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ABSTRACT: Particle swarm optimization (PSO) is a powerful
metaheuristic population-based global optimization algorithm.
However, when it is applied to nonseparable objective functions,
its performance on multimodal landscapes is significantly
degraded. Here we show that a significant improvement in the
search quality and efficiency on multimodal functions can be
achieved by enhancing the basic rotation-invariant PSO
algorithm with isotropic Gaussian mutation operators. The
new algorithm demonstrates superior performance across
several nonlinear, multimodal benchmark functions compared
with the rotation-invariant PSO algorithm and the well-established simulated annealing and sequential one-parameter parabolic
interpolation methods. A search for the optimal set of parameters for the dispersion interaction model in the ReaxFF-lg reactive
force field was carried out with respect to accurate DFT-TS calculations. The resulting optimized force field accurately describes
the equations of state of several high-energy molecular crystals where such interactions are of crucial importance. The improved
algorithm also presents better performance compared to a genetic algorithm optimization method in the optimization of the
parameters of a ReaxFF-lg correction model. The computational framework is implemented in a stand-alone C++ code that
allows the straightforward development of ReaxFF reactive force fields.

1. INTRODUCTION

Reactive force fields, such as ReaxFF1 and COMB,2 allow
unprecedented accuracy in emulating complex condensed-
phase chemically reactive systems.3,4 However, their develop-
ment requires fitting many (occasionally above 100) empirical
parameters to quantum-chemical reference data.5,6 Correlations
between the parameters make the process of finding a set of
near-optimal solutions a particularly challenging global
optimization problem. Therefore, the development of reactive
force fields heavily relies upon a deep understanding of the
underlying chemistry. For this reason, it is often considered to
be an “art” reserved to few expert developers in academia.7,8

Until recently, the development of ReaxFF parameters has
been mainly carried out using a sequential one-parameter
parabolic interpolation (SOPPI) method.9 Despite its sim-
plicity, several drawbacks of this algorithm have been identified.
The most prominent drawback is that the minimization
procedure transforms a global optimization problem into a
consecutive set of local one-parameter parabolic minimizations.
This means that the algorithm finds a local minimum in
parameter space that could be very far from the absolute
minimum. Also, since only one parameter is optimized at a
time, the procedure has to be repeated for many rounds until
convergence is achieved. Lastly, if the process does not start
with a very good initial guess, the resulting force field will

converge to a poor-quality solution. Therefore, an efficient,
automated optimization method is highly desirable and indeed
remains an active area of research. Several global optimization
approaches were suggested recently for fitting ReaxFF
parameters to reference data, based on genetic algorithms
(GAs),10−12 simulated annealing (SA),13,14 evolution strategies
(ESs),15 parallel parabolic search,16 and advanced packages with
multiple optimization schemes.17 All of these methods have
shown superior performance compared with the standard one-
parameter search approach.
Particle swarm optimization (PSO) was proposed by

Eberhart and Kennedy18 in the mid 1990s as a promising
global optimization algorithm. Originally intended for simu-
lation of social behavior of bird flocks and fish schools, it was
soon discovered to perform optimization in real-valued search
spaces. The basic algorithm emulates the ability of a set of
agents to work as a group in locating promising positions in a
given search area. Since its invention, many studies have used
PSO to find near-optimal solutions of complex multidimen-
sional energy landscapes. Notable applications include crystal
structure prediction,19,20 screening of polymers for targeted
self-assembly,21,22 parametrization of Hamiltonian matrix
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elements in DFTB models,23 optimization of batch processing
units,24 and estimation of cosmological parameters.25

In this study, we propose to use and demonstrate the
performance of a modified PSO algorithm augmented with
mutation operations. The new algorithm has enhanced search
abilities and is less prone to being trapped in local minima
compared with previous formulations. The performance of the
algorithm is analyzed in terms of solution quality, reproduci-
bility, and cost compared with the standard rotation-invariant
PSO, SA, SOPPI, and GA algorithms. Finally, we employ the
method to find an optimal set of parameters in the low-gradient
(lg) dispersion model used in ReaxFF26 with respect to a new,

extensive set of density functional theory with Tkatchenko−
Scheffler dispersion correction (DFT-TS) calculations on
energetic molecular crystals.

2. THEORETICAL BACKGROUND

2.1. Particle Swarm Optimization. PSO is a stochastic
population-based algorithm for optimization of nonlinear,
nondifferentiable functions. It is a global search method that
does not exploit the use of local minimizers. Its major
improvements over pure random search (i.e., “blind search”)
algorithms are threefold: (a) it accepts both promising and
inferior solutions, thus greatly enhancing the search efficiency

Figure 1. General scheme of the RiPSOGM global optimization algorithm. c1 = 2.0, c2 = 2.0, ω1 = 0.9, and ω2 = 0.4 are the recommended values for
the PSO parameters.46 The total number of iterations (tmax), the number of agents in the swarm (N), and the scale factor for mutation (γ, eq 2) are
set following user input when running the program.
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with less risk of premature convergence; (b) it allows a
population of possible solutions to exist concurrently, thus
greatly enhancing the global exploration characteristics; and (c)
unlike SA, the PSO algorithm shares information among the
search agents and thus is a self-learning algorithm. In standard
PSO variants,27,28 the position of search agents (i.e., solutions)
depends on an inertial term together with an interplay between
the agent personal experience and global information about the
landscape searched that is shared among all agents (eq 1):

ω= + · − + · −+ c r c rv v p x p x( ) ( )k
i

k
i

k
i

k
i

k
i

k
i

k k
i

1 1 1 2 2
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= ++ +x x vk
i

k
i

k
i

1 1 (1b)

In eq 1, vk
i and xk

i are the velocity and position of agent i at
iteration k, respectively, pk

i is the personal best position of agent
i, and pk

g is the global best position of the entire swarm. The
positions and velocities are d-dimensional, where d is the
number of search variables in the objective function undergoing
optimization. The coefficients c1 and c2 are constant weights of
the personal and global terms, and ω is an inertia factor that
acts to damp the momentum of the agents to prevent infinite
growth of the velocities as the optimization progresses. The
parameters r1k

i and r2k
i represent independent random scalars

sampled from a uniform distribution in the range [0, 1].
The use of random scalars (instead of vectors) leads to an

algorithm that is invariant to rotations of the search space29

(rotation-invariant PSO, RiPSO). Rotational invariance is
closely related to decomposability and separability because in
most cases a separable function becomes nonseparable under
rotation. Therefore, a search algorithm can either exploit
separability if a priori knowledge on promising search
directions is available or be rotation-invariant. If such
knowledge does exist and can be used (e.g., by calculating
the correlations between search parameters), the algorithm will
provide consistent performance across both separable and
nonseparable functions.29,30

However, such information is seldom known for real-world
optimization problems, such as complex molecular force fields.
Furthermore, it is known that the RiPSO algorithm lacks
diversity, resulting in swarm member trajectories that collapse
into a low-dimensional subspace (i.e., line searches), leading to
unfavorable performance.29,31 Several efforts in recent years
concentrated on enhancing the algorithm search diversity for
efficient optimization on multimodal functions without
sacrificing its rotational invariance. Wilke et al.29 replaced the
random scalars with random rotation matrices in the velocity
update equation to increase the diversity of the search. This
resulted in improved performance on several multimodal
benchmark functions, although the rotation invariance was
held in a stochastic sense only. The algorithm performed poorly
on nonseparable functions where a high degree of correlation
among the parameters existed. In the SPSO 2011 algorithm,32 a
geometric update rule exploiting uniform hypersphere sampling
of positions was suggested as a novel rotation-invariant
formulation. Nevertheless, it performed poorly on complex
and multimodal functions and could not escape suboptimal
regions.33 The underlying reason for the apparent “explora-
tion−invariance” trade-off is rooted in the conjecture that as
long as no information about the correlations between variables
exists (i.e., information about promising search directions), the
algorithm should be as invariant as possible without bias to any
preferred direction. However, if such information does exist,
then surely enough the algorithm would exploit it and can no

longer be rotationally invariant. In fact, the same trade-off holds
true for other evolutionary algorithms such as standard GA.34,35

Nevertheless, when no such information exists, the problem of
premature convergence and lack of diversity of the standard
RiPSO algorithm can be successfully overcome, as will be
shown in the next section.

2.2. Enhanced Particle Swarm Optimization with
Isotropic Gaussian Mutation. We suggest a simple and
straightforward extension of the standard RiPSO algorithm to
enhance its global search abilities by preventing its degener-
ation to line searches. In fact, any isotropic perturbation can
prevent the degeneration of the trajectories into low-dimen-
sional subspaces and is a rotation-invariant operator.36 Taking
inspiration from mutation operators used in GAs, we augment
the PSO algorithm with an isotropic Gaussian mutation (GM)
operator. As long as an agent moves toward better regions
compared with its previous-best position, the mutation operator
is disabled in order not to interfere with swarm dynamics.
However, if it did not improve its fitness during a few
consecutive steps, mutation takes place. The mutation operator
acts to replace the current agent with a mutated version of the
best agent in the swarm as follows:

γ= + ̂+ +Gx p t(0, 1)k
i

k k
i

1
g

1 (2)

In eq 2, the agent’s new position, xk+1
i , is set as an isotropic

randomized value centered on the position of the best particle,
pk
g. The step length is sampled from a Gaussian distribution

with a mean of zero and a standard deviation of unity (G(0, 1)).
The scale parameter γ controls the width of the distribution and
should be related to the domain boundaries. The unit vector
tk̂+1
i ensures that the distribution of displacements is isotropic
by uniformly picking points on the surface of a d-dimensional
hypersphere.37 Thus, the algorithm is not affected by rotations
of the search landscape. A general scheme of the algorithm
(denoted as RiPSOGM) is presented in Figure 1. The
algorithm starts by initializing the positions (xi(0)) and
velocities (vi(0)) for all agents in the swarm. The previous
best position of each agent (pk

i ) is set to its initial position, and
the global best position (pk

g) and global best objective function
value (gbest) are determined. Next, the inertia weight ω is
computed as a linearly decreasing function of the iteration
number, t, where tmax is the maximum number of iterations and
ω1 = 0.4 and ω2 = 0.9 are constants. Next, propagation of the
swarm begins with evaluation of new velocities for the agents
using eq 1a. At this point, the algorithm departs from standard
PSO and checks the number of failures of the current member
(faili). If faili > 1, a mutation takes place, namely, the position is
replaced with a mutated version of the best member in the
swarm up to that point. Otherwise, the standard update
equation for the position (eq 1b) is used. Next, the objective
function value is evaluated at the new position, and the best
personal/previous position, global best positions, and corre-
sponding objective function values are updated. The objective
function value is evaluated for each agent using the function
being optimized calculated at the current position of the agent.
The algorithm iterates through all members for a predefined
number of iterations or a threshold objective function value.
It is worth mentioning an unfortunate misconception present

in many studies38−43 implicitly suggesting that when employed
for the optimization of multimodal functions, the exponentially
decreasing tails of Gaussians are ineffective in acting as
mutation operators because they are too local. Instead, it is
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argued that heavy-tailed distributions, such as those of the
Cauchy and Lev́y distributions, are more appropriate since long
jumps (“Lev́y flights”44) can occasionally lead to better
solutions within the attraction basin of a better optimum.
In fact, a careful analysis reveals that heavy tails are not the

reason for the alleged superior performance. Rather, it is the
separability of some benchmark functions that makes them an
“easy target” for coordinate-wise line-search methods. In this
respect, it should be noted that sampling a univariate
distribution independently in each dimension (to compute
the new position) is equivalent to sampling the corresponding
multivariate heavy-tailed distribution of positions. Multivariate
Cauchy and Lev́y distributions are extremely anisotropic in the
sense that large steps occur mostly along coordinate axes.45

Thus, it is not surprising that they work so well on separable
functions: the majority of the new sampling points will always
fall along the coordinate axes, so the optimum is easily found,
just as it is for the rotationally biased version of PSO30 and as
would be the case for any coordinate-wise search algorithm.
When used on nonseparable functions (i.e., cases where
correlation among function variables exists) or when the search
direction is chosen isotropically, the superior performance is
lost since the promising directions are no longer parallel to the
search/sampling coordinates. This point was nicely demon-
strated for the ES algorithm45 and will also be demonstrated
here in section 3.2.

3. RESULTS

3.1. Tests for Rotation Invariance. To test whether a
rotational bias inherently exists in an algorithm, we use the

radially symmetric two-dimensional (2D) distance f rom the
origin as the first objective function (eq 3):

= +f x y x y( , )1
2 2

(3)

Since the objective function is radially symmetric, there should
be no preference in the search direction for a rotationally
invariant algorithm. Thus, any deviation of agent positions from
radial symmetry in the search trajectory would indicate a
rotational bias in the underlying velocity update formula.
Figure 2 compares the agent search trajectories during

optimization using the rotationally biased PSO algorithm
(RbPSO), the rotationally invariant PSO algorithm (RiPSO),
and the enhanced RiPSO with isotropic Gaussian mutation
(RiPSOGM). As can be inferred from the resulting search
trajectories (Figure 2a−c) and distributions of the correspond-
ing velocity vector orientations (Figure 2d−f), the newly
proposed RiPSOGM algorithm is free of any rotational bias,
just like the standard RiPSO algorithm, whereas the RbPSO
algorithm that uses random vectors instead of scalars in its
velocity update formula (eq 1) presents a strong bias toward
the axes.
To demonstrate that such an algorithmic bias could

drastically degrade the search performance on nonseparable
functions, we choose an extremely radially asymmetric 2D
ellipse function (eq 4),

= +⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠f x y

x y
( , )

0.000076 0.0000012

2 2

(4)

and impose correlation between its two variables, x and y, by
multiplying them by a Euclidean rotation matrix operator that

Figure 2. Top panels: search trajectories of 104 agents on the 2D distance from the origin function for (a) RbPSO, (b) RiPSO, and (c) RiPSOGM.
The total number of function evaluations was 3 × 105. The initial agent positions were radially distributed according to a Gaussian distribution
(mean μ = 0.0 and standard deviation σ = 20.0). Agents are colored according to the iteration number (from dark blue to yellow). Bottom panels:
respective angular orientations for (d) RbPSO, (e) RiPSO, and (f) RiPSOGM with respect to the x axis during search on the 2D distance from the
origin function.
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pertains to an angle θ in the range [0, π]. This series of
functions will serve as our objective function for optimization.
The results are presented in Figure 3.

As expected, the RiPSO and RiPSOGM algorithms are
insensitive to rotations of the coordinates, while RbPSO
presents a performance degradation of roughly 60 orders of
magnitude. The enhancement in exploration abilities stems
from the fact that in each iteration, poor-performing agents are
randomly reallocated around the global best particle. This
operation ensures their escape to better positions compared
with their original position.
3.2. Performance on Benchmark Functions. To assess

the performance of the RiPSOGM algorithm in complex cases,
four highly nonlinear benchmark functions were chosen as test
cases for global optimization, namely, the Rastrigin, Ackley,
Rosenbrock, and Schwefel benchmark functions commonly
used for testing global optimization algorithms.47,48 Their
functional forms are given in the Supporting Information
(Figures S1−S4). In addition, the performances of the RiPSO,
SOPPI, and SA algorithms are also included for comparison.
SOPPI is a simple local search method based on the
assumption that a parabolic relation exists between the total
error and the value of a single parameter.9 SOPPI is a relatively
poor approach compared with more advanced local search
methods, but it is still being used to train ReaxFF force fields
because of its simplicity. The optimal value for a parameter is
obtained by calculating the total error at three different values
of a single parameter while all of the others are held fixed. This
defines a parabola and its corresponding minimum. The two
new values are obtained by adding and subtracting a step size
that is equal to 10% of the allowed range for the specified
parameter. In this regard, the method can also be regarded as
extrapolation since values that fall outside the three chosen
points are not discarded. In addition, a test is performed to
confirm that the extremum is indeed a minimum. In case the
determined optimal value falls outside the given range or the
parabola is concave, the value that corresponds to the smallest
error is chosen. SA is a popular, frequently used global search

method that does not use local minimizers. The algorithm we
used is based on the Metropolis Monte Carlo method of
Kirkpatrick et al.49 to generate a random trial point. The
distance of the trial point from the current point is given by a
probability distribution that depends on the square root of the
temperature, i.e., Boltzmann annealing.50 If the new point is
better than the current point, it is accepted with probability 1,
and otherwise it is replaced by a new trial with an acceptance
function based on the Boltzmann distribution. The algorithm
then systematically lowers the temperature with an exponential
rate of cooling, i.e., Ti+1 = 0.95·Ti, where the initial temperature
is T0 = 600 K. Such a method was recently used to optimize the
ReaxFF parameters of various MgSO4 hydrates.14 It is
noteworthy that the different algorithms have different degrees
of local search characteristics: SOPPI is a local method, PSO is
a global search algorithm with some local search abilities, and
SA and GA are global search methods with no local search
ability.
The benchmark functions simulate the conditions typically

encountered in the training of complex molecular models by
having many degrees of freedom (30-dimensional functions);
some present significant dependence among the variables, and
some have many local minima. In its two-dimensional form, the
Rastrigin function has several local minima. Finding the
minimum of this function is a fairly difficult task because of
its large search space and large number of local minima. In the
two-dimensional Ackley function, there are many local minima
on a relatively flat outer region, but a large conic “tube” is
present at the center, descending toward the global minimum.
The function poses a challenge for many optimization
algorithms, particularly hill-climbing algorithms, which can get
trapped in one of the many local minima. The Rosenbrock
function is nonseparable, bimodal (for more than three
dimensions) function that in two dimensions has a narrow,
parabolic-shaped flat valley that is easy to find; however,
convergence to the global minimum is rather difficult.51 Lastly,
the Schwefel function is multimodal with a weak global
structure. Hence, there is no overall guiding slope toward the
global minimum. The global minimum is located at the edge of
the search space and poses a real challenge for many global
optimization algorithms.
Figure 4 presents the optimization performance of the

proposed RiPSOGM algorithm compared with the standard
RiPSO algorithm, the well-known SOPPI algorithm, used for
training ReaxFF reactive force fields,1,5,9 and a standard SA
algorithm as commonly used in the literature to optimize
empirical force fields.14,52 In all cases, the number of
dimensions was set to 30, and the optimal scale factor γ was
chosen following a preliminary analysis (Figure S5). In the case
of the 30D Rastrigin function, SOPPI is practically trapped in a
local minimum after a few function evaluations and obviously
cannot escape. RiPSO does a much better job, but it struggles
to find better solutions immediately after a few steps of
optimization, and convergence toward better solutions is
extremely slow. SA shows performance intermediate between
those of SOPPI and RiPSO. Although it keeps improving its
solution, the convergence is slow. On the other hand, the
RiPSOGM algorithm constantly improves its position until it
saturates. In the case of the 30D Ackley function, all of the
algorithms but RiPSOGM converge prematurely because of the
large number of local minima present. Surprisingly, SOPPI
reaches a slightly better solution than the RiPSO and SA
algorithms. The relatively poor overall performance of the SA

Figure 3. Optimization performance (best function value reached) on
the 2D ellipse function as a function of rotation angle of the search
landscape. The swarm consisted of 20 agents, and the total number of
function evaluations was 105. Each point represents the average of 30
independent runs.
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algorithm compared with PSO variants is evident and is the
result of poor global exploration of the landscape. Ensemble
approaches to SA in which concurrent solutions with
information sharing are simulated are a promising approach
to increase the performance.53,54 In contrast, RiPSOGM
constantly improves its search performance and finally succeeds
in finding a nearly optimum value. In the case of the bimodal,
nonseparable 30D Rosenbrock function, RiPSO shows the
worst performance, which is indicative of the lack of enough
diversity in the search. SA significantly outperforms RiPSO, but
the convergence slows down after approximately 5000 function
evaluations. Both RiPSOGM and SOPPI achieve dramatically
better solutions than RiPSO and SA. While SOPPI cannot

improve its solution after a few iterations, RiPSOGM continues
to slowly reach better solutions. The special difficulty of this
function arises from the need to search in an increasingly small
region to find the global optimum point, but this bears a high
risk of premature convergence since with each iteration the
swarm loses its momentum. Overall, RiPSOGM achieves the
best performance on this function. Finally, in the case of the
Schwefel function, SOPPI arrives at the worst solution, quite
expectedly. RiPSO with its lack of diversity reaches a slightly
better value. SA performs better than the previous methods but
significantly worse than the RiPSOGM algorithm.
In terms of numerical cost, PSO-based methods are relatively

expensive because a set of parallel searches is performed (in this

Figure 4. Global optimization performance comparison among the RiPSOGM (blue), RiPSO (red), SA (green), and SOPPI (black) algorithms on
the 30-dimenstional (a) Rastrigin, (b) Ackley, (c) Rosenbrock, and (d) Schwefel functions. Search was performed with 20 agents in each case, for a
total of 104 algorithm iterations, corresponding to 2 × 105 function evaluations. The SA algorithm followed standard Boltzmann annealing50 with an
initial temperature (T0) of 600 K and an exponential cooling schedule, Ti+1 = 0.95·Ti. The initial guess was randomly sampled from a uniform
distribution within half the search domain boundaries. Each search was repeated 30 times to enhance the statistical significance of the results.

Table 1. Optimization Performance Results Obtained Using the RiPSOGM, RiPSO, SA and SOPPI Algorithms in 30
Independent Searchesa

RiPSOGM RiPSO SA SOPPI

Rastrigin 43.58 ± 10.22 113.58 ± 25.67 193.87 ± 20.84 332.90 ± 45.16
Ackley (6.42 ± 1.3)·10−4 10.25 ± 0.97 19.90 ± 0.32 5.35 ± 6.19
Rosenbrock 13.96 ± 1.93 133.13 ± 58.03 31.39 ± 4.22 28.42 ± 0.0
Schwefel 4313.11 ± 821.33 7058.02 ± 610.12 5879.32 ± 820.02 7525.50 ± 615.89

aThe number of dimensions is d = 30, and the total number of function evaluations is 2 × 105. The global minimum point for each function is 0.0 at
[0]D, except for the Rosenbrock function, where it is at [1]D. The search domains for the Rastrigin, Ackley, Rosenbrock, and Schwefel functions are
[−5.12, 5.12]D, [−32.0, 32.0]D, [−10.0, 10.0]D, and [−500.0, 500.0]D, respectively. Initialization in all cases was performed across half of the search
domain to avoid possible origin bias. The optimum values found are given as mean ± standard deviation.
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case 20 search agents). Nevertheless, the PSO algorithm can be
readily parallelized with a simple master−slave architecture.
Thus, on the basis of the required number of function
evaluations to reach an optimal threshold value, it remains
highly competitive to the other methods, especially on low-
dimensional functions where fewer agents can be effectively
used. SOPPI is about 6-fold cheaper compared with the PSO
algorithms used here, since only three function evaluations are
required at each iteration. Although it shows good performance
on unimodal and bimodal functions, SOPPI has a strong
tendency to be trapped in local minima due to its local nature.
The standard SA algorithm is a single-candidate search method
and thus is the cheapest among the above methods. However,
this comes at the expense of poor global search performance.
The results of the above comparison are summarized in Table
1.
Lastly, we demonstrate that choosing agent step lengths from

multivariate Lev́y and Cauchy distributions (without a priori
knowledge of promising search directions) as opposed to an
isotropic Gaussian distribution is ineffective in escaping poor
regions. As explained in section 2.2, it is expected that when the
search direction is chosen isotropically (i.e., without an inherent
bias toward the coordinate axes), the Lev́y and Cauchy
distributions should be as good as a Gaussian distribution. For
this purpose, we repeated the RiPSOGM optimization sessions
on the Rastrigin benchmark function. The Rastrigin function is
characterized by many local minima, making it ideal to assess
the ability of the algorithm to escape from local minima and to
see whether heavy tails have any advantage. We found that the
resulting performance was indistinguishable from the Gaussian
case (see Figure S5), in good agreement with the results of
other studies with different optimization algorithms.45,55,56 One
obvious difference between the three distributions is that
numerical generation of Gaussian random numbers is much
faster than that of Lev́y random numbers,57 making them highly
preferable.
3.3. Application: Accurate Dispersion Parameters in

the ReaxFF Reactive Force Field. To demonstrate the
performance of the RiPSOGM algorithm in a “real-life”
scenario, we choose to compare its performance to two
popular methods for optimization of ReaxFF reactive force
fields. The first method is the conventional SOPPI algorithm of
van Duin,9 and the second method is the advanced GA-based
global optimization framework GARFfield.12 Since parabolic
interpolation is a very efficient local search method, we also use
it to refine the final optimized parameters obtained using
RiPSOGM to arrive at a hybrid algorithm (RiPSOGM
+SOPPI).
In the following, we search for the optimal parameters for the

low-gradient (lg) dispersion correction model of Liu and
Goddard58,59 used in ReaxFF-lg force fields26 to properly
describe organic crystals. We begin with a force field that was
specifically developed to describe reactive events in energetic
materials60 augmented with the lg correction model. We refer
the reader to previous references for a complete description of
the full ReaxFF potential energy function.1,26 The correction
model includes a set of empirical parameters for each element
that represent the coefficients of the multipole expansion.61

The correction accounts for London dispersion energy, which
is essential to accurately describe the crystal structures of
organic solids, by introducing an attraction term with a force
that smoothly goes to zero at valence distances:

∑= −
+<

E r
C

r dR
( )l ij

i j

N
ij
l

ij ij
g

g

6
e,

6
(5)

In eq 5, rij is the distance between atoms i and j, Re,ij is the
equilibrium vdW distance between atoms i and j, Cij

lg is the
dispersion energy correction parameter, and d is a scaling factor
representing how fast the overlap (Pauli repulsion) effects
dampen the London forces, which was kept fixed at d = 1 as in
the study by Liu et al. The algorithms search for the optimal set
of dispersion coefficients Cij

lg for pairs of C, H, N, and O atoms
and equilibrium vdW radii Re,ij for the elements. The search
domain boundaries for the parameters are given in Tables 2 and
3.

In contrast to Liu et al.,26 who used experimental crystal
densities as the reference data, we use the results of accurate
DFT-TS calculations performed with the PBE exchange−
correlation functional62 including the Tkatchenko−Scheffler
dispersion correction63 and ultrasoft pseudopotentials (see the
Supporting Information for details) to compute the equations
of state of several energetic and nonenergetic organic crystals.
This combination of theory levels was shown to have excellent
performance on organic materials with respect to computa-
tional demand64 and preserves the philosophy of ReaxFF as
being developed without experimental input. Specifically, using
DFT-TS we calculated the equations of state of the
hydrocarbon crystals benzene, biphenyl, hexamine, and
anthracene and the energetic crystals 1,3,5,7-tetranitro-1,3,5,7-
tetrazocane (HMX), 1,3,5-triamino-2,4,6-trinitrobenzene
(TATB), pentaerythritol tetranitrate (PETN), 2,2-dinitroe-

Table 2. Ranges Assigned for Dispersion Coefficient
Parameters Cij

lg between Atomic Pairsa

parameter address search range optimized value

CCC
lg 2×1×33 0.001−10.0 3.588

CHH
lg 2×2×33 0.001−10.0 6.988

COO
lg 2×3×33 0.001−2000.0 516.83

CNN
lg 2×4×33 0.001−2000.0 89.697

COH
lg 4×2×7 0.001−10.0 9.736

CNH
lg 4×3×7 0.001−2000.0 3.256

CCO
lg 4×4×7 0.001−2000.0 145.833

CCN
lg 4×5×7 0.001−2000.0 24.171

CNO
lg 4×6×7 0.001−2000.0 187.943

aCij
lg values are given in units of kcal·mol−1·Å−1. The address of each

parameter relates to its section ID, type ID, and parameter number in
the ReaxFF force field file. The optimized values are the best values
obtained out of three independent optimization sessions using
RiPSOGM and local refinement with SOPPI.

Table 3. Ranges Assigned for Equilibrium vdW Radius
Parameters Re,ij between Elementsa

parameter address search range optimized value

Re,CC 2×1×34 1.2−2.0 1.944
Re,HH 2×2×34 1.2−2.0 1.243
Re,OO 2×3×34 1.2−2.0 1.844
Re,NN 2×4×34 1.2−2.0 1.881

aRe,ij values are given in Å. The address of each parameter relates to its
section ID, type ID, and parameter number in the ReaxFF force field
file. The optimized values are the best values obtained out of three
independent optimization sessions using RiPSOGM and local
refinement with SOPPI.
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thene-1,1-diamine (FOX-7), and nitromethane (NM). In
addition, we augmented the training set with the full
dissociation and expansion curves of various vdW-bonded
dimers from the S66 database,65 including AcNH2, NH3,
CH3NH2, CH3NH2···pyridine, and HN3 dimers. It is important
to mention that since the lg model has little effect at the
distances relevant to valence interactions,26 the optimization
can be conducted without refitting the already optimized terms
that correspond to valence interactions in the ReaxFF force
field. The objective function in the training of parameters is the
following sum of squares (eq 6):

∑
σ

=
−

=

⎡
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x x
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i

n
i i

i1
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where xi,DFT is the reference value (in kcal/mol), xi,ReaxFF is the
computed value (in kcal/mol), and σi is the weight specified for
each optimization target in the training set. Structures near
their equilibrium values were given lower weights (0.1−0.5)
while high-energy structures were given higher weights (1.0−
2.0) to allow a better reproduction of important ambient
conditions as opposed to high-energy phases. We used 20
agents for the optimization session with RiPSOGM without any
tuning of algorithm parameters besides choosing an appropriate
scale factor through preliminary simulations. Obviously, tuning
of the inertia factor and the weights of the personal and social
random components (ω, c1, and c2, respectively, in eq 1) could

further improve its performance. The initial force field
parameters were chosen randomly inside the prescribed ranges
(Tables 2 and 3). In addition, in preliminary calculations we
found that reducing the number of energy minimizations for
each structure in the training set does not have any significant
effect on the algorithm’s search performance. Thus, we used
only one or two energy minimizations on each structure. This
highly accelerated the global search process without wasting
time on unphysical high-energy structures that result from
momentarily bad force field parameters.
Figure 5 presents the equations of state for NM, TATB,

FOX-7, and PETN. We compare our results (named here as
ReaxFF-lg 2.0) to the original ReaxFF-lg model of Liu et al.26

and to our reference DFT-TS calculations. As can be seen from
Figure 5, the newly optimized force field achieves very similar
or better agreement with DFT predictions. For NM, better
agreement is clearly noticeable for high compressions compared
with the original force field. Nevertheless, a slight under-
estimation of the energy at high compression is preserved
compared with the DFT data. This may be the result of
inconsistencies in the description of hydrogen bonds between
methyl (−CH3) and nitro (−NO2) groups in the crystal as the
pressure increases. In the case of TATB, the resulting force field
nicely matches the equation of state in expanded crystals but
shows a similar underestimation at high compressions.
Nevertheless, it performs slightly better than the original
ReaxFF-lg force field. The performance of our force field in the

Figure 5. Calculated equations of state for energetic molecular crystals. The DFT-TS calculations (green) include the Tkatchenko−Scheffler
dispersion correction. Force field values were calculated with ReaxFF-lg 2.0 obtained following a RiPSOGM optimization session (blue) and with the
original ReaxFF-lg values of Liu et al.26 (red).
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case of FOX-7 is in significantly better agreement with the
DFT-TS predictions. Whereas ReaxFF-lg exhibits a rather flat
energy surface, ReaxFF-lg 2.0 preserves the shape of the energy
curve at both low and high compression values. Similarly to
FOX-7, the calculated equation of state for PETN is in much
better agreement with DFT-TS compared with the original
force field. A slight overestimation of the energy at high
compression can be seen, but overall a satisfactory description
is obtained.
A further comparison between the optimized force field

obtained using the RiPSOGM scheme and that of Liu et al. can
be made by calculating the heats of sublimation (Figure 6a).
Very good agreement is obtained for the experimental heats of
sublimation of the nonenergetic organic crystals benzene,
biphenyl, hexamine, and anthracene. In the case of the energetic
crystals PETN, NM, and TATB, overall good agreement is
reached compared with the original ReaxFF-lg force field. In the
case of FOX-7 an overestimation of the sublimation energy is
obtained, whereas in the case of HMX an underestimation of
the heat of sublimation is noticeable. However, in almost all
cases ReaxFF-lg overestimates the heat of sublimation of both
nonenergetic and energetic crystals.
We turn now to a comparison of our proposed algorithm

with the SOPPI and GARFfield methods. First, to appreciate
the dramatic enhancement of the global optimization process
offered by RiPSOGM compared with local search methods, we
compare three independent optimization sessions of the
ReaxFF training set to the SOPPI algorithm. Figure 6b
presents the results of the optimization starting with random
force field parameters for the dispersion correction model. A
striking difference can be noticed already at the first step of
optimization: whereas SOPPI begins almost 3 orders of
magnitude higher in error scale, RiPSOGM succeeds to sample
the multidimensional landscape more thoroughly and to locate
potentially better regions. This favorable behavior is the result
of using a population of agents instead of a greedy single-
individual mode in SOPPI or SA algorithms66 and thus shows
less sensitivity to the initial guess of parameters. Furthermore,

on average RiPSOGM reaches lower values of error compared
to SOPPI per given iteration. This behavior is manifested in the
ability to direct agent movement to promising regions by
exploiting information transfer in the swarm.
The final average ReaxFF errors reached after 100 iterations

for the SOPPI and RiPSOGM algorithms are 2526.33 ± 84.29
and 2284 ± 204.27, respectively. The local nature of SOPPI
does not permit it to converge to a global optimum; instead, it
searches only for local solutions in the parameter space. We
opted to see whether this could be turned into an advantage by
enhancing the local search ability of our RiPSOGM algorithm.
We submitted each of the three RiPSOGM runs to a
subsequent local search process with SOPPI to see whether
we could refine the final positions found by the swarm. Indeed,
we succeeded in lowering the average error down to 2071 ±
19.63 in less than 100 additional local search steps, as can be
seen from the inset in Figure 6b. This implies that a hybrid
method composed of intermittent search patterns where local
optimization is performed between successive PSO steps can
potentially improve the convergence toward the optimum
either by smoothing the search landscape for the global
optimizer74 in intermediate steps in a similar manner to the
basin-hopping method74 or by merely fine-tuning the
convergence toward the global optimum. Thus, we have
added an option to include a SOPPI local search session during
or after a RiPSOGM run.
Lastly, we compare our method to the recently introduced75

GA-based optimization framework for reactive force fields,
GARFfield.12 It uses an evolutionary scheme to seed a
population of solutions (chromosomes) made up of random
parameters (genes). The fitness of each individual chromosome
is evaluated and used to decide whether it should be replaced or
used to evolve new and better offspring. The replacement
strategy used is the efficient steady-state replacement method
(SSGA), which replaces 10% of the population.12,76 The
evolution of new offspring in GA is achieved by using
tournament selection, two-point crossover (at rate of 0.85),
and mutation (at rate of 0.1) operators. In addition, GARFfield

Figure 6. (a) Calculated heats of sublimation as predicted by ReaxFF-lg 2.0 obtained after an optimization session with RiPSOGM (green) and using
the original ReaxFF-lg force field of Liu et al.26 (red). Experimental heats of sublimation (blue) are also shown for PETN,67 NM,68 TATB,69 FOX-
7,70 HMX,71 benzene,72 biphenyl,72 hexamine,73 and anthracene.72 (b) Comparison between sequential one-parameter parabolic interpolation
(SOPPI) (red), rotation-invariant particle swarm optimization with Gaussian mutation (RiPSOGM) (green), and local optimization of the final
parameters achieved in each RiPSOGM session using SOPPI (i.e., the hybrid RiPSOGM+SOPPI framework) (dashed blue). Each curve is an
independent optimization session beginning with random parameters. The inset magnifies the region near the last few iterations of the RiPSOGM
algorithm.
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includes two options to potentially improve the convergence.
The first option that was used is a hill-climbing move with a
frequency of 10 iterations. This enables upward moves in the
fitness landscape after no significant improvement is seen and
helps the search escape local minimum traps. The second
option is switching from the evolutionary GA steps to a Polak−
Riebiere version of the conjugate gradient (CG) minimizer. We
switched the final 100 iterations (iterations 400 to 500) to be
pure CG. During evolution, the population fitness should
improve toward a higher-quality set of force field parameters.
Figure 7 presents the optimization sessions conducted by the

two population-based methods on a compact set of previous

training data. The training set contains full dissociation and
compression curves for vdW-bonded dimers in the S66
database,65 including AcNH2, NH3, CH3NH2, CH3NH2···
pyridine, and also HN3 dimers. In both cases, we use exactly
the same initial force field26 to evaluate the initial fitness. This
results in an initial fitness of 2.75 × 103. After roughly 100
iterations, GARFfield improves the average fitness by a factor of
about 2.5, and then a slower improvement can be observed
until the final results are obtained. In comparison, RiPSOGM
using 20 members succeeds to dramatically lower the average
fitness in the first few (about 20) iterations and then shows very
slow improvement and stays almost stagnant throughout the
remaining search process. This behavior stems from the
randomization process, where each of the optimization
parameters gets a completely independent random value within
its domain boundaries. Then the member with the globally best
fitness is chosen as the new force field for the next step in the
search process. In contrast, GARFfield generates a population
of 20 genes with mutation and crossover operations from the
initial force field. Turning on local search (CG) after 400
iterations for the additional 100 iterations in GARFfield leads to

further lowering of the fitness to 254.2. The SOPPI in
RiPSOGM offers a similar improvement and arrives at the final
fitness value of 191.8. Thus, the better performance of
RiPSOGM over GARFfield is afforded by (a) the random-
ization step already at the initial stage and the selection of the
globally best member as the new force field for the search
process, (b) the efficient information-sharing mechanism in the
swarm, and (c) the local-search-like characteristics in each
swarm member. Overall, the RiPSOGM framework, which is
rotation-invariant, shows better performance in terms of
solution quality and computational cost and is less divergent
throughout the optimization path.

4. CONCLUSIONS AND OUTLOOK

An improved algorithm for global optimization of nonlinear,
multimodal functions of continuous variables is proposed. The
algorithm is based on a rotation-invariant formulation of the
well-known particle swarm optimization (PSO) algorithm. Our
method departs from standard RiPSO by introducing isotropic
mutation operators that act to diversify the swarm. The
operation replaces poorly performing search agents with a
Gaussian mutation of the globally best swarm members. It is
termed here rotation-invariant particle swarm optimization with
Gaussian mutation (RiPSOGM).
The mutation acts to preserve good-performing members but

eliminates members in poor regions that cannot improve their
solutions, which helps to diversify the swarm trajectories. The
use of isotropic Gaussian distributions to generate random
distances from the current global best member preserves the
rotation invariance of the algorithm. This is highly beneficial
since rotation-invariant algorithms preserve their performance
on nonseparable functions, i.e., in cases where the optimization
parameters are correlated.36

RiPSOGM presents superior performance in comparison
with several other optimization algorithms, including standard
RiPSO, simulated annealing (SA), and sequential one-
parameter parabolic interpolation (SOPPI) on several high-
dimensional, nonlinear benchmark functions. In addition, on a
ReaxFF model training set it achieves slightly better solutions in
fewer iterations in comparison with the GA-based package
GARFfield.
Following the application of RiPSOGM to optimize the low-

gradient (lg) dispersion correction model, we accurately
described the equations of state and heats of formation of
several families of organic materials, including energetic crystals.
The new algorithm is implemented in a stand-alone C++

package with a straightforward interface to the serial version of
the ReaxFF molecular dynamics package. The package allows
efficient training of reactive force fields in a highly automated
manner. The package is freely available upon request from the
authors. Further improvements of the framework will include
parallelization using the MPI architecture, allocating each
swarm member to a CPU core. Such efforts have already shown
excellent parallel performance77−79 and are expected to
dramatically reduce the computational cost of training reactive
force fields with large parameter spaces.
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Figure 7. Comparison of global optimization performances of the
genetic algorithm code GARFfield12 with and without a conjugate
gradient (CG) minimization, the RiPSOGM method, and the
RiPSOGM+SOPPI hybrid framework. GARFfield uses tournament
selection, a two-point crossover operator with rate of 0.85, and a
mutation operator with a rate of 0.1. Also, hill climbing is performed
every 10 iterations. The population size in both methods was 20
agents. For each algorithm, three independent runs were performed.
The y axis is a log scale, and the dots are guides to the eye.
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