Jk(t) ≥ 0, (25)

where Svn is the von Neumann entropy Svn = −Tr(ρ̂S ln ρ̂S)

[Eq. (25)] was obtained first for the constant Ĥ in Ref. 33 and
subsequently generalized in Ref. 32.

The derivation of the WCL of the GKLS has been criticized as
being too strict. It has been suggested to limit the convolution inte-
gral to finite time and to obtain a non-Markovian theory. Another
option is not to perform the secular approximation and obtain the
Redfield equation,34–36 which is not CPTP. Cohen and Tannor have
indicated that the GKLS equation is not consistent with the semiclas-
sical notion of translation invariance.37 From a thermodynamical
perspective, only the GKLS equation is consistent.38 The conditions
for the validity of the weak coupling limit become the idealiza-
tion which produces a consistent thermodynamical framework of a
subsystem coupled isothermally to a bath.

A. Reduced dynamics under periodic
and nonperiodic driving

The master equation for a time dependent Hamiltonian needs
particular attention. When the driving is fast, the previous adiabatic
approximation is inappropriate. The key issue in the derivation is to
obtain the time dependent free propagator US(t), defined by

d
dt
US(t) = LH(t)US(t), (26)

where LH = − i
h̵ [ĤS(t), ●]. In the WCL, the free propagator is

employed to transform to the interaction representation. Then, the
instantaneous eigenoperators of US(t),

US(t)Ân = e−i�ntÂn, (27)

become the jump operators in the GKLS equation.39 Such a decom-
position is possible in periodic and special protocols of nonperiodic
driving.

The master equation for periodic modulation of the Hamil-
tonian ĤS(t) = Ĥs(t + τ) is the basis for spectroscopy and con-
trol in condensed phases as well as in continuous thermodynamic
devices.40–44 The main assumption is that modulation is fast, i.e.,
its frequency is comparable to the relevant Bohr frequencies of
the system Hamiltonian. Employing the Floquet theory, the unitary
propagator ÛS(t) ≡ ÛS(t, 0) can be written as

ÛS(t) = Ûp(t)e−
i
h̵ Ĥav t , (28)

where Ûp(t) = Ûp(t + τ) is a periodic propagator and Ĥav can be
called averaged Hamiltonian. Under similar assumptions as before,
one can derive using the WCL procedure, the Floquet-Markovian
Master Equation (ME) in the interaction picture

d
dt
ρ̂int

(t) = Lρ̂int
(t), Lρ̂ =∑

k,l
∑
{ωq}

Lωq

lk ρ̂, (29)

where

Lωq

lk ρ̂ =
1

2h̵2 R̃kl(ωq){[Âl(ωq)ρ̂, Â
†
k(ωq)] + [Âl(ωq), ρ̂Â

†
k(ωq)]}.

(30)

Now, the summation in (29) is taken over the set of extended Bohr
frequencies {ωq = ωav + qΩ∣ωav − Bohr frequencies of Ĥav , q ∈ Z},
which take into account the exchange processes of energy quanta
h̵|q|Ω with the source of external modulation.
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Heat currents corresponding to different baths can be defined
for any time. As a result, the second law [Eq. (14)] is satisfied for
this definition. The definition of the first law is intricate. For fast
modulation, the instantaneous decomposition of energy into work
and internal energy of the system is ambiguous. Only in the limit
cycle, where the system’s internal energy and entropy are constant
and the heat currents are time independent, we can write the first
law employing the average energy conservation. The heat currents
associated with the j bath are given in terms of the corresponding
interaction picture generator

Jj = ∑
l,k∈Ij

∑
{ωq}

ωq

ωav
Tr(ĤavL

ωq

lk ρ̂0), (31)

and Ij denotes the subset of indices corresponding to the interac-
tion with the jth heat bath. The power is defined by the energy
conservation,

P =∑
j
Jj. (32)

The second law becomes the sum of entropy productions in the
baths,

∑
j

1
Tj
Jj ≤ 0. (33)

B. Driving protocol with slow acceleration
A general approach to time dependent driven systems is possi-

ble if an explicit solution can be found for the free propagator US(t).
For this to occur, the Hamiltonian ĤS(t) has to be decomposed
within elements of a Lie algebra. Consider a closed set of operators
{Ĝ} which are elements of a Lie algebra

[Ĝj, Ĝi] =
N
∑
k=1

cij
kĜk, (34)

where cij
k are the structure constants.

If the Hamiltonian ĤS(t) is also a member of the algebra, it can
be decomposed as a linear combination of the operators {Ĝ},

ĤS(t) =
N
∑
j=1

hj(t)Ĝj. (35)

With the help of the identity equation (35), one concludes that the
equations of motion for the system operators are closed under the
Lie algebra.45

The eigenoperators can be found by representing the dynamics
in Liouville space (known also as Hilbert-Schmidt space).46 In the
Liouville representation, the system’s dynamics are represented in
terms of a chosen basis of operators spanning the Liouville space
(such as {Ĝ}). This basis of operators constructs a vector v⃗(t) in
observable space.

Employing the Heisenberg equation of motion, the dynamics
of v⃗ is given by

d
dt
v⃗(t) = {

i
h̵
[Ĥ(t), ●] +

∂

∂t
}v⃗(t). (36)

Here, we consider a finite basis of size N, which also forms a closed
Lie algebra. This guarantees that the Heisenberg equations of motion
(36) can be solved within the basis,45 implying that Eq. (36) can be
represented in a vector matrix form

d
dt
v⃗(t) = G(t)v⃗(t), (37)

where G(t) is an N by N matrix and v⃗ is an N-dimensional vec-
tor. The task to find the eigenvalue solution of Eq. (38) is hindered
by the explicit time dependence of G(t). If by a proper choice of
a time dependent operator base and a driving protocol, the time
dependence can be concentrated to G(t) = Ω(t)B, then47

d
dθ

v⃗(θ) = Bv⃗(θ), (38)

where θ = ∫Ωdt is a scaled time. The eigenvectors of the propaga-
tor can be obtained by diagonalizing B. We can follow the ideas
of the adiabatic theorem meaning that even if B has a slow time
dependence, its eigenoperators will follow the evolution with an
accumulated phase

BA⃗j = eiλj(θ)A⃗j. (39)

From Eq. (39), the time dependent eigenoperator Âj can be recon-
structed from the basis operators of the algebra {Ĝ}.

The jump operators are eigenoperators of the free evolution
obeying Eq. (39). They form a complete basis within the system’s
algebra. If the operator Ŝk [Eq. (46)] is also an element of the Lie alge-
bra, it can be expanded in the interaction representation in terms of
the set {Ãj(t)},

S̃k(t) =∑
j
χk

j (t)Âj(t). (40)

The coefficients χk
j (t) are, in general, complex and can be writ-

ten in a polar representation leading to the desired form S̃k(t)
= ∑j ξ

k
j (t)eiθk

j (t)Âj. Here, ξk
j (t) = ∣χk

j (t) ⋅ λj(t)∣ and θk
j (t) = �j(t) +

arg(λj(t)).
The result is a GKLS master equation with time dependent

operators and rate coefficients39 shown in the interaction represen-
tation

d
dt
ρ̃S(t) = −i[ĤLS(t), ρ̃S(t)]

+∑j γj(αj(t))(Âjρ̃S(t)Â†
j −

1
2
{Â

†
j Âjρ̃S(t)}), (41)

where ĤLS(t) is an addition to the Hamiltonian known as the Lamb
shift. The rate coefficients γj depend on a renormalized system fre-
quency α ≠ ω which depends on the driving speed. In addition,
unlike the stationary WCL [Eq. (18)], energy and coherence are
mixed.39

The time dependent GKLS master equation with a time depen-
dent protocol for ĤS(t) [Eq. (41)] allows the study of shortcuts to
isothermal processes.48 The task is to find a protocol starting from a
thermal initial state ρ̂i = e−βĤi/Z will result in a thermal final state
with a different Hamiltonian ρ̂f = e−βĤf /Z. The fast protocols found
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overshoot the energy scale of Ĥi and Ĥf at intermediate times. What
is unique in this process in that they involve a shortcut to a process
with entropy change.

IV. THE REPEATED COLLISION MODEL
The collision model originated to describe the dynamics of a

particle colliding with the background gas particles.23,49 Using the
assumption of rare uncorrelated collisions, a Poissonian process can
be used to model the encounters, a quantum version of the Boltz-
mann equation.50 It is assumed that the system and j gas particle are
initially uncorrelated ρ̂i = ρ̂Si

⊗ ρ̂Bj
. The individual collision event is

then described by a unitary scattering matrix Ŝ,

ρ̂f = Ŝρ̂iŜ
†
. (42)

Assuming independent random collisions with identical bath parti-
cles, a reduced map is obtained

ρ̂Sf
= Λβρ̂Si

= TrB{ρ̂f }. (43)

To generalize to many recurrent encounters at rate γ, the colli-
sion duration has to be much faster than the average waiting time
between collisions ∼1/γ. The differential description leads to a GKLS
master equation51,52

d
dt
ρ̂S = −

i
h̵
[ĤS, ρ̂S] + γ(TrB{Ŝρ̂S ⊗ ρ̂BŜ

†
} − ρ̂S). (44)

The repeated collision GKLS equation (44) depends on the
bath state. A natural choice is a bath in thermal equilibrium
ρ̂B =

1
Z exp{−βĤB}.
As in any CPTP map, the collision dynamics leads to a fixed

point Lρ̂st = 0. This model raises an interesting issue concerning
the irreversibility of the process. If we follow the collision process
and keep track of every colliding atom before and after the colli-
sion, the process is unitary and therefore, in principle, reversible.
The system and bath particles due to the collision encounter become
entangled. The loss of this bipartite mutual information is the source
of entropy production. Irreversibility can be traced to the loss of
record or timing of the individual collision events.53

For modeling, it would be desirable that this fixed point is a
thermal equilibrium state of the system ρ̂S =

1
Z exp(−βĤS). To study

this possibility, the unitary scattering matrix Ŝ can be described by a
Hermitian generator V̂ and then Ŝ = e−

i
h̵ V̂�, where � is a phase shift.

The master equation (44) can be expanded to second order in
� leading to54

d
dt
ρ̂S = −

i
h̵
[Ĥ′

S, ρ̂S] − γ
′TrB{[V̂, [V̂, ρ̂S ⊗ ρ̂B]]}, (45)

where γ′ = γ �2

2h̵2 and Ĥ′

S = ĤS + γ�
h̵ TrB{V̂}.

To obtain a thermalizing model, we can choose V̂ as fol-
lows:55–59

V̂ =∑
k

gk(Â
†
k ⊗ B̂k + Âk ⊗ B̂†

k), (46)

where Âk and B̂k are eigenoperators of the commutators of the free
Hamiltonians with the same eigenvalue,

[ĤS, Âk] = −ωkÂk, (47)

[ĤB, B̂k] = −ωkB̂k.

As a result, the operator V̂ commutes with [ĤS + ĤB, V̂] = 0. Using
these properties, Eq. (45) reduces to a thermalizing GKLS master
equation

d
dt
ρ̂S = −

i
h̵
[ĤS, ρ̂S] −∑

k
(γ−k L

−
k (ρ̂s) + γ+

kL
+
k(ρ̂s)), (48)

where L−k (ρ̂s) = [Âkρ̂S, Â
†
k] + [Âk, ρ̂SÂ

†
k] and L+

k(ρ̂s) = [Â
†
k ρ̂S, Âk]

+ [Â
†
k , ρ̂SÂk]. The rate coefficients obey

γ−k = γ′g2
k⟨B̂kB̂

†
k⟩, (49)

γ+
k = γ

′g2
k⟨B̂

†
kB̂k⟩.

When the bath is in thermal equilibrium, the ratio of rate coefficients
obeys detailed balance

γ+
k
γ−k

= e−βωk . (50)

This concludes the derivation of a thermalizing GLKS collision
model.

Although the physical motivation for the weak coupling limit
and the repeated collision model is different, the mathematical struc-
ture has many similarities.60 In addition, the form of V̂ in Eq. (46)
will also lead to thermal equilibrium for strong collisions where
� is large since Ŝ in Eq. (44) commutes with the Hamiltonian
[Ŝ, ĤS + ĤB] = 0 leading to [Ŝ, ρ̂SB] = 1

Z [Ŝ, e−βĤS ⊗ e−βĤB] = 0;
therefore, ρ̂SB is a fixed point of the CPTP map in Eq. (42).56,61 In
quantum thermodynamics resource theory, this map is known as a
thermal map.62,63

V. THE GAUSSIAN SEMIGROUP: THE SINGULAR
BATH LIMIT

An extreme case is a system subject to random uncorrelated
kicks from the environment. We expect in analogy to the central
limit theorem that the accumulated environmental influence will
attain a limit. The process is one sided since the system does not
exert back action on the environment. This process can be viewed as
a quantum version of Langevin dynamics described by

Ĥ = ĤS + V̂f (t), (51)

where the random force typically ⟨f (t)⟩ = 0 and ⟨f (t)f (t′)⟩
= γδ(t − t′). Such a process leads to a GLKS equation when averaging
over the random noise64,65

d
dt
ρ̂S = −

i
h̵
[ĤS, ρ̂S] −

γ2

2
[V̂, [V̂, ρ̂S]]. (52)

Equation (52) is known as the generator of a Gaussian semigroup.17

A physical interpretation is the accumulation of many small uncor-
related perturbations also obtained in the limit of interaction with a
bath of infinite temperature. Notice that the entropy exchange with
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such a bath is zero. Another interpretation of Eq. (52) is a system’s
evolution undergoing a weak continuous quantum measurement of
the observable ⟨V̂⟩.66–68

The phenomenon most associated with Gaussian noise is
dephasing. If we choose V̂ = g(ĤS), where g(x) is any analytical
function of X, then Eq. (52) conserves energy and the dissipation
causes dephasing. In the terminology of magnetic resonance a pure
T2 process.69

Pure dephasing will also occur if the Ŝ matrix in the scatter-
ing event [Eq. (44)] commutes with ĤS: [ĤS, Ŝ] = 0. The Poisson
dephasing due to repeated collision, in the limit of small action
[Eq. (45)], becomes equivalent to the Gaussian dephasing model
with the same V̂. Nevertheless, when the action is large � ∼ 1, the
Poissonian and Gaussian models of dephasing become different.70

In Gaussian dephasing, the high order coherences are eliminated
faster than nearest neighbor coherences. Poisson-type dephasing can
reach a limit where all coherences are eliminated at the same rate.
Experimental evidence for vibrational dephasing of I−3 in solution
indicates a Poissonian mechanism.70

VI. THE LAWS OF QUANTUM THERMODYNAMICS
An integral part of the development of a numerical simula-

tion are schemes to test the validity of the approximation. Compar-
ing the quantum simulation results to thermodynamic predictions
serves such a critical test. Quantum mechanics and thermodynam-
ics are two separate theories which means that thermodynamics can
serve as an external criterion to verify the validity of our quantum
simulations.22

A. The zero law
Dynamically the zero law of thermodynamics states that any

system with Hamiltonian ĤS will eventually reach a steady state of
the dynamics with a final fixed point ρ̂st =

1
Z exp(−βĤS). An equiv-

alent statement is that ρ̂st is an invariant of the dynamics Λρ̂st = ρ̂st
with eigenvalue 1. We therefore expect the dynamical simulations of
an open system to lead to a fixed point. An exception is a bifurca-
tion point which can be identified by a degenerate eigenvalue of the
dynamical map with the value of 1. Such a non-Hermitian point is
termed an exceptional point71 (cf. Subsection VII B).

B. The I-law
The I-law addresses the issue of conserved quantities. The pri-

mary quantity is the total energy. An additional variable important
in transport is the number of particles.

To obtain the conservation laws in a differential form, we can
write the equations of motion in the Heisenberg form

d
dt
X̂ = −

i
h̵
[ĤS, X̂] + LS(X̂) +

∂

∂t
X̂, (53)

where X̂ is a system operator which can be explicitly time dependent.
Choosing for X̂ the Hamiltonian ĤS, using the fact that Ĥ commutes
with itself, and taking expectation values, we obtain

d
dt

E = ⟨L∗D(ĤS)⟩ + ⟨
∂

∂t
ĤS⟩, (54)

which leads to the interpretation J = Q̇ = ⟨L∗D(ĤS)⟩ as heat cur-
rent and P = ⟨ ∂

∂t ĤS⟩ as power. This dynamical version of the I-law
[Eq. (54)] is equivalent to Eq. (25) obtained in the Schrödinger frame
and is limited to the adiabatic regime.22,72

In the nonadiabatic regime or in strong system bath coupling,
the simple partition between heat and work loses its meaning.73

Work is required to generate coherence, but at later times this work
can potentially be extracted as work or dissipated as heat.74

In quantum dynamics the definition of work is ambigu-
ous. The classical analog requires two energy measurements.75

As a result, the measurement influences the outcome erasing
coherence.76–78

C. The II-law
The Clausius statement for the II-law is that heat should flow

through the system from a hot to a cold bath.79 An alternative
version, due to Kelvin, can be stated as the universal tendency in
nature to dissipate mechanical energy.80 Both these criteria can be
employed directly to assess open system models.

The Clausius version of the II-law can be employed as a test for
the quantum heat transport problem of two connected quantum sys-
tems coupled to a hot and cold bath. The dynamics can be described
by

d
dt
ρ̂ = −

i
h̵
[Ĥ0 + Ĥhc, ρ̂] + Lh(ρ̂) + Lc(ρ̂), (55)

where the wire Hamiltonian is Ĥ0 = Ĥh + Ĥc, Ĥhc is the link Hamil-
tonian, and Lh/c are the dissipative connections to the hot and cold
baths. In constructing such a model, it is tempting to assign a local
thermalizing GKLS generator to each subsystem and then to intro-
duce a weak coupling term connecting the two subsystems. In this
case, the jump operators in Lh are the eigenoperators of Ĥh and for
Lc are the eigenoperators of Ĥc.

The global alternative is to use the full power of the Davies con-
struction (cf. Sec. III) and find the eigenoperators of ĤS to construct
both generators Lh and Lc.81

At steady state, the heat flow from the hot (cold) bath is given
by

Jh(c) = Tr{(Lh(c)ρ̂s)(Ĥ0 + Ĥhc)}, (56)

where ρ̂st is the steady state density operator.
In the local approach, it is assumed that the intersystem cou-

pling does not affect the system bath coupling. Therefore, in the
derivation of the master equation, the internal coupling Hamilto-
nian Ĥhc is ignored. The heat current becomes81

Jh = (eβcωc − eβhωh)F, (57)

where F is a function of the coupling constants, which is always pos-
itive irrespective of the in-balance of the coupling constants. The
Clausius statement for the second law of thermodynamics implies
that heat cannot flow from a cold body to a hot body without exter-
nal work being performed on the system. It is apparent from Eq. (57)
that the direction of heat flow depends on the choice of param-
eters. For ωc

Tc
<

ωh
Th

, heat will flow from the cold bath to the hot
bath; thus, the second law is violated even at vanishing small h–c
coupling.
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The global approach to the GKLS equation derives the master
equation using the Davies WCL procedure with the global Hamilto-
nian ĤS = Ĥh + Ĥc + Ĥhc. This form is consistent with the II-law,81

except when the two subsystems are in resonance. The reason is the
violation of the secular approximation.82,83 The collision model57

allows another perspective of this violation. Considering the local
master equation derived from the collision approach [Eq. (48)], the
local approach will violate the II-law. A possible remedy for this dis-
crepancy is to add the cost of work to switch on and off the system
bath interaction.

The Kelvin version of the II-law can also be employed directly
in testing the consistent description of a driven system coupled to a
bath.40 The most elementary model is a driven qubit or two-level-
system (TLS) coupled to a bath

ĤS(t) = Ĥ0 + Ŵ(t),

where
Ĥ0 = ωσ̂z (58)

and
Ŵ(t) = 2� (σ̂x cos(νt) + σ̂y sin(νt)),

where the driving Ŵ(t) is in the rotating frame. The local master
equation is constructed to equilibrate Ĥ0. The result is the well-
known Bloch equation.84 Surprisingly, it violates the II-law.40 A con-
sistent equation with thermodynamics is obtained when deriving the
master equation using the Floquet theory [Eq. (30)].

A similar violation of the II-law is obtained if one ignores the
external driving in the derivation of the equation of motion for the
3-level amplifier.85

A more general dynamical version of the II-law of thermody-
namics can be used as a consistency check. It states that for an iso-
lated system, the rate of entropy production is non-negative.22 For a
typical quantum system, the second law can be expressed as

d
dt
∆Su

=
dSint

dt
+

dSm

dt
−∑

i

Ji

Ti
≥ 0, (59)

where Ṡint is the rate of entropy production due to internal pro-
cesses, expressed by the von Neumann entropy. Ṡm is the entropy
flow associated with matter entering the system, and the last term is
the contribution of heat flux, Ji, from the reservoir i.

D. The III-law
The third law is an additional test on the dynamics. First, it

requires that the system and bath have a ground state. Dynamically,
there are two independent formulations of the third law. The first,
known as the Nernst heat theorem, implies that the entropy flow
from any substance at absolute zero is zero.

The second formulation of the third law is a dynamical one,
known as the unattainability principle: No refrigerator can cool a
system to absolute zero temperature at finite time. This formulation
is more restrictive than the Nernst heat theorem and imposes lim-
itations on the spectral density and the dispersion law of the heat
bath.42

Note that the system can reach the ground state only if the
system-bath coupling vanishes and ρ̂ = ρ̂S ⊗ ρ̂B. Otherwise, at zero
temperature, the system and bath are entangled.

A III-law violation in a dynamical description indicates a prob-
lem.86 The problem can be a nonphysical spectral density or a
problem in the model used to construct the master equation.

VII. THERMALIZATION
A. Eigenvalue thermalization hypothesis

Considering a finite quantum system: What are the proper-
ties that it can serve as a bath? How large does it have to be?
What should be its spectrum? How should it couple to the sys-
tem? Does the system bath dynamics mimic the Markovian GKLS
dynamics?

Thermalization can be described as a process where the system
loses its memory partly or completely of its initial state and the sys-
tem settles to a steady state. In classical mechanics, chaotic dynamics
even in a finite system are sufficient to lead to thermalization. On
the contrary, an isolated quantum system has a discrete spectrum
and therefore its dynamics is quasiperiodic. Thus, strictly speaking
in terms of positive Kolmogorov entropy, isolated quantum systems
are nonchaotic.87 We therefore should search for another generic
quantum property to lead to thermalization.

The eigenvalue thermalization hypothesis (ETH) originally by
von Neumann88 has been suggested as a framework for thermaliza-
tion.89,90 ETH applies for strongly coupled quantum systems which
therefore possess a repulsive Wigner-Dyson distribution of energy
gaps.91 The conjecture is that the expectation value of an operator
Â in the bulk of the spectrum |Em⟩ of Ĥ, ⟨ÂM⟩ = ⟨Em∣Â∣Em⟩, will
approach asymptotically to its canonical value92

∣⟨ÂM⟩ − Tr{Âe−β(Em)Ĥ/Z}∣ ∈ O(1/N), (60)

where Em is the energy of the state, β(Em) is the inverse temperature
corresponding to the mean energy Em, and N is the size of Hilbert
space. The ETH hypothesis has been extensively tested numeri-
cally and has been found to apply in sufficiently large and complex
systems.92–96

The ETH implies thermalization for a system coupled to a large
but finite bath since the system operators are highly degenerate in
the combined system. In such a case, we expect the ETH to hold97,98

and the system to relax to thermal equilibrium associated with the
combined system-bath Hamiltonian.

B. Exceptional points
The dynamics leading to steady state is reflected by the spec-

trum of the generator L or the propagator U = eLt . The existence of
an invariant or steady state Uρ̂st = 1ρ̂st means that we have an eigen-
value of 1 for the propagator and 0 for L. The other eigenvalues of
U can be complex and are always smaller than one, |λn| ≤ 1. There is
a possibility that for certain parameters of the problem, some of the
eigenvalues are degenerate. Since U is not unitary and L is not Her-
mitian, these eigenvalues are complex. Such complex degeneracies
are known as exceptional points with the additional property that
the associated eigenvectors coalesce.99

This degeneracy can be either in the eigenvalue λ0 = 1 where
it means a bifurcation point or the other eigenvalues |λ| < 1 which
mean a change in the dynamics. Such a degeneracy can be found in
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the Bloch equation,84,100 where both second order and third order
degeneracies were found. The degeneracy map indicates a boundary
between damped and over-damped dynamics.

VIII. STRONG SYSTEM BATH COUPLING AND
NON-MARKOVIAN DYNAMICS

When the system-bath coupling becomes strong, the tensor
product partition is lost ρ̂SB ≠ ρ̂S ⊗ ρ̂B. The almost universal rem-
edy to this problem is to move the system-bath boundary into the
bath incorporating in the system a section of the bath. This is the
notion of telescoping, adding an explicit primary bath layer before
the final tensor product partition with the secondary bath. It is then
assumed that the interface between the primary and the secondary
bath is weak allowing the employment of the GKLS equation for the
interface dynamics. This concept is the base of the Stochastic Sur-
rogate Hamiltonian (SSH) method.101 This is also the idea behind
the Driven Liouville von Neumann (DLvN) approach.102 The imple-
mentation of the two methods is different: the SSH is formulated
in a stochastic wavefunction representation, while the DLvN is for-
mulated in Liouville space. Convergence can be tested by moving
the new boundary, repeating the calculation, and checking that the
system observables converge.

A related approach to non-Markovian dynamics is by employ-
ing the stochastic Liouville von Neuman equation.103–105 For linear
coupling to the bath, a quantum stochastic unraveling of the bath
memory is possible.

An important consequence of moving the system-bath bound-
ary is that non-Markovian effects are incorporated by the portion of
the bath treated explicitly.

In a general stochastic process when the memory of the past
decays exponentially, there is a well-studied solution which is to
include memory terms in the description resulting in a Markovian
description allowing a differential description embedded in a larger
variable space. A quantum version is known as the Hierarchical
Equation of Motion (HEOM).106–111 For the HEOM to work, the
memory has to have exponential decay which implies decomposition
to a sum of Lorentzians or to a Chebychev expansion.112 A stochastic
wavefunction realization of the HEOM has been developed.113

Another possibility to incorporate the bath in the system is
achieved by the polaron transformation.114,115 This procedure is
limited to a harmonic bath and a simple system Hamiltonian.

A tensor network is based on representing mixed quantum
states in a locally purified form, which guarantees that positivity
is preserved at all times. The approximation error is controlled
with respect to the trace norm. Hence, this scheme overcomes
various obstacles of the known numerical open-system evolution
schemes.116,117

A strong system-bath coupling leads to the dilemma of how to
account for the system energy. A common suggestion is to include
half of the interaction energy in the system energy Ĥ′

S = Ĥs+ 1
2 ĤSB.118

The definition has been criticized as inconsistent.119

IX. THE STOCHASTIC SURROGATE HAMILTONIAN
METHOD

Moving the system-bath boundary to incorporate explicitly
part of the bath in the system still leaves open the choice of the

bath model. The desire is that system observables ⟨Ŝ⟩ = Tr{ρ̂SŜ}
are unaffected by this choice. The freedom to choose a bath model
is related to the idea of quantum simulation.120 A system with a uni-
versal Hamiltonian can simulate the dynamics of any other quantum
system, in particular, our bath.

A. Surrogate bath
We define a surrogate bath as a finite bath that represents

faithfully the external influence on the system and converges to the
correct open system dynamics when the size of the surrogate bath
increases to infinity. A finite bath can be characterized by its energy
spectrum, its bandwidth ωmax, and spectral density ∆ω. The band-
width ωmax limits the fastest time scale τmin ≤ 1

ωmax
. For a finite

time simulation with duration tfin, the system cannot resolve the full
spectrum of the bath. As a result, a sparse bath with a frequency
spacing ∆ω ≥ 1/tfin is sufficient to faithfully describe the system-bath
dynamics up to time tfin.

There are two leading bath models, the harmonic bath and
spin bath. The two models differ in their spectral and dynamical
properties.

1. Harmonic bath
The Harmonic bath is based on a normal mode decomposition

of the bath Hamiltonian121

ĤB = h̵∑
k
ωkb̂

†
b̂, (61)

where, in principle, the sum runs over an infinite number of nor-
mal modes. This construction has a semiclassical origin assuming
that for limited bath excitation a harmonic description is sufficient.
For a bath composed of electromagnetic modes in a cavity, this bath
description is exact.122

A particular special solvable case is when the system bath
coupling is linear in the bath modes

ĤSB =∑
k
Ŝk ⊗ (aq̂k + bp̂k), (62)

where the coupling can be a composition of coordinate or momen-
tum coupling. This linear bath Hamiltonian can be integrated out
and summarized by an influence functional123,124 or by a spectral
function J(ω) which incorporates the density of states and the system
bath coupling.125,126

An important solvable model is when the system Hamiltonian
ĤS can also be decomposed to harmonic oscillators linearly coupled
to the harmonic bath. In this case, the operator algebra of the system-
bath is closed. There are six operators per mode; therefore, solving
the dynamics means solving 6 × (M + N) coupled differential equa-
tions for M system modes and N bath modes. A related solvable
model is composed of N baths [Eq. (61)], each coupled to the transi-
tion between an excited energy level and the ground state.111 For this
model, the GKLS master equation [Eq. (13)] is a very good approx-
imation for the energy population relaxation, provided the spectral
density is not peaked.

The Harmonic bath is very popular and has been the inspira-
tion for many approximations, for example, the influence functional
approach allowing to integrate out the bath response.127,128
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A less restrictive use of the harmonic bath is to limit the growth
of system-bath correlations employing the MultiConfiguration Time
Dependent Hartree (MCDTH),129–132 for example, the study of the
decay of an anharmonic oscillator into a bath of harmonic oscilla-
tors.133 This method can take advantage of the semiclassical char-
acter of the harmonic modes and use Gaussian basis functions.134

Since the growth of correlations is restricted, a multilayer bath is
possible.135

The problem with the Harmonic bath is that its ergodic prop-
erties are weak.136 The linear coupling and the normal mode
structure mean that the dynamics does not generate intermode
entanglement. In addition, this bath has no internal mechanism
that will lead to thermal equilibrium since each normal mode is
independent.

One should point out that the noninteracting harmonic oscilla-
tor bath [Eq. (61)] does not fulfill the requirements of the eigenvalue
thermalization hypothesis [Eq. (60)]. The bath ergodic properties are
weak because it is a quasifree system with additional constants of
motion.136 This is the dilemma between employing solvable models
and the reality of generic physical phenomena.

2. Spin bath
The spin bath is the other extreme model. The most general

spin bath is the fully connected Hamiltonian

ĤB =∑
j
ωjσ̂j

z +∑
jklm

µjk
lmσ̂

j
l ⋅ σ̂

k
m, (63)

where σ̂j
l, l = x, y, z are the Pauli spin operators, ωj are the spin

frequencies, and µjk
l is the connection tensor.137 The Hamiltonian

equation (63) is universal, meaning it can simulate any finite Hamil-
tonian. The system bath interaction to all spins becomes

ĤSB =∑
k,j

g j
kŜ

j
k ⊗ σ̂j

k, (64)

where g j
K are coupling parameters of the system to spin j.

A simplified spin flat bath imitates a normal mode bath
[Eq. (61)],138–140

ĤB =∑
j
ωjσ̂j

z . (65)

Comparing this spin bath to the harmonic bath shows similarities
and differences.133,141 For very small excitation and low tempera-
ture, both bath types converge. There is a mapping connecting the
spectral density of the harmonic and the spin bath.142 The main dif-
ference in the system dynamics is that the spin bath is saturable,
meaning that the amount of excitation each mode can absorb is
limited. To overcome this difference, a spin bath can mimic a har-
monic bath very closely by adding a spin transport term to the bath
ĤB′ = ĤB +∑jk κjk(σ̂

j
+σ̂k

− + σ̂j
−σ̂

k
+). This term could be small. Never-

theless, it equilibrates the excess energy to all bath modes. Another
important difference between bath models is the generation of large
mode to mode entanglement in the spin bath which is absent in the
harmonic bath.141 Thus, the ergodic properties of the spin bath are
superior.

The finite spin bath is limited by recurrence. A well-studied
model is a spin chain. The recurrence time in a spin chain is

determined by the speed of propagation of an event generated on
the system bath interface.143

More complex bath models have been studied144,145 which
include extensive spin-spin coupling. Such models lead to thermal-
ization according to the ETH hypothesis. The system-bath surrogate
model cannot strictly reach equilibrium since the total dynamics is
unitary Û = e−

i
h̵ Ĥt .

To test the ETH hypothesis, the dynamics of a small quantum
system is coupled to a finite strongly coupled bath. In this case, we
expect the system to converge to a canonical state. The operators of
interest are local in the system. Therefore, according to the ETH, we
expect them to relax to a value which is determined by the bath mean
energy [Eq. (60)], with a correction to the finite heat capacity of the
bath. This idea has been tested for a system consisting of one and two
qubits and a bath consisting of 32 or 34 strongly and randomly cou-
pled spins. The initial state of the bath was chosen as a random phase
thermal wavefunction146 [Eq. (75)]. A Hilbert size of ∼1011 employed
for the study is in the limit of simulation by currently available classi-
cal computers. The ETH was verified with respect to the asymptotic
system expectation values.137,147 In addition, for the one qubit case,
a Bloch-type equation with time-dependent coefficients provides a
simple and accurate description of the dynamics of a spin particle
in contact with a thermal bath. A similar result was found for the
2-qubit system with a variety of bath models. Nevertheless, consid-
ering the eigenvalue thermalization hypothesis, the system dynamics
will effectively equilibrate.137 The effective bath size for a turnover to
ETH has a Hilbert space dimension of ∼106.

B. Stochastic thermal boundary
To overcome the problem of the unitary dynamics of the system

and the primary bath, an additional secondary bath is introduced
enforcing a GKLS boundary between the primary and the secondary
bath (cf. Fig. 2),

ĤT = ĤS + ĤB + ĤB′′ + ĤSB + ĤBB′′ , (66)

FIG. 2. System embedded in a primary bath. The GKLS boundary conditions
connect the primary and the secondary bath meaning that ρ̂ = ρ̂SB ⊗ ρ̂B′ .
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FIG. 3. A primary bath composed of six spins of different frequencies. The state of
the individual spins is shown as a spot on the Bloch sphere. Spin 5 is swapped.
This is a realization of a hard collision. A partial swap is also possible.

where ĤS represents the system, ĤB represents the primary bath,
ĤB′′ represents the secondary bath, ĤSB represents the system-
bath interaction, and ĤBB′′ represents the primary/secondary bath
interaction.

For the secondary bath, the insights and structure of the
repeated collision model (Sec. IV) will be used. It is natural to
construct the secondary bath to be composed of noninteracting
two-level-system (TLS) with the Hamiltonian

ĤB′′ =∑
j
ωjσ̂j

z (67)

and the state of the secondary bath

ρ̂B′′ = ρ̂1 ⊗ ρ̂2 . . .⊗ ρ̂j . . . (68)

and ρ̂j = e−βωj σ̂j
z/Z.

A possible choice for the case of a flat primary bath [Eq. (63)]
is a secondary bath which is a clone of the primary bath (cf.
Fig. 3).

The collision Markovian boundary conditions ensure that the
system and primary bath will reach steady state. This steady state will
become a correlated system-bath state. Is the reduced system state ρ̂§
the correct equilibrium state?

ρ̂S = TrB{
1
Z

e−β(ĤS+ĤB+ĤSB)}. (69)

For this to happen, the primary-secondary bath interaction term
should commute with the system bath Hamiltonian [ĤBB′′ , ĤS
+ ĤB + ĤSB] = 0. The simplest implementation is a local choice
of ĤBB′′ , for example, an interaction with the spins on the bound-
ary of the primary bath. Such an interaction does not commute with
the interaction term between the boundary spin and the rest of the
primary bath, for example, [ĤBB′′ , ĤSB] ≠ 0. Nevertheless, numer-
ical tests showed consistency with thermodynamics. The heat flow
through the system was from the hot to the cold bath,148 In addition,
the steady state of the system seems to correspond to Eq. (69).101

X. NUMERICAL IMPLEMENTATION
Quantum dynamical simulations are computationally demand-

ing. Nevertheless, they are a necessary tool in supplying insight and
guidance to experiment. In general, the computation cost scales
exponentially with the number of degrees of freedom. To enable the
computation, a careful allocation of the resources between the sys-
tem and bath is required. In addition, parallel computation strategies
have to be implemented. With typical calculations reaching a Hilbert

space size of 109, the issue of accuracy becomes acute. The numerical
procedures have to keep the accumulated errors below the accuracy
determined by the computer representation.

A. State representation
The maximum size of Hilbert space is the limiting factor in

the size of the quantum simulation. For example, 40 qubits have a
Hilbert space size of 240–1012 which is currently the limit of memory
in high performance computing.

The natural description of an open quantum system employs a
density operator ρ̂SB. An operator basis in Hilbert space is composed
of N × N matrixes. This limits the direct calculation to the size of
220–106. This motivates the decomposition of the density operator
to a sum of wavefunctions

ρ̂ ≈
1
M

M
∑

k
∣ψk⟩⟨ψk∣, (70)

where ψk is a specific realization typically stochastic. For stochastic
sampling, the sum in Eq. (70) will converge to the state ρ̂ as ∼ 1/

√
M.

For large complex quantum systems, this convergence can be very
fast scaling with the size of Hilbert space as ∼ 1/

√
N. This moti-

vates the use of stochastic wavefunction methods to simulate large
systems. An important example is the random phase thermal wave-
function Ψβ.146,149–152 We first start with a random phase wavefunc-
tion composed of a superposition of all possible states of a complete
basis with random phases

∣Φ(Θ⃗)⟩ =
1

√
N

N
∑

j
eiθj ∣�j⟩, (71)

where |�⟩ is a complete basis and Θ⃗ = {θ1, θ2, . . . θj, . . .} is a vector
of random phases. The identity operator becomes

Î = lim
K→∞

1
K

K
∑

k
∣Φ(Θ⃗k)⟩⟨Φ(Θ⃗k)∣, (72)

where the average is over random realizations of Θ⃗. The thermal
state can be written as

ρ̂β =
1
Z

e−
β
2 ĤÎ e−

β
2 Ĥ. (73)

Inserting Eq. (72) into Eq. (73) leads to

ρ̂β =
1
Z

1
K

K
∑

k
∣Φβ(Θ⃗k)⟩⟨Φβ(Θ⃗k)∣, (74)

where the random phase thermal wavefunction is defined as

∣Φβ(Θ⃗k)⟩ = e−
β
2 Ĥ∣Φ(Θ⃗k)⟩. (75)

The convergence of this approximation is O(
√

K), where K is the
number of realizations.146 The stochastic thermal wavefunction can
be obtained from the random phase wavefunction [Eq. (71)] by
propagation in imaginary time β/2.153 The choice of the functional
basis determined the speed of convergence.154
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The memory allocation is the budget for the possible simula-
tion. This budget is therefore distributed between the system and
bath. For example, a 3-D system described by a grid of NS = 643

= 224
∼ 4 × 106 points would leave only a Hilbert space size of

NB = 216
∼ 64 × 103 for the bath.

To enable large scale quantum simulation, the computation
algorithm has to be economized. As a result, such calculations all
rely on a sparse matrix vector basic operation

∣�⟩ = Ĥ∣ψ⟩, (76)

for wavefunction based methods, and

σ̂ = Lρ̂ (77)

for density operator calculations. These operations are vector matrix
operations and, in general, scale as O(N2) for wavefunctions and
O(N4) for density operators. Numerical techniques are focused on
reducing this scaling to O(N log N) for wavefunctions and O(N2

log N) for density operators. This scaling is found for the Fourier
method155,156 as well as for spin dynamics.139,140

B. Time propagation and other propagators
A dynamical simulation is typically performed either in the

time domain or in the energy representation. In both cases, the
actual implementation involves a function of an operator f (Ĥ).
Considering the elementary step Eq. (76) or Eq. (77), a polyno-
mial expansion of f (Ĥ) is advocated. Methods based on direct
diagonalization scale as O(N3) for both computation effort and
error accumulation. As a result, they become useless for large scale
simulations.

A simulation in the time domain can be based on the time
dependent Schrödinger equation

ih̵
d
dt
ψ = Ĥψ (78)

or the Liouville von Neumann equation

d
dt
ρ = Lρ. (79)

Both equations have a common structure, in particular, when
the Liouville space is vectorized. A polynomial approximation for
the propagators become ψ(t) ≈ PN(Ĥ)ψ(0), where PN(Ô) is
a polynomial of order N in the operator Ô. The algorithm cal-
culates the polynomial iteratively with the help of Eq. (76) or
Eq. (77).

The polynomial chosen has to minimize the errors of the iter-
ative procedure. For the time independent Hamiltonian, the Cheby-
chev polynomial expansion is optimal. Its main feature is that it
does not accumulate errors even for polynomials of a very high
degree, for example, 105.157 For the solution of the Schrödinger
equation,

∣ψ(t)⟩ = e−
i
h̵ Ĥt

∣ψ(t)⟩ = e−iΦ
∑

n
an(t)∣�n⟩, (80)

where the global phase is Φ = (∆E/2 + Emin)t and an(t) are expansion
coefficients a0(t) = J0(∆Et/2) and an = 2inJn(∆Et/2), where ∆E is the

eigenvalue range of Ĥ and Jn are Bessel functions. The vectors
∣�n⟩ = Tn(H̄)∣ψ(0)⟩ are evaluated by the Chebychev recursion

∣�n+1⟩ = 2H̄∣�n⟩ − ∣�n−1⟩, (81)

where H̄ is a normalized Hamiltonian with eigenvalues renormal-
ized to {−1, 1}.157,158 A similar approach can be used for the Liouville
von Neumann equation (79).159

Chebychev propagation in imaginary time has been developed
to generate thermal wavefunctions [Eq. (75)] or the ground state.153

Similar polynomial propagators have been developed for non-
Hermitian L157,160–162 as well as for explicitly time dependent Hamil-
tonians.163 An estimation of the minimum scaling of the computa-
tional effort for a quantum simulation is semilinear with the size of
the Hilbert space and linear in the product of time and energy range.
Polynomial propagators have superior accuracy to time stepping
without sacrificing efficiency.

C. Stochastic wavefunction
There are infinitely many stochastic realizations of the open

system dynamics. One can differentiate between linear and non-
linear implementations. Stochastic implementation of the GKLS
equation was first developed employing a nonlinear implementa-
tion.103,164–166 Linear implementation is un-normalized and there-
fore unstable numerically. The nonlinear methods require a small
time step.

Conversely, a linear numerical implementation of the stochas-
tic surrogate Hamiltonian is performed. The system and primary
bath are represented by a wavefunction |ΨSB⟩ for each stochastic
realization. The stochastic element is introduced by the collision
model where the secondary bath is represented by a random thermal
wavefunction of secondary spin j,

∣ψB′′⟩j =
1

√
Z
(e−

1
4 βh̵ωj+iθ

∣ + ⟩ + e+ 1
4 βh̵ωj−iθ

∣−⟩), (82)

where ωj is the frequency of spin j, θ is a random phase, and
Z = 2 cosh( 1

2βh̵ωj).
The collision is represented by the unitary swap opera-

tion exchanging a spin between the primary and the secondary
bath,145

ŜwψB ⊗ �B′′ = �B ⊗ ψB′′ . (83)

The swapped spins are chosen at resonance. The swap unitary opera-
tion is the numerical tricky part of the implementation.145 The swap
rate Γj determines the rate of energy exchange between the primary
and the secondary bath. A partial swap operation is also possible if
Ŝ = e−

i
h̵ V̂�, then � = π is a full swap but � can be chosen to be small,

leading to a partial swap.
Convergence of the model is obtained by increasing the number

of bath modes and the number of stochastic realizations. As stated in
Eq. (70), the convergence should scale as O( 1

√
M
). However, the con-

vergence also depends on the size of the primary bath. Empirically,
it scales with the Hilbert space size of the primary bath as O( 1

√
N
).

As a result, very few realizations are required to converge a large
stochastic simulation.146,154,167
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XI. SPECTROSCOPY AND CONTROL IN CONDENSED
PHASES

The interaction of light with matter is one of the main venues
to study the structure and dynamics of molecules. The wave nature
of light allows carrying away the molecular information to a detector
far field from the object. We can distinguish single photon encoun-
ters where both the light and the system have to be treated quan-
tum mechanically. For stronger interacting fields, the radiation can
be described semiclassically as a time dependent modulation of a
molecular Hamiltonian.

A single photon theory is required for the quantum descrip-
tion of spontaneous emission. The multimode radiation field is
then described as a harmonic bath. The primary molecular system
is then coupled weakly to this bath. In this description, sponta-
neous emission can be viewed as heat dissipated into the radiation
field bath. The WCL master equation then becomes the appropriate
description of the system dynamics.

The strong field interactions are typically approximated as a
time dependent driving field

Ĥ = ĤM − µ̂ ⋅ �(t), (84)

where ĤM is the molecular Hamiltonian, µ̂ is the dipole operator,
and �(t) the time dependent electromagnetic field. In the context
of open quantum system, the energy current to the radiation field
is classified as power P = ⟨∂Ĥ

∂t ⟩ = −⟨µ̂⟩�̇.72 This allows us to inter-
pret absorption spectroscopy as the process of absorbing power from
the radiation field and dissipating this power as heat to the envi-
ronment. For a CW absorption model, both currents are balanced
in a steady state. The spectrum becomes the dissipative power as
a function of the driving frequency.1 For a molecule in vacuum,
the environment is the radiation field bath, and for molecules in
the condensed phase, heat is dissipated to low frequency phonon
modes. To be consistent with thermodynamics, the energy flow
should always be from the external electromagnetic field to the
bath.

Many spectroscopic descriptions do not adhere to this princi-
ple. For example, even the standard Bloch equation84 can violate the
II-law. The standard derivation of the WCL does not incorporate
the external driving in the dissipative dynamics leading to a possible
violation of the II-law.40

Traditional spectroscopy is strongly biased toward a perturba-
tive approach where the small parameter is the light-matter inter-
action.168 These assumptions are in conflict with the current pulsed
experimental techniques, where typically the peak intensity can be
very high.

A comprehensive approach able to describe the full cycle of a
pump-probe experiment is based on the surrogate Hamiltonian, for
example, a direct time-domain spectroscopic computational model
of a two pulse pump-probe approach. This scenario assumes a
molecule at equilibrium perturbed by a first radiation pulse. The
response after a time delay is interrogated by the second pulse.
This generic scenario has been applied to cases of ultrashort and
intense shaped pulses while the molecular system is embedded in
the environment.

The steps in a pump-probe simulation140 are as follows:
● the stationary initial state of the system and bath,
● the light induced excitation,

● the induced following dynamics,
● the interrogation by the second pulse,
● dissipation back to the original stationary state.

An example of a direct simulation of an ultrafast spectroscopic
encounter in the time domain starts with a typical system Hamilto-
nian ĤS describing a ground electronic state and two coupled excited
electronic states, a bright state coupled by a transition dipole and a
dark state coupled nonadiabatically to the bright state,

ĤS =

⎛
⎜
⎜
⎝

Ĥg −µ̂gb�(t) 0
−µ̂bg�

∗
(t) Ĥb V̂ba

0 V̂ab Ĥa

⎞
⎟
⎟
⎠

, (85)

and the molecular operators are functions of the nuclear coordi-
nates:

Ĥk = ∑
N
j

P̂2
j

2 m + V̂k(r⃗) is the surface Hamiltonian, and V̂k(r⃗)
is the ground (g), bright (b), or acceptor (a) potential and all are
function of the N nuclear coordinates r⃗. �(t) represents the time
dependent electromagnetic field. The instantaneous power absorbed
from the pulse can be calculated using the first law [Eq. (54)]

P = ⟨
∂H
∂t

⟩ = 2Real(⟨µ̂⟩�̇). (86)

The system-bath interaction ĤSB plays many roles in the spec-
troscopic encounter. The first is that it defines the initial state, i.e.,
the correlated system-bath state [Eq. (71)].140,146 This state is typi-
cally on the ground electronic state since the gap is large relative to
the bath temperature.

During the excitation process, the relevant dissipation pro-
cesses are electronic dephasing and vibrational dephasing and relax-
ation.101,140,144,169

Specifically, for vibrational relaxation following excitation,101

the system-bath interaction becomes

ĤSB = f (R̂s)⊗
N
∑

j
λj(σ̂†

j + σ̂j) , (87)

where f (R̂s) is a dimensionless function of the system’s coordinate
R̂s. λj is the system-bath coupling frequency of bath mode j. For a flat
bath, the system-bath coupling is characterized by a spectral density
J(ω) (units of frequency), then λj =

√
J(ωj)/ρj and ρj = (ωj+1 −ωj)

−1

is the density of bath modes.
The surrogate Hamiltonian method is well-matched to laser

desorption.170 Typically, the radiation field is strong and on the same
timescale as the dissipation.

Spectroscopy simulations with the surrogate Hamiltonian is a
prime choice when strong and fast pulses are applied. The method
can be applied when the traditional methods based on perturba-
tion theory fail. The surrogate Hamiltonian method can be applied
for strong system bath interactions when there is no time scale
separation between fast and slow dynamics.

A. Coherent control in open systems
Manipulating interfering pathways is the mechanism that leads

to coherent control.171,172 Control is achieved through the use of
time dependent external fields, and therefore, the system Hamilto-
nian is explicitly time dependent. Optimal Control Theory (OCT) is
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the theoretical framework employed to obtain the control field. Ini-
tially, the control field is unknown. OCT obtains the control field by
an iterative approach.173–175 This poses a challenge to OCT in open
systems. The time dependent system Hamiltonian has to be incorpo-
rated in the dissipative dynamics, but the control field changes from
iteration to iteration.

There are three common approaches to meet this challenge.
The first is to ignore the influence of the time dependent field on the
dissipative dynamics. This can be justified if the system bath interac-
tion is very weak. The theoretical descriptions of OCT under these
assumptions have been carried out in a density operator formalism
using a static GKLS equation.176–181

The second option is to incorporate the influence of the con-
trol field in the dissipative dynamics. A typical problem is acceler-
ation of equilibration. A consistent time dependent GKLS equation
is employed [Eq. (41)] in the density operator formalism. The equa-
tions of motion are modified using a reverse engineering approach.48

Optimal control theory has also been incorporated using the hierar-
chical equations of motion (HEOM). For a spin Boson model, the
time evolution of an open system density matrix strongly coupled to
the bath has been solved. The populations of the two-level subsys-
tem have been taken as control objectives. The optimal field conse-
quently modifies the information back flow from the environment
through different non-Markovian witnesses.182

The third option is to employ the surrogate Hamiltonian
approach where the control field is incorporated directly.183–185 The
stochastic surrogate Hamiltonian method can serve as a consistent
platform for quantum control in open systems. The main advan-
tage is that the external driving is incorporated in a natural way
without distorting the equations of motion. This feature has been
incorporated in the study of weak field control.169

A primary example of control in open systems is cooling the
internal degrees of freedom of molecules. This means reduction of
entropy of the systems. Directly the control field generates a uni-
tary transformation which is entropy preserving. Only the inter-
play between the control field and the dissipation can lead to cool-
ing.178,186,187 Cooling vibrational degrees of freedom in ultracold Cs2
was demonstrated experimentally,188 as well as cooling rotational
degrees of freedom of AlH+.189

Quantum control can be employed to counter the effects of dis-
sipation. The idea is to apply a control field that will minimize the
distance between the state of a system under dissipation and an iso-
lated one.181 Analysis shows that this is equivalent to active cooling.
Optimal control employing the surrogate Hamiltonian confirmed
the analysis.183,184 Another open system example is performing a
quantum gate under dissipative conditions.190,191

For OCT, adding the environment has pros and cons.192 The
drawback is that dissipation degrades coherence and thus degrades
the interference. This forces a fast control protocol that can com-
pete with the decoherence time scale. The positive side of adding
an environment is that it increases the effective size of Hilbert space
which can increase significantly the number of possible interference
pathways.

XII. OVERVIEW
Practically, all quantum systems are open. The theory goes

hand in hand with thermodynamics. Quantum mechanics and

thermodynamics are independent theories. Consistency between
them when applied to a physical reality is a source of insight. This
allows an independent check of a quantum computational model of
an open system. A model which does adhere to thermodynamical
laws is flawed. In this approach, the GKLS equation is the central
pillar in the theory. It defines a quantum analog of an isothermal
partition. In addition, it serves as a limiting case for more elaborate
non-Markovian theories.

Simulating and modeling quantum open system encounters is
the story of choosing the appropriate system-bath partition. The
location of this partition has a profound influence on the success.
For the description of a solvated small molecule, it is adequate to
include in the system part the high frequency electronic and vibra-
tional degrees of freedom and include in the bath the low frequency
solvent modes. When the size of the molecule increases, the posi-
tion of the partition is not clear cut. An example is the well-studied
Fenna-Matthews-Olson (FMO) molecular complex composed of 7
to 8 chromophores.193 This system has been modeled with almost
all methods of quantum open systems.194–201 Initially, the system
included only the excitonic manifold. This has been found inade-
quate due to vibrational degrees of freedom in resonance with the
electronic degrees of freedom.128,202 Moving the system-bath bound-
ary to include the vibrations is necessary but has a significant com-
putational cost. The last word on a satisfactory FMO spectroscopic
simulation is still in the future.175

Due to the exponential scaling of computation resources with
the number of quantum components, eventually only stochastic
wavefunction methods will meet the challenge. We advocate the lin-
ear stochastic surrogate Hamiltonian method; nevertheless, other
approaches may be more successful. In any case, consistency with
the laws of thermodynamics is a strict criterion which all methods
should meet.
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