Heat engines in finite time governed by master equations
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A simple example of a four-stroke engine operated in finite-time is analyzed. The working medium
consists of noninteracting two-level systems or harmonic oscillators. The cycle of operation is
analogous to a four-stroke Otto cycle. The only source of irreversibility is due to the finite rate of
heat transfer between the working medium and the cold and hot baths. The dynamics of the working
medium is governed by a master equation. The engine is shown to settle to a stable limit cycle for
given contact periods with the hot and cold baths. The operation of the engine is analyzed subject
to a fixed cycle time. The time allocation between the hot and cold branches that maximizes the
work output is considered. Analytical results are obtained when the relaxation is very slow, very
fast, or when the relaxation rates along the hot and cold branches are equal. Numerical results are
presented for the general case. A maximization of the power with respect to the cycle time leads to
a finite optimal cycling frequency provided the adiabatic branches are allotted finite
durations. © 1996 American Association of Physics Teachers.

1. INTRODUCTION

The traditional bounds imposed on the performance of en-
ergy conversion processes correspond to the reversible limit.
The classic example of such a bound is the Carnot efficiency.
Note however that reversible processes involving any type of
transport require infinite time.! Infinite duration is not toler-
able in real applications; hence the motivation for studying
limits to the finite rate performance of engines and similar
devices. The finite time performance of engines has been
intensively studied in recent years, thereby yielding many
interesting new results>~!7 which form the core of the new
field of finite time thermodynamics. The goal of this field is
to seek bounds on the performance of thermodynamic pro-
cesses operating in finite time.

To define a finite time thermodynamics problem, tradi-
tional thermodynamics must be augmented by a dynamical
theory. In most of the previous studies, the dynamics was
provided by phenomenological rate equations. A typical ex-
ample is Newton’s law of cooling, which postulates that the
heat flow across an interface is proportional to the tempera-
ture difference. It has been shown that the specific dynamical
law has a considerable effect upon the operation of the
engine.'>'* This fact supplies our motivation to examine a
rather different dynamical law at the mesoscopic level of
description.

The literature contains many previous analyses of finite
time thermodynamic heat engines at the macroscopic level. A
more recent analysis at the quantum mechanical level treated
the finite time thermodynamics of heat transfer via quantum
master equations.'®~?! These equations can be derived from
the underlying microscopic theory of the system and the
coupled reservoirs.”>~2* The situation is considerably simpli-
fied if the off-diagonal terms of the density matrix are elimi-
nated, leading to an analysis based only on the energy level
populations. In such a case the Pauli master equation can be
used, and this mesoscopic approach is the one adopted
here. >’

Our engine is similar to the spin-1/2 engine of Ref. 19, and
the harmonic oscillator engine of Ref. 20. However, it corre-
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sponds to a different mode of operation and the optimization
procedure is of a different type. The dynamical model is
based on the probability distribution of occupancy of the
energy levels {p,} evolving according to a Pauli master equa-
tion. Quantum interference effects are unimportant in this
case.”” Another considerable simplification of the present
mode of operation over previous ones'®2! is that thermal
relaxation occurs under the influence of a constant external
field. It therefore avoids the difficulty of considering a mas-
ter equation for systems subject to time dependent fields.”
The models analyzed obey canonical invariance,” which al-
lows the internal temperature of the working medium to re-
main well defined. Having a well-defined temperature sim-
plifies the interpretation although it is not necessary for the
analysis of operation. Such analysis could be performed di-
rectly at the level of the probability distribution {p,,}.

The paper is organized in the following manner. In Sec. II
we consider the basic components of the engine, i.e., the
working medium, cycle of operation and the dynamics in-
duced by the master equations. The finite time thermody-
namic analysis of the engine is presented in Sec. III, where
the work output is maximized with respect to the time allo-
cation. It is possible to push the analysis through analytically
for the limits of slow and fast relaxation, and in the case of
equal relaxation rates. The general case is analyzed numeri-
cally. The results are discussed and the main conclusions are
pointed out in Sec. IV.

II. THE ENGINE

For our present purposes, an engine is characterized by its
working medium, the cycle of operation, and the dynamics
that specify how the working medium traverses the cycle. In
the present section we introduce these three constituents for
our engine.

A. The working medium

The working medium consists of either many non-
interacting two-level systems (TLSs) or of many noninteract-
ing harmonic oscillators (HOs). For simplicity we carry out
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the analysis for the former and show in the Appendix how
the latter case proceeds completely analogously.

For the sake of concreteness it is useful to envision the
TLSs as spin-1/2 systems. The lack of spin—spin interactions
allows us to treat the energy exchange between the working
medium and the surroundings in terms of a single TLS. The
energy exchange for the working medium as a whole is then
obtained by multiplying the energy exchange for a single
spin by the total number of spins within the working me-
dium. The state of the system is then defined by the occupa-
tion probabilities P and P_ corresponding to the energies
70 and —jw where w is the energy gap between the two
levels. The average energy per spin is given by

E=P,-(30)+P_-(—iw). 2.1
The polarization, S, is defined by
S=1(P,—P.), (2.2)

and thus the energy can be written as £ = wS.

In the language of magnetic resonance, w=—~y B, , where
v is the gyromagnetic ratio and B, is the longitudinal com-
ponent of the magnetic field (there is no transverse driving
field). Furthermore, S corresponds to the magnetization per
spin along the direction of the magnetic field: §=(§,).%*

The energy of the working medium may change either by
population transfer from one level to the other or by chang-
ing the energy gap between the two levels. The former cor-
responds to changing S, while the latter corresponds to
changing . Hence,

dE=S do+o dS. (2.3)

In the case of spin-1/2 systems, a change in S is associated
with ““spin-lattice relaxation,” whereas w can vary by alter-
ing the magnitude of the longitudinal magnetic field. These
two distinct agents for energy exchange with the environ-
ment may now be cast in terms of the thermodynamic heat
and work by identifying Eq. (2.3) with the first law of ther-
modynamics:

dE=D%W'+D({, (2.4)
where D% is the work differential and D¢ is the heat dif-
ferential. Population transfer is the microscopic manifesta-
tion of heat exchange, whereas energy change caused by
varying an external field is associated with work.'>* Hence,

Dw=S dw;, D{ =wdS. (2.5)
Note that our convention is such that D¢ is positive if heat
flows into the working medium and D% is positive if work
is performed on the working medium.

Finally, in the TLS, the internal temperature, 7', is always

defined via the relation

! 4 - (2.6)
S= 5 tan m . .
Equation (2.6) reflects the fact that if the working medium is
coupled with a bath of temperature 7', no heat will flow
between the two systems [cf. Eq. (2.12)]. Note that S is
negative as long as the temperature is kept positive. There is
a similar relation between temperature and population for the
harmonic oscillator [see Eq. (A8)].
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Fig. 1. A schematic view of the cycle of operation (A —+B-—C—D-A) in
the (w,5) plane. The working medium is coupled to a hot bath of tempera-
ture T}, along the branch A— B, and to a cold bath of temperature T, along
the branch C—D. The branches B—C and D—A are adiabatic. The verti-
ces of the cycle are defined by the extreme polarizations S, and S, and
external fields w, and w,. Also indicated are the reversible isotherms at
temperatures T, and T, . The relaxation along the A — B branch drives the
system toward the equilibrium state at point E, and the relaxation along the
C— D branch drives the system toward the equilibrium state at point F. The
points E and F are associated with the polarizations S$ and S which
would be realized in equilibrium with the baths at T, and T, respectively.

B. The cycle of operation

The cycle of operation in the (S, ) plane is schematically
shown in Fig. 1. This is an irreversible four-stroke cycle,
consisting of two “thermal branches” (A—B and C—D),
connected by two adiabats (B—C and D—A). The direction
of motion along the cycle is chosen such that net work is
produced in each cycle. The work and heat transfer along
each branch are given in Table 1. We next consider each of
the four branches in some detail.

On the first (thermal) branch, A — B, the working medium
is coupled to a hot bath of temperature T, while the energy
gap is kept fixed at the value w), . The initial state (A) is not
in thermal equilibrium with the hot bath. Thermal equilib-
rium in this case corresponds to point E, lying on the hot
isotherm, where $=S539 (cf. Fig. 1). This means that the in-
ternal temperature of the working medium along the branch
A—B is always lower than the temperature of the hot bath,
i.e,, T'<T, along this branch. Hence, population transfer is
induced from the lower level to the upper one, thereby di-
minishing the population difference between the two levels
and making S less negative. Allowing this process to con-
tinue for a sufficiently long time would result in thermal
equilibration with the bath. However, in our case the working
medium is coupled to the hot bath for a finite period of time,
7, . Hence, the final state (B) does not correspond to thermal

Table I. Work and heat exchange along the different branches.

Branch ‘Work Heat
A—B 0 Ch=wp(§1—52)>0
B—-C S1(w,—w)>0 0
Cc—D 0 @ = ,(S,—51)<0
D—A S, (w,—w,)<0 0
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equilibrium; namely S, is still more negative than S3? and
the internal temperature of the working medium is still cold
relative to T, . Since w is kept fixed along this branch, no
work is done, and the only form of energy transfer is the heat
w,(S,—S,) absorbed by the working medium from the hot
bath (cf. Table I).

On the second (adiabatic) branch, B— C, the working me-
dium is decoupled from the hot bath and the energy gap is
varied from w, to w, . Adiabaticity dictates that no change in
probabilities should occur, hence S remains constant and
equal to its initial value, S,. The faster this branch is, the
more time we are able to allocate to heat transfer. Except for
the discussion in Sec. III E, we take the adiabatic branches to
be infinitely fast, i.e., of a negligible duration relative to the
thermal branches.!>? Hence, no heat transfer is involved,
and the only form of energy exchange is the work
(w,—wp)S; done on the working medium by the external
field (cf. Table I). For a constant S, Eq. (2.6) shows that the
change in temperature has the same sign as the change in w.
Thus, the internal temperature of the working medium at the
final state (C) is lower than its initial temperature was at
(B).
The third (thermal) branch, C— D, is similar to the first.
The working medium is now coupled to a cold bath of tem-
perature T, and the energy gap is kept fixed at the value w, .
The initial state (C) corresponds to an internal temperature
hotter than T,. Population transfer from the upper to the
lower level is induced, thereby restoring the population dif-
ference between the two levels and making S more negative.
The coupling with the cold bath is maintained until the origi-
nal value of S=S,, is restored. The finite time period asso-
ciated with this branch is denoted 7. The only form of en-
ergy exchange is the heat w,(S,—S;) flowing out of the
working medium and into the cold bath (cf. Table I).

The fourth (adiabatic) branch, D—A, closes the cycle,
and is similar to the second branch. The working medium is
decoupled from the cold bath, and the energy gap is restored
to its original value, w,, whereas the populations in the two
levels remain fixed at S=S,. The time duration of this
branch relative to the thermal branches is neglected as for the
second branch. This branch involves no heat transfer, and the
only form of energy exchange is the work (w,—w,)S, done
by the working medium on the surroundings (cf. Table I).
The internal temperature of the working medium at the final
state (A) is higher than it was at state (D).

The only reversible cycle for an environment containing
only two baths at fixed temperatures is the Carnot cycle,' in
which the adiabats are connected by isotherms rather than by
branches with fixed energy gap w. Hence, the cycle de-
scribed above cannot run reversibly, and the only “reversible
limit” is to spend the entire time 7 at equilibrium with one of
the two heat baths, i.e., to do nothing. The cycle we describe
may be considered to be the TLS analog of the Otto cycle,'®
which is usually discussed in terms of volume work. Recall
that in the Otto cycle, the working medium traverses two
isochores and two adiabats. The external field in our case is
the energy gap (w) rather than the volume. To run the Otto
cycle (or our engine) reversibly, a continuum of heat baths

wmild be required with temperatures that range from T, to
T,.

C. Dynamics of the working medium

The state of the working medium is completely character-
ized by the population difference, S, and the energy gap, w.
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On the adiabatic branch the polarization is constant since
population transfer can only be induced by the bath. Con-
stant population implies constant entropy, and therefore the
adiabatic branches are reversible. For most of the discussion
below, we will assume that it is possible to perform these
adiabatic changes in the energy gap w instantaneously. In
Sec. 111 E, however, we will briefly explore the effect of fi-
nite duration for these branches.

The dynamics along the heat exchange branches needs to
be specified in detail. Recall that along these branches w is
constant. Accordingly, we will focus on the dynamics of §, a
TLS coupled to a heat bath.

We describe the dynamics of the populations at the two
levels, P, and P_, via a master equation

dr =_klP++kTP_’
AP 2.7
—‘F=klP+—kTP_,

where k| and k. are the respective transition rates from the
upper to the lower level and vice versa. As t—, thermal
equilibrium with the bath of temperature T should be ob-
tained, corresponding to a Boltzmann distribution. In this
limit the derivatives in Eq. (2.7) vanish and

klP?=kTPe_q (28)

This is the familiar condition of detailed balance giving

Iﬂ:ew”‘ﬂ, (2.9)

ky
where w cotresponds to the (fixed) energy gap between the
two levels. Using the definition of S [Eq. (2.2)] and conser-
vation of probabilities (P, +P_=1), the equation of motion
for S is obtained from Eq. (2.7) as

ds
—=-T(s-5%),

’r (2.10)
where
and
P 1ki_k1_ 1 0 ) 51
T2k 2™ 2T 212)

The last equality in Eq. (2.12) is obtained by utilizing de-
tailed balance [Eq. (2.9)]. Note that for a spin-1/2 system, T’
is usually denoted by 1/7;, were 7 is the spin-lattice, or
longitudinal, relaxation time constant.??> Similar equations
are found for the harmonic oscillator in the appendix where
S in Eq. (2.10) is replaced by (n) [see Eq. (A7)].

The general solution of Eq. (2.10) is straightforward:

S(£)=8+(S(0)—S*e T, (2.13)

Employing Eq. (2.13) along the hot branch (A — B in Fig. 1)
we obtain
81 =853+ (S, — 5% e Tu, (2.14)

Similarly, employing Eq. (2.13) along the cold branch
(C—D in Fig. 1) we obtain

S2=S;q+(S1~S;q)e—FCTc' (2.15)
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Note that I, and I, are the values of the relaxation rate
constant I' for the hot and cold baths respectively. Also, S
and S5 correspond to different temperatures and energy
gaps:

1 Wy
S8=— — tanh( ), 2.16
! 2 2kgT, (2.16)
s 1t h( Da ) (2.17)
= — — tan . .
2 2 2kpT,

The central quantity of interest for the analyses in this
paper is the polarization difference S, —S, (cf. Sec. III). The
latter can be obtained from Eq. (2.14) and (2.15) as

(1—e Twmy(1—e~Tem)

§1—8,=(51"-53) [ —oTring—Tere (2.18)
Defining new variables:

x=e Fe7e, y=e Tnm, (2.19)
S.—S, may be written as

§1=8,=(S39-55) - F(x.y), (220)
where

F (x,y)= (1+1(xly—_y_) (2.21)

As we shall see, the optimizations discussed in the next sec-
tion reduce to the maximization of F(x,y) with respect to x
and y, subject to the constraint of a given cycle duration.

T=— i In(x) _I‘L In(y). (2.22)
h

I

D. The limit cycle

An interesting feature of this engine is that regardless of
its initial polarization, it will settle to a limit cycle imposed
by the constraints of operation. This limit cycle is identical to
the one described in Sec. II B.

Consider the following parameters as fixed:
T,, T., w;, w,, I'y, T, and also 7,,7.. Let the initial
polarization S (© reside anywhere on the hot branch (w=w,,
cf. Fig. 1). According to Eq. (2.13), the polarization S () after
the contact period 7;, with the hot bath becomes

SW=B+50y, (2.23)

where B=S%(1—y) [the parameters x and y are defined by
Egs. (2.19)]. Adiabatically moving to the cold branch keeps
the polarization constant. The polarization $@ at the end of
the cold branch will then be:

§SP=A+8§Wx=A+Bx+5Oyx, (2.24)

where A =55%1—x). The next step is adiabatic, changing
back to its initial value w, and keeping S @) constant. Note
that S@ does not close the cycle (S@£SO) (see Fig. 2).

By iteration the polarization at the beginning of the hot
branch after n loops becomes:

nfl

S(2n)=S(0)xnyn+(A +Bx)2 xiyi_ (2.25)
i=0

x and y are always smaller than one, cf. (2.19) hence in the
limit n— oo, the first term on the rhs of Eq. (2.25) vanishes,

488 Am. J. Phys., Vol. 64, No. 4, April 1996

®
__________________________________________ T h
_ m S
S(‘)
S - 1 ‘: o h
~~~~~~~~ S(Z)
Te e
S(D)

Fig. 2. The approach to the limit cycle. The operation of the engine is
initiated at the polarization, $'¥. It is then put in contact with the hot bath
for a period 7, leading to S'*). The working medium is adiabatically shifted
to w=w, . It is then put in contact with the cold bath for a period 7, , leading
to §@. The working medium is then adiabatically shifted back to w=wy, .
This procedure is repeated, eventually leading to the limit cycle (heavy line).
For clarity, the thermal branches are successively shifted. In reality, they all
lie on two vertical lines at w, and w,, .

while the second term is an infinite geometric series leading
to

(A+Bx) _S‘l’q(l ~y)x+8S5(1-x)

(2n—oe) _
S 1—xy

1=xy . (2.26)
which is the value of S, for which the cycle is closed as
obtained from Egs. (2.14) and (2.15). Similarly,
§@n+1==)=g  Hence, the cycle of operation described in
Sec. II B is indeed the limit cycle for given 7, and 7.

I11. FINITE TIME THERMODYNAMIC ANALYSIS

A. Constraints, controls, and objective function

An optimization problem is defined by the constraints im-
posed on the system, the adjustable control parameters and
the quantity to be optimized, i.e., the objective function. In
this subsection we define the optimization problem of inter-
est in the present paper.

In the analysis the parameters describing the environment
are kept constant. They include the bath temperatures: 7,
and T,, the two extreme energy gaps: , and w,, and the
coupling mechanism as represented by the relaxation rates:
[, and T',. No attempt at optimization with respect to these
parameters is carried out. This set of variables nicely char-
acterizes the environment of the TLS system and leaves us
with the problem of characterizing the optimal behavior of
the TLS system in this setting. We therefore treat the bath
temperatures, the energy gaps, and the relaxation rates as
fixed.

The TLS is free then to couple to either heat reservoir and
to switch its energy gap at will between w, and w,. We
impose the condition that the TLS undergo a cyclic process
in time 7 with the four branches as described in the previous
section. The only remaining degree of freedom is associated
with the ability to allocate the overall time period of the
cycle, 7, between the hot and cold branches, i.e., to 7, and
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7.. Hence, this time allocation will serve as our control. It
should be noted that to each time allocation there corre-
sponds a different limit cycle. The maximization of the work
output corresponds to finding the limit cycle with the maxi-
mum area.

The objective function considered is the work output per
cycle which is to be maximized (cf. Table I):

Vo= § DT =(@=0)(S1-5)>0. (G
Note that % is defined as a positive quantity when the
working medium performs net work on the external field.
Since w, and w, are fixed, the quantity that we really need to
maximize is the polarization difference S;—S,, given in
terms of our parameters x and y in Eqgs. (2.18) and (2.20).
Since w,, w,, Ty, and T, are fixed, so are S{? and .S5%.
Finally, note that x and y are monotonic functions of 7, and
7, , respectively. Hence, the maximization of the work output
with respect to 7, and 7, is equivalent to the maximization of
F(x,y) with respect to x and y.

It is interesting to consider at this point three other ther-
modynamic quantities: the efficiency, the entropy production
per cycle, and the cycle averaged power. The efficiency

_ T ete g o (32)

Ch wp

only depends on the constraints w, and w, and is therefore
fixed for all time allocations and cycle durations. It must be
smaller than the efficiency obtained from a reversible Carnot
cycle operated between the same two heat baths:
7 camot=1— T /T;,. This demand is equivalent to requiring
that the entropy production per cycle be positive. This in turn
is equivalent to the requirement that S5 < §{.

Minimizing the entropy production (cf. Table 1),

Qh Qc w,; Wy
« u — P —_—— —

AY yae= (Th + Tc) —( T, Th)(Sl S,), (33)
would yield the trivial minimal value of zero when the sys-
tem does nothing, i.e., corresponding to the time allocations
{r.=0, 7,=7}, or {r,=7, 7,=0}. In such a case §;,=5,, and
the cycle shrinks to a line of zero area.

The cycle averaged power output is

_ 7 cycle
T

S (3.4
For the optimization with 7as a constraint, the maximization
of 7'y is equivalent to the maximization of power. For
most of our discussion, we consider cycles with fixed 7. In
Sec. II E, we briefly discuss dropping the constraint of a
given 7.

One interesting and at first surprising feature of our engine
is that since both the work output and the entropy production
are positive constants multiplied by S;—S,, the maximiza-
tion of the former immediately implies the maximization of
the latter. Thus, the objectives of maximum work output and
minimum entropy production seem to be diametrically op-
posed in this example! This is very much in opposition to
statements in Ref. 8 where it is claimed that maximum power
is always equivalent to minimum entropy production.

We are indebted to Raj Pathria for pointing out that our
“surprising feature” is explained by the fact that the effi-
ciency is externally fixed for our problem. In fact it follows
generally from the first half of Eqgs. (3.2) and (3.3) that
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%/cycle
e
Thus, provided 7, T, and T, are kept fixed, A ¢, and

¥’ oyeie 21€ proportional with a positive constant of propor-

tionality; maximizing one means maximizing the other.

AY zy-:le= (7camot™ 1) (3.5)

B. Maximization of work output

We have shown that the maximization of the work output
with respect to the time allocation is equivalent to maximiz-
ing F(x,y) with respect to x and y, subject to the constraint
T T =T

The Lagrangian is therefore

1 1
F(x,y,\)=F(x,y)+\ T+F-ln(x)+r—ln(y) , (3.6)
c h

where \ is a Lagrange multiplier, and 7, and 7, are defined in
terms of x and y respectively. Note that the only parameters
that enter this reduced problem are the relaxation rates, I,
and I, and thus only these parameters can affect the opti-
mal time allocation. Equating the partial derivatives of
Z(x,y,\), with respect to x and y, to zero yields the follow-
ing condition for the optimal time allocation:

| x(l—y)zril"hy(l—x)z. 3.7

Equation (3.7), supplemented by the constraint =7+ 7,
cannot be solved in closed form for the general case. We
therefore proceed by examining certain interesting special
cases and limits of this equation followed by numerical op-
timization of the time allocation in the general case.

C. Special cases and limits

1. Equal relaxation rates

In this case I';=T,=I". Hence, y=exp(—I'r)/x. Imple-
menting this equality into Eq. (3.7) reduces it to

x2= ewrf’ (38)
which implies that the optimal time allocation is

T.=1=1/2. (3.9)

2. Limit of fast relaxation

In this limit T’ 7., ', 7, > 1. It could equivalently be char-
acterized as the long time limit. Equation (3.7) then reduces
to )

I, x=Cy. (3.10)
Utilizing the constraint 7=17 _+ 7, one obtains for the optimal
time allocation:

r r,r
opt + A h
Te r+T, Iyr+in Fh)] T T, (3.11)
rh F T
opt _ O B P

T —I.C+1_,h .+ ln( T )] T+T," (3.12)
The optimal time ratio in this case is given by

o L, |

;'—;,;ﬁ = F_c . (3.13)
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Fig. 3. The polarization difference S, —S, vs the contact time with the cold
branch, 7, , for fixed ', and I, . I'.=1.0, I',=2.0, @, /w,=0.25, T./T,=0.2,
for =05, 1, 2, 5, 10, and 15.

3. Limit of slow relaxation

In this limit I' .7, ',7, < 1. It could equivalently be
characterized as the short time limit. Equation (3.7) then re-
duces to

T,7 ;=T 7. (3.14)
The optimal time allocation therefore becomes:

Tgpt Ty

—T? =Vt (3.15)

It is interesting to compare the optimal time ratios in the
two extreme limits of slow and fast relaxation, Egs. (3.13)
and (3.15). Both depend solely on the ratio I',/T",, with and
without a square root. Hence, as expected, the optimal strat-
egy allocates more time to the slow branch. As I' /T, ap-
proaches unity, the optimal time allocation of both limits
approach one another, as predicted for the case I',=T..

D. The general case

Figure 3 shows the polarization difference §;—S§, as a
function of 7. for different total time durations. The curves
are not symmetric due to the fact that I', is larger than I, . As
T increases beyond the relaxation time constant (1/'.) the
curve’s maximum saturates leading to a tablelike shape. This
corresponds to the long time limit close to equilibrium.
S,—S, vanishes at the extremes since the time spent along
either the hot or the cold branches vanishes there, and the
cycle shrinks to a line. To show the relative effect of time
allocation we show in Fig. 4 §, —S,, normalized with respect
to its maximum value. It is seen that the larger the relaxation
rate along one thermal branch relative to the other, the
smaller the optimal time spent along this branch. This is
reasonable, since more time is allocated this way to the
slower process, thereby allowing it to change S by a similar
amount. When the two rates exactly balance each other, i.e.,
I.=T,, the same time is spent along each of the thermal
branches, as predicted in the previous subsection.

In Fig. 5 the polarization difference S,—S,, normalized
with respect to its maximum value, was plotted against the
time along the cold branch, 7./7, for the case of equal relax-
ation rates I',=I", =T . The different plots correspond to dif-
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(S,-S,) (normalized)

T./1

c

Fig. 4. The normalized polarization difference vs the relative contact time

with the cold bath, 7. /7. All plots correspond to I',=1/7 and various values
of I’ (in units of 1/7).

ferent values of I, measured in units of 1/7. It is seen that the
“sharpness” of the maximum is lost as the relaxation be-
comes faster. This is reasonable since for fast relaxation
(I'r>1) S and §, almost converge to S5 and S5? respec-
tively, unless the allocation is such that 7. or 7, drop below
values on the order of 1/T". Hence, the optimization is espe-

cially important for slow relaxation or, equivalently, for short
cycle duration.

E. Optimization over 7

Finally, we explore the consequences of releasing the con-
straint on the overall cycle duration, 7. Whatever the value of
7, the time allocation for the contact between the two heat
baths should be optimal. After substituting this optimal time
allocation into the work output, one can maximize with re-
spect to 7.%% For the work output such an optimization
yields a trivial result, namely 7 — o°. This is due to the fact
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Fig. 5. The normalized polarization difference vs the relative contact time
with the cold bath, 7./ in the case I'.=I,=I. The plots correspond to
different values of I (in units of 1/7).
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T

Fig. 6. The effect of finite duration on the adiabats on the power. The solid
line corresponds to infinitely fast adiabats where maximum power is ob-
tained when 7 — 0. The dashed line corresponds to a finite duration on the
adiabatic branches showing a maximum in power.

that the longer the duration, the larger the area of the cycle
and thus more work is produced. This is however not the
optimal use of the time as we can see by examining the
power, which is the work output divided by the duration.
Plotting the maximum power as a function of 7 reveals that it
is monotonic decreasing in 7, i.e., it takes on its maximum
value only in the limit as 7— 0! It should be emphasized
that the power is finite in this limit since both work and 7
decay to zero. In this short time limit, the exponents in F can
be expanded and using Eq. (3.15) one obtains:

F r,r,

T (T AT

It follows that the maximum work in a given time 7 is ob-
tained by running many cycles of infinitely small period.
This is the bang-bang solution which gives

(3.16)

1—‘hl—‘c
(VT,+T.)?

We conclude the present line of analysis by noting that if
one drops the assumption that the adiabatic branches can be
achieved instantaneously, the resulting power (while smaller)
is maximum for a finite (i.e., nonzero) 7. This is demon-
strated in Fig. 6.

W™= (w,~ wp) - (S~ 5). 7. (3.17)

IV. DISCUSSION AND CONCLUSIONS

The model analyzed in this paper is probably the simplest
possible example of the optimization of the performance of a
heat engine governed by a master equation. It is meant to
demonstrate how: finite time thermodynamics can be ex-
tended to treat systems which are quite remote from the tra-
ditional thermodynamic agenda, and for which master equa-
tions are most natural. It is conjectured that the results of this
analysis hold generallly for systems whose dynamics obey
canonical invariance.’ Although oversimplified and not di-
rectly related to any specific application, this model, together
with the studies in Refs. 18-21, enabled us to present the
basic conceptual tools for the treatment of more involved
systems. The main advantage of this model over the ones
analyzed in Refs. 18-21 lies in the fact that it does not
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involve relaxation under the influence of a time-dependent
field where the evaluation of thermodynamically consistent
master equations turns out to be quite a delicate task.

The engine analyzed above differs from previous studies
in that the thermal contact to the reservoirs obeys dynamics
given by a Pauli master equation. A nice feature of this en-
gine is that it settles to a limit cycle irrespective of its initial
conditions, which also means that the cycle is stable to any
perturbation. It displays two additional interesting features
not previously reported in finite time thermodynamic analy-
ses. The minimization of entropy production and maximiza-
tion of power always correspond to opposing strategies.>'?
The present model brings this observation to an extreme
since maximizing work is the complete antithesis of mini-
mizing entropy production. The second feature is the fact
that the power is a monotonicaily decreasing function of the
cycle time, thereby maximizing work for a given allocated
time in the limit of infinite cycling frequency.
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APPENDIX A: WORKING MEDIUM CONSISTING
OF HARMONIC OSCILLATORS

Consider a working medium consisting of many noninter-
acting HOs. Energy exchange between the working medium
and the surroundings is then cast in terms of a single HO.
The total energy is obtained by multiplying by the total num-
ber of HOs.

Ignoring zero-point energy, the energy levels, {E,}, of the
HO are given by

n=0,1,2,..., (A1)

where w is the oscillator’s frequency (in units where £=1).
The average energy of the system at any time is given by

E,=no,

<E><t>="§0 P,,(t>E,,=wgo P, (tn=o(n),  (A2)

where P, (¢) is the probability for finding the oscillator in the
nth level at time ¢.

Thus, the energy of the working medium may change by
either changing the frequency, w, or the population, {(n):

d(E)=(n)dw+ wd(n). (A3)

In analogy with the case of the TLS, the first term in the
right-hand side of Eq. (A3) is associated with work and the
second term with heat:

D#'=(n)dw; D{O=wd(n). (A4)
If we only allow transitions such that Arn=*1, the master
equation for the HOs populations reads
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dp,
7=anPn_1+kl(n+l)Pn+1

Montroll and Schuler’ proved that Eq. (A5) retains ca-
nonical invariance. Thus, if the initial distribution is Boltz-
mannian, corresponding to a temperature 7' (0), it retains the
Boltzmannian form throughout the relaxation, with 7’(0)
changing in time until it reaches the bath temperature, 7.
Thus, assuming we start with a Boltzmann distribution, we
may unambiguously associate a unique internal temperature
with the working medium. Detailed balance is obtained by
requiring that

kilk =e“/ksT. (A6)

The differential equation for the first moment, {n), is ob-
tained from Eq. (A5):

d{n)

7 = " T'l(n) = (n)ey, (A7)
where, "=k —k; and
ky 1
<n>°q=k1—kT T el (A8)

Equation (A7) is equivalent to Eq. (2.10), where {n) is
analogous to S. Thus, the rest of the analysis is exactly the
same as in the TLS case.
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