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Abstract

Open quantum systems are characterized by coupling to an external environment.
The dynamics of the system is affected by the coupling, and typically relaxation
and dephasing processes emerge. We adopt a framework of a reduced description,
treating the primary system explicitly and the environment implicitly. The reduced
description of Markovian open quantum systems utilizes the L-GKS quantum master
equation, also known as the Lindblad equation, to describe the dynamics.

The interaction of quantum systems with external driving fields is used in many
areas of physics and chemistry. Two generic examples are spectroscopy, where the
driving field is used to probe the system, and coherent control, which employs an
external field to drive the system to a desirable state.

In this thesis we investigated the influence of the environment on the dynam-
ics of systems under the driving of external fields. In particular, we studied two

phenomena:

e The scaling of weak field phase-only control in Markovian dynamics;

e Exceptional points in the dynamics of Markovian open quantum systems.

Our work on the scaling of weak field phase-only control in Markovian dynamics
stems from the field of molecular spectroscopy, and is a noteworthy example for a
situation where the influence of the environment on the driven-system dynamics can
appear. When a weak radiation field is applied to a molecule, the energy absorbed
from this field interrogates the energy levels of the molecule. The basic assumption
is that there is a direct link between the energy loss from the field and the energy
spectrum of the molecule. This assumption is justified by the time dependent per-
turbation theory for isolated systems, which states that the phase properties of the
weak driving fields do not alter the final state of the system.

A series of experiments and numerical simulations suggested that this assertion
does not hold for open systems. Therefore, the effect of the phase properties of
driving weak fields has to be analyzed within an open system formalism. To cope
with this task, we considered population transfer in open quantum systems described
by the L-GKS equation. We used the second order perturbation theory of this

equation to analyze the dynamics. We showed that the population transfer depends

vil



on a weak external field only through the field’s autocorrelation function which
is phase independent. Therefore, for the leading order in the perturbation, this
dynamics cannot support the dependence of the population transfer on the phase
properties of the weak field. Subsequently, the experiments have to be explained in
an alternative formalism.

The analysis was demonstrated by an example of a weak-field phase-dependent
population transfer. The field is a Gaussian laser pulse with a chirp, meaning that
each spectral component has a different phase. We showed that while the population
transfer scales as the square of the field strength, which is the leading order in the
perturbation, the chirp effect, which expresses the phase-dependence in such cases,

scales as the next order in the perturbation.

Our work on exceptional points of the L-GKS equation requires a mathematical
foundation: The eigenvalues of the L-GKS generator are complex, reflecting uni-
tary as well as dissipative dynamics. For certain values of parameters defining the
generator, non-hermitian degeneracies emerge, known as exceptional points (EP).
At these points the matrix that represents the generator in not diagonalizable. The
resulting dynamics comprises polynomial behaviour. This unique time evolution can
be revealed using harmonic inversion methods, and can be used experimentally to
locate the EP accurately. We suggested to employ this feature to determine the
intrinsic system parameters with high accuracy.

We investigated the EP of an L-GKS generator that is defined by the parameter
space composed from the external field parameters. We found that generally there
are continuous lines of £P in the parameter space, which merge into cusps of higher
order degeneracy. We studied the implications of such points in the open system
dynamics of the Bloch equations and the spontaneous emission of laser-driven atoms.

The Bloch equation is the simplest example for the L-GKS equation, and has
become the template for dissipative quantum dynamics in many area of physics,
from NMR to quantum information and elementary particles. Nevertheless, the
EP of this equation were not studied before. We calculated the EP-curves of this
system, and suggested a procedure to determine accurately the system parameters,
i.e., the system frequency, the dipole moment and the relaxation coefficient.

The spontaneous emission of excited atoms is properly described by the L-GKS
equation. The parameters of such atomic systems are determined by fundamental
physical constants, therefore an accurate parameter estimation is advocated. The
decoherence associated with the spontaneous emission limits the performance of
common measurement techniques. The method of parameter estimation using EP
turns the disadvantage of the dissipation into an advantage. We demonstrated the

method for the atomic spectrum of S — P transitions of ®Rb and “°Cat.
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Preface

Quantum mechanics of isolated systems is a well-established and thoroughly-studied
theory. The predictions of the theory were verified by experiments to a very high
accuracy.

In practice, any quantum system is coupled to external environments. The cou-
pling of the system to the environments induces essential changes to the nature of
the dynamics. Typically, the coupling causes relaxation and dephasing. Many as-
pects of the dynamics of open quantum systems were studied. However, other effects
of the environment on the dynamics of such systems still have to be unravelled.

This work is devoted to the investigation of Markovian open quantum systems
that interact with external fields. The interaction of electromagnetic fields with
matter, especially with atoms and molecules, is ubiquitous in physics and chemistry.

For example:

e In many types of measurements the measured system is driven with external
fields and the effects are probed. For example, spectroscopy is based on using
a weak probe to unravel pure molecular properties. Specifically, absorption

spectroscopy measures the energy absorption from the field.

e In coherent control the goal is to drive a quantum system to a desired state
by an external field. In particular, coherent control was suggested to con-
trol population transfer in molecular electronic surfaces and chemical reaction

channels.

e Light-matter interaction is ubiquitous in natural phenomena. For example,
the terrestrial solar spectrum, which has central significance in solar energy
applications, is a result of the interaction of the radiation from the sun with

the molecules in the atmosphere .

We studied the effects of the environment of the dynamics of such systems. To
present coherently the thesis outline, a concise theoretical background is needed. In
the following we describe the theoretical framework for this study. Subsequently we

present the research subjects and thesis outline.






Chapter 1

Theoretical background:
The dynamics of open quantum

systems

Built into the dynamics of isolated quantum systems is time reversal, meaning that
any time-evolution from an initial state to a final state, can be reverted to the initial
state. In quantum mechanics this property is reflected mathematically by employing
unitary operators for the description of the evolution. The operator norm of unitary
operators is 1. A unitary operator U can be expressed as an exponential of an

anti-hermitian operator iH¢ (where H is a hermitian operator and we use i = 1):
U =™, (1.1)

The eigenvalues of an anti-hermitian operator are always purely imaginary, and
therefore the eigenvalues of the unitary operator are of magnitude 1, located on the
unit circle of the complex plane.

A Markovian open quantum system interacts with its environment in a non-
reversible way. The systems loses information into the environment. This results in a
contraction of the available space of states. The evolution is described by contracting
operators instead of unitary operators. The norm of a contracting operator is less
than 1, and it is expressed as an exponential of a generating operator which is
neither hermitian nor anti hermitian. The eigenvalues of this generating operator
are complex, with negative real part, and therefore the magnitude of the eigenvalues
of the evolution operator is less than 1.

In this work we studied effects of the environment on the dynamics of a driven
Markovian open quantum system. Below, we briefly present the necessary theoret-
ical background for such studies. A thorough presentation can be found in many
sources, e.g., Refs. [Breuer 2002, Alicki 2002, Alicki 2007, Nielsen 2011].

3



4 Chapter 1. Theoretical background

1.1 Isolated quantum systems

Any real quantum system is coupled and interacts with some environments. Never-
theless, the concept of isolated quantum systems is of great benefit. The dynamics
of isolated quantum systems can be described by the unitary dynamics of wave
functions, density operators, and expectation values of observable operators. These

methods are outlined below.

1.1.1 Wave function description

Wave functions and the Hilbert space. The state of isolated quantum systems
is usually described by a wave function |¢)). The wave function is an element in a
Hilbert space that includes the possible states of the system. The scalar product in

this Hilbert space is expressed using Dirac’s bra—ket notation:

(1), 1)) = 6 ) (1:2)

The squared absolute value of the wave function serves as the population probability,

therefore the norm satisfies:

(W] P)* =1. (1.3)

The description of quantum systems using wave functions in a Hilbert space
employs the linear operators that operate on elements in this space. The hermitian

adjoint of an operator M, denoted M, is the operator that satisfies
- o
(o|¥1y) = (¥r'g|v) (14)

for any two wave functions |¢) and [¢)). A hermitian operator is an operator that

equals to its adjoint, GT =0.

Dynamics. The dynamics of the wave function is generated by the hermitian

Hamiltonian operator Hg and governed by the Schrodinger equation:

9 Jott)) = — L fu(e). (15

(in the following we use i = 1). Starting from an initial state [¢(¢y)), the resulting

evolution for time-independent Hamiltonian is:

(1)) = e Bst=00) | (2y)) . (1.6)

The dynamics preserves the norm, meaning that the population is conserved.
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The evolution can also be described by the propagator Ij(t,to), which is the

operator that propagates the state from time ¢y to time t:

[9()) = Ut to) [ (to)) - (1.7)

The differential equation for the propagator is:

0 ~ BENEEN
aU(t, to) = —leU(t, to), (18)
with the condition Ij(t, t) = 1 for any time ¢, where 1 is the identity operator. The

resulting evolution with a time-independent Hamiltonian is:
U(t, ty) = e Hsli=to), (1.9)

The dynamics of the wave function, Eq. (1.6), is reproduced with the evolution of
the propagator (Eq. (1.9)), along with Eq. (1.7).

Since the Hamiltonian Hg is hermitian, the evolution is an exponential of an
anti hermitian operator, and therefore it is unitary. The immediate consequence is

that the hermitian conjugate is equal to the inverse:
' (1, 1) = 510 — T (1, 4). (1.10)

Inverting the propagator is equivalent to propagating the system inversely from time
t to time ty. The unitary evolution reflects the reversibility of the dynamics.

The time evolution forms a one-parameter family of maps. This map is closed,
associative, includes the identity operator ﬁ(t,t) = i, and includes the inverse of

any element of it as shown above. Therefore this family of maps forms a group.

1.1.2 Density operator description

Density operators. To pave the way to a more general description, and to enable
the description of open quantum systems, we describe the state of a quantum system
by the density operator p. The counterpart of the isolated-system wave function

|1) is the pure-state density operator, composed from a single wave function:

Ppure = ) (Y] (1.11)

A more general density operator mixes a number of states:

ﬁmixed - Zai |¢z> <1/)7/| ) Zai - 17 a; Z 0 (]_]_2)

A 7
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The population probability is expressed by the diagonal of the density operator, and
therefore the counterpart of Eq. (1.3) is:

T {p} =1, (1.13)

where the trace of a matrix (denoted as Tr{-}) is the sum of its diagonal elements.
In addition to this constraint, a general density operator has to be hermitian and
positive semi-definite.

The mixed states cannot be represented by the wave function formalism. We

measure the mixing of the density operator by the purity, defined as:
P="Tr{p*}, (1.14)

The purity alway fulfills P < 1, where for a pure state we have P = 1, while for a
mixed state P < 1. In both cases, the total population is 1.

Liouville space. The density operator is an element in the Liouville space of
operators (this space is also known as the Hilbert-Schmidt space). The Liouville

space is a Hilbert space, with the scalar product defined as
(Xth) =Tr {XlTXZ} . (115)

It is useful to choose the Identity operator and a set of traceless operators as the
basis to the Liouville space.

Linear operators that operate on elements in the Liouville space of operators
are usually referred to as super-operators. Hilbert space definitions and conventions
apply also to the Liouville space. In particular, the adjoint of a super-operator M,

denoted as M, is the super-operator that satisfies
(A,MB) - (MTA,B) , (1.16)
for any two operators A and B in the Liouville space.

Dynamics. The dynamics of the density operator of an isolated system is gener-

ated by the von-Neumann equation:

0

aﬁ:—ﬂﬂﬁy (1.17)

where [ﬂ, [)} denotes the commutator of the Hamiltonian H with the density op-

erator p. We look at the commutator with the Hamiltonian as a super-operator,



1.1. Isolated quantum systems 7

denoted by [ﬂ, } This super-operator is hermitian, as can be derived using the
definitions Eqgs. (1.16) and (1.15):

(A [’ ]B) = (A, [T,BD —(|mA].B) s

and therefore ;
([H ]) - [H} (1.19)
The resulting evolution is expressed using the exponential of this super-operator:

p(t) = e IBI0=0) 5(10), (1.20)

The evolution can be encapsulated in the propagator, which is the super-operator

that propagates the density operator:
U(t, to) = e [A]t0) (1.21)

The propagator is unitary since the commutator is hermitian. Under unitary evo-
lution the purity is conserved. In particular, for a density operator that originated
from a pure wave function as in Eq. (1.11), the dynamics will be the same as of Eq.
(1.6):

Prure() = e A5 (1)

= e TN i t) ) (9 (to)|

R (1)) (k)|
= [o(2) ) (o (D)l

Conceptually, the dynamics of a mixed-state density operator can be decomposed

(1.22)

to the dynamics of the mixing wave functions. In a similar manner to Eq. (1.22),
the dynamics can be shown to be equivalent to the dynamics generated by the

Schrodinger equation, Eq. (1.5).

1.1.3 Observables

Quantum mechanics associates measured quantities to observable operators. The
expectation value of such an observable expresses its associated measured quantity.

For a pure state |1)(t)), the expectation value of an observable O is defined using
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the wave function [¢(t)), or the appropriate density operator p(t) = |1(t)) (¢ (1)]:

(1.23)

The hermitian conjugation was omitted since the observables are hermitian opera-
tors. The definition (O(t)) = Tr{O p(t)} holds also for mixed-state density opera-
tors. We use the propagator and its adjoint to assign the dynamics of the expectation

value to the operator:

(O,ﬁ(t)) - (O,L{(t,to) ﬁ(to)) - (L{T(t,tg)o,ﬁ(to)) = <O(t),ﬁ) L (124)

The differential equation that generates this dynamics is the Heisenberg equation:
06 i [H ()] (1.25)
—0 =1 :
ot Tl

which is the hermitian adjoint of the von-Neumann equation, Eq. (1.17).

1.2 Driven quantum system

In many instances we are interested in the dynamics that result from the driving of
an external field. Examples for such driving are: Absorption spectroscopy, which
measures the energy absorption from the driving field [Tannor 2007, Chapter 14];
Coherent control of population transfer in molecular electronic surfaces and of chem-
ical reaction channels [Tannor 2007, Chapter 16], [Shapiro 2003, Rice 2000]; the in-
teraction of the radiation from the sun with the atmosphere molecules [Bird 1984,
Bird 1983, Riordan 1986]. The driving of the external fields is described by addi-

tional terms in the Hamiltonian:

H(t) = Ho + H(t) = Hp + Z Fe®) Vi, (1.26)

where V. are operators that operate on the Hilbert space, and fi.(t) are time-
dependent coefficients. For time-dependent Hamiltonians the propagator involves

the time-ordering operator 7T:

Ut to) = T exp {—i /t:ﬂ(ﬂ dT} | (1.27)
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instead of Eq. (1.6). A similar expression will replace the evolution of the density
operator, Eq. (1.20). Nevertheless, the evolution is still unitary, reflecting the

reversibility of the dynamics under the proper time-reversal of the external fields.

The dynamics of Eq. (1.27) can be expressed explicitly using the Dyson series
or the Magnus expansion [Blanes 2009]. However, in this thesis we limited the
evolution to simple scenarios, namely low order time dependent perturbation theory
(based on the Dyson series), and the rotating wave Hamiltonian. These frameworks

are described below.

1.2.1 Time dependent perturbation theory

Dyson series. The time dependent perturbation theory (TDPT) is based on ex-

pressing the propagator as a composition of two operators:
U(t, to) = Uo(t, to)Us(t, to), (1.28)

where ﬂo(t,to) = exp{—iﬂo(t — to)} is the propagator generated by the time in-
dependent part of the Hamiltonian, and ﬂl(t,to) is generated by the interaction
Hamiltonian,

(1) = Uy (¢, t0)EL ()Tt to). (1.29)

The Dyson equation is an integral equation reflecting the Schrodinger equation:

t

U[(If,to) = j_ +/ dr HI(T)U[(’T, to). (130)
to

A recursive substitution of Uj(t,ty) in this equation leads to the infinite Dyson

series. If the interaction Hamiltonian is small, the series can be truncated to give:

A A

t t T1

U](t,to) = 1+/ dT1 H[(Tl)—l—/ dTl / dTQH[(Tl)HI(TQ)+"' . (131)
to to to

A similar practice holds for the approximation of the propagator of the von-Neumann

equation.

Expectation values. When we describe the evolution of expectation values it is
important to keep track of the relevant orders of the small parameter. Suppose the
small parameter is A. The second-order approximation for the wave function can be

expressed as:

(1)) & [tho(t)) + Aihr (1)) + A [eha(t)) - (1.32)
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The resulting second-order approximation for the expectation value of the operator

o (0) ~ < (1) [0 <>>
<<¢ > " C’C) (1.33)
(10 0] o)
p <<¢2 ‘O‘wo (1) >+c.c> .

We see that the first-order wave function yields also second-order terms for the

expectation value. But to obtain the full second-order term we need also |1)9(t)) (if
<1p2(t) ‘0‘ %(t)> # 0), therefore the second order TDPT is required. If we use the
TDPT for density operator instead, we have

Pt) = Po(t) + Apy (1) + APy (t), (1.34)

and the expansion of the expectation value follows order by order with the density

operator expansion:
Tr {() ﬁ(t)} ~ Tr {(’) ﬁo(t)} AT {C) ﬁl(t)} 2Ty {O ﬁQ(t)} L (1.3)

There are situations where <¢2(t) ‘O’ 1/10(t)> = 0, e.g., when the observable
measures population transfer that is induced only by the time dependent part of the
Hamiltonian, i.e., H #(t), and is not allowed by H,. On such cases only first-order
TDPT is needed for the wave function description, but the equivalent description

using the density operator will require the second order approximation.

1.2.2 Rotating frame

Many systems in atomic and molecular physics may be separated into two subsys-
tems. These two manifolds have an energy difference AFE, and are coupled through
an external field. For example, a molecule with two electronic surfaces can be subject

to a laser that excites the molecule to the excited surface.

Suppose that the separated subsystems are described by the Hamiltonians H,
and I:IQ. The total free-field Hamiltonian is:

. a
s (1.36)
0 H

These subsystems are coupled by a time-dependent laser field f(t). The field
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operator is described by

o (0 A
Hf(t>_(mf(t)* A > (1.37)

where the operation of the field operator is represented by the linear operator ji.
The total Hamiltonian is H = Hy + H ¥
If the field is composed from an envelope f (t) and oscillations with the carrier

frequency wy,
f(t) = ft)er, (1.38)

we can use the rotating frame for a more convenient representation of the problem.

We define the rotation operator

. . A 10
R(1) = exp {—i%LSZt}, S, = ( ) . (1.39)

0 -1
The rotation operator is used to rotate the wave function
(1)) = R(1) [0(0). (1.40)

The Schrédinger equation for the rotated wave function employs the rotating frame

Hamiltonian, Hyp,

O |~ R -
=) = —ifLee |0(0)) (1.41)
with
A~ A~ A A Wi, a ﬂg — lw 0 f
113

The rotating wave Hamiltonian eliminates the rapid oscillation of the field. It

also reduces the energy difference between the subsystems to d = AF — wy.

1.3 Open quantum systems: Reduced description

The concept of isolated quantum systems is a useful idealization. However, real
systems are coupled to the surroundings. A generic model starts with describing the
system under study as a part of a composition of the system and the environment.

The Hamiltonian of such a construction is

Here, the operators H and I denote the Hamiltonians and the Identity operator,

respectively, and the subscripts S and F represent the system and the environment,
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respectively. The operator V_p is the interaction between the system and the
environment.

A full description has to account for all the degrees of freedom of the system
and the environment. However, only the system degrees of freedom are of interest.
Therefore, we attempt to describe only the system explicitly, and to integrate out the
environment degrees of freedom, so they will affect the description only implicitly.
The goal is to reduce the description to a small number of variables and obtain a
practical way to treat the system. Such a description is called a reduced description.

There are several ways to derive the reduced description of the dynamics. They

all involve partial tracing on the environmental degrees of freedom:

ps = Trp{p}, (1.44)

but can use different approximations. The resulting dynamics has to conserve the

properties of the density operator:

1. Tr{ps(t)} = 1.

2. ps(t) is positive semi definite.
3. ps(t) is hermitian.

The dynamics is not limited to hermitian generators and generally it is not unitary.
This reflects the non uniform character of the dynamics, caused by the flow of
information from the system to the environment and back. An immediate result of
the non unitary dynamics is that the purity is not conserved with such dynamics

and it can increase or decrease during the evolution.

1.3.1 The Kraus map

A very general description of the time evolution is the Kraus map [Kraus 1971,
Kraus 1983, Alicki 2007]. This map requires that the dynamics will be linear and
trace preserving. Additionally, the density operator of the entire composition of the

system and the environment should be initially a separable state:

p(0) = ps(0) @ pr(0), (1.45)

where pg and pg are the density operators of the system and the environment,
respectively. Under such conditions, the system dynamics can be represented in the

Kraus form:
ps(t) = @ [ps(0)] = Z Kips(0)K!. (1.46)
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The operators {Kl} are the Kraus operators, which should satisfy the condition:

Y KK =1 (1.47)

Every map that can be represented in the Kraus form is a completely positive
map [Alicki 2001]. The time evolution of the quantum system is required to be
completely positive. The complete positivity requirement is a strengthening of the
positivity property: The tensor product of two completely positive maps is always
completely positive. This is contrary to positive maps, since the tensor product of
two positive maps may be non positive. The complete positivity of the dynamics

ensures that the density operator preserves its properties.

1.3.2 Markovian dynamics

For Markovian dynamics further simplifications can be applied. The physical inter-
pretation of the Markovian assumption is that the dynamics of the environment is
much quicker than that of the system. Therefore, any information that transfers
from the system to the environment is lost, leading to a "no-memory” effect. Davies
rigorously derived the weak coupling limit, resulting in a quantum Master equation
which leads to a completely positive dynamical semigroup with negligible memory
effects [Davies 1974]. The term semigroup implies that the time evolution forms a
family of maps which does not form a full group. It lacks the negative range of the
parameter ¢, which implies that the inverse property required from a group is miss-
ing. Physically, this property is the manifestation of irreversible dynamics which
allows us to distinguish the future from the past. To summarize, the quantum dy-
namical semigroup is a continuous one parameter family of maps {A;, ¢ > 0}, that
satisfies [Alicki 2001]:

1. A; is complete positive.

2. A; is trace preserving.

3. Ays = NNy t,s > 0, semigroup Markov property.
4. A, is strongly continuous.

The total density operator in such dynamics remains a tensor product at all times:

p(t) = ps(t) @ pe(t). (1.48)
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1.3.3 The L-GKS equation

Based on a mathematical construction, Lindblad, as well as Gorini, Kossakowski
and Sudarshan, (L-GKS) obtained the most general structure of the generator £
of a completely positive dynamical semigroup [Lindblad 1976, Gorini 1976]. The

equation of motion is the L-GKS equation, known also as the Lindblad equation:

fivs=Llos) = —i[fps| + Xov (AipsAl - 1 {AlRips}).

(1.49)
Lu(ps) + Lp(ps)

with {A;} a set of orthonormal traceless operators, and {B, C} is the anti com-
mutator of the operators B and C. The super-operator £ is the L-GKS generator,
known also as the Lindbladian. £x and L are the Hamiltonian and the dissipative
parts of the Lindbladian, respectively.

In the absence of the dissipator Lp, the equation resembles the von-Neumann
equation, and generates unitary evolution. Under the presence of dissipator Lp
the evolution is not unitary. Using the definition of an adjoint super-operator, the

adjoint of the dissipator Lp can be shown to have the form:

X =31, (AjXAi e x}) | (1.50)
The dissipator is neither hermitian nor anti-hermitian. Therefore the purity is not
conserved in such dynamics. The purity change is only due to the dissipator Lp.
Therefore, if an external field acts only on the system, the purity cannot be altered
by the field. This leads to 'contraction’ of the reachable space under the driving of
external fields [Altafini 2004].

For a time-independent L-GKS generator, the evolution is given formally by:

ps(t) = eﬁtﬁs(o)' (1.51)

When the open system interacts with external fields, the dissipator may have to be
modified. For example, in a strong periodic driving, one has to use Floquet analysis
to derive the quantum master equation [Alicki 2006, Levy 2012]. Another regime is
the adiabatic limit, where the Hamiltonian can be instantaneously diagonalized and
the master equation is derived accordingly [Geva 1994]. However, if the fields are
weak the dissipator can be described as field-independent. The dynamics for such
a time-dependent L-GKS equation will involve the time ordering operator 7, as in
Eq. (1.27).



Outline

The distinct nature of Markovian open quantum systems is peculiar and fascinating.
The goal of this work is to unravel a few aspects of the emerging dynamics. We
investigated the effect of the environment on the dynamics of the system under the

influence of external driving fields.

e Chapter 2, Numerical methods for the analysis of the L-GKS dynamics, dis-
cusses the numerical methods we used at this work. The particular properties
of the Markovian dynamics require employing different numerical tools for the

analysis of the L-GKS equation.

e Chapter 3, Population transfer induced by weak fields, studies the weak-field
phase-only control of open quantum systems. We employed the time depen-
dent perturbation theory of the L-GKS equation to investigate laser-driven
population transfer in molecules. We compared the effect of the phase of the
weak driving field on the open and isolated system dynamics, and examined

the consequences of the coupling of the system to the environment.

e Chapter 4, Exceptional points in the dynamics of Markovian open quantum
systems, studies exceptional points of the L-GKS equation.
Non-hermitian degeneracies are known as exceptional points. They gives rise
to a subtle unique time evolution, which can be revealed using harmonic inver-
sion methods. We studied the implications of such points in the open system

dynamics of two system classes:

— The two-level system described by the Bloch equations. We calculated
the map of exceptional points for this system, and suggested to employ

the exceptional points for the estimation of the system parameters.

— The spontaneous emission of atomic systems. The additional complexity
of these systems leads to a more complex map of exceptional points. We
calculated the map of exceptional points and suggested to employ them

for accurate parameter estimation.

e Chapter 5, Conclusions and outlook, discusses the thesis and presents conclud-

ing remarks.
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Chapter 2

Numerical methods for the

analysis of the L-GKS dynamics

2.1 Introduction

The coupling of a quantum system to the external environment incorporates relax-
ation and dephasing processes into the dynamics. The L-GKS equation describes
the dynamics of such Markovian open quantum systems [Breuer 2002, Alicki 2007].
There is an essential difference between the characteristics of the dynamics of open
and isolated systems. This difference is manifested in the properties of the generat-
ing equations. Therefore, the numerical tools needed for the analysis of the L-GKS

dynamics are different from the common tools used in quantum mechanics.

The L-GKS equation, Eq. (1.49), is a first order linear differential equation,
described by the operation of the super-operator £ on the density operator p:

ap
“P _ rs 2.1
o p (2.1)

When the super-operator £ is time independent, the formal solution is:

p(t) = e“p(0). (2.2)

Typically, the resulting dynamics of the system observables (expectation values and
other correlation functions) C(¢) will have the analytical form of sum of decaying

oscillations?:

Ct) =Y dye, (2.3)

fThere are special cases where the super-operator is not diagonalizable. In such cases, known as
exceptional points, the exponential e* is multiplied by a polynomial of t. A study of exceptional
points in L-GKS systems can be found in Chapter 4 of this thesis.
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where )\, are the exponential coefficients and d,,, are the associated amplitudes, both
can be complex. We may divide ), into its real and imaginary parts, A, = —a,, +
iwm, with a,, > 0 € R as the decay rates and w,, € R as the oscillation frequencies.
The coefficients A, are the eigenvalues of the super-operator £, obtained by the
eigenvalue equation:

L& = Ao (2.4)

These eigenvalues can be used for the analysis of the L-GKS dynamics.
Below we describe the numerical tools we used for the analysis of the L-GKS

dynamics. The main numerical methods we used in this work are:
e Numerical simulations of the dynamics generated by the L-GKS equation.
e Characterizing the L-GKS generator by means of its eigenvalues.
e Analysis of the generated dynamics.

Section 2.2 describes the formulation of the L-GKS equation as a matrix-vector
equation. Such a formulation eases the use of common numerical methods for sim-
ulations of the dynamics and eigenvalue calculations. Section 2.3 describes the

harmonic inversion method we used for analysis of the dynamics.

2.2 Matrix-vector representations

As noted above, the dynamics can be investigated by exponentiation of the super-
operator £, Eq. (2.2), or by its eigenvalues, Eq. (2.4). The exponential and the
eigenvalue problem of the (linear) super-operator £ are well defined. However, the
standard formulation of the L-GKS equation defines the operation of the L-GKS
generator as sum of left and right matrix multiplications with the density operator.
This formulation challenges the use of common numerical techniques for the expo-
nentiation and for the eigenvalues calculation. Calculations of the exponentiation
and the eigenvalue equation of linear operators can be done by common numerical
techniques if the linear operator is represented by a matrix. Therefore, it is advan-
tageous to represent the L-GKS equation, Eq. (2.1), as a matrix-vector differential
equation. This means that we are looking for a matrix L and a vector 75 such that

the dynamics are expressed as
d

EFS = Lrj. (2.5)
In this representation, the vector 7 represents the state of the system, or some
information about it, e.g. a set of expectation values.

Suppose the density operator p is an n x n matrix (if g is a function of continuous

variables, e.g. p(r,r’), these variables have to be discretized). The set of all n x n
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density operators forms a Liouville space of dimension n2. In this Liouville space,

2 vector. Similarly, we consider the super-

we consider the density operator p as an n
operator £, which is an operator operating on elements in this linear space, as an
n? x n? matrix.

The above observation is the first step towards the representation we seek. In
the following, we describe three approaches that use this concept to introduce such

a representation:

1. Vec-ing the density operator is the most natural way to construct an n? vector

for the density operator, and a suitable n? x n? matrix for the super-operator.

2. The Arnoldi method approximates a large matrix in smaller dimensions, en-

abling simpler numerical calculations.

3. With the Heisenberg picture of the L-GKS equation we can search for a rep-

resentation with a dimension smaller than n?.

These three approaches are described below.

2.2.1 Vec-ing the density operator

In this method, known as vec-ing [Machnes 2014, Roger 1994, Chapter 4], the n x n

2 vector 7 . This flattening is done by

density operator p is flattened into an n
ordering the columns of p one below the other, so the (a,b) entry of the matrix
p is the (b—1)n+ a entry of the vector 7. This is equivalent to choosing the
representation basis as the set of matrices with all-zero entries, except one.

The next task is to find the suitable matrix that will represent the operation of
the super-operator £ on the density operator. We make the following observations

[Machnes 2014, Roger 1994]:

1. A left multiplication of the matrix p by an nxn matrix A, i.e. Ap, is equivalent
to an operation on the vector 7 by the n? x n? matrix I ® A, where I is the

n X n identity matrix, and ® is the Kronecker direct product.

2. Similarly, a right multiplication of the matrix p by an n x n matrix B, i.e. pB,
is equivalent to an operation on the vector 7 by the n? x n? matrix BT ® I.

Here T denotes the transpose of the matrix.

3. Finally, a combination of left and right matrices multiplication, ApB, is equiv-

alent to an operation on the vector 7 by the n? x n? matrix BT @ A.

The L-GKS super-operator is a sum of such right and left multiplications. Therefore,

the construction of the n? x n? matrix representation for the L-GKS generator has
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the parts as follows. For the commutator:
A A AT .
5| = (TeA-A" &I)7

For the dissipative part:

A oaxt AT ) -
ApAl - (Ai DA, )7
AlAp - (1eAlA)r

~ita Ata T .

Then we write

and represent Eq. (2.1) as

as desired.
The mapping of the density operator into a density vector yields in a dramatic
increment in the dimension of the problem, which becomes n? instead of n . This

yields unfavorable scaling of the desired computations with n:

e Figenvalue approach. Computation of the complete eigenvalue spectrum of L
is performed via the diagonalization of L. Diagonalization of a matrix scales

as the cube of its dimension. Hence, the diagonalization of L scales as n°.

e Frponentiation methods. The exponentiation of the matrix for time propaga-

Lt

tion, e”*, can be computed via various ways [Moler 2003]. Remarkably, two

branches are of interest:
1. Directly employing the diagonalization of L.
2. Numerical approximations, which usually involve matrix-matrix multipli-

cations.

Both diagonalization and matrix-matrix multiplications scale as the cube of
the matrix dimension. Therefore, the overall scaling of the exponentiation is

also nS.

iThe density operator p is hermitian. Therefore there are only n(n + 1)/2 unique entries and
not n2. This fact can be used to reduce the size of the vectors and matrices, known as a half-
vectorization [Abadir 2005, Chapter 11]. However, we will not discuss this here.
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The calculation cost of the operation of the exponential e** on an initial vector
7y, i.e. e, can be reduced by employing matrix-vector multiplications, and
therefore scales as n* [Al-Mohy 2011].

For systems larger than a few degrees of freedom, such computations are expensive,
and become practically impossible for systems larger than a few hundreds DOF.
The scaling problem suggests that we have to look for approaches that use a
smaller number of dimensions. The following two approaches address this issue.
The Arnoldi method uses a small-dimension approximation of a large matrix. The
operator representation seeks for a small subset of variables that are sufficient to
describe the quantities of interest. These two approaches are described in the next

two sections.

2.2.2 Arnoldi method

The Arnoldi method is a method to approximate a large matrix A in a smaller
dimension [Trefethen 1997]. This is done by choosing an appropriate set of a small
number of vectors, which should be representative of the relevant subspace for a
specific problem. Then the desired matrix is represented in the reduced subspace
which is spanned by the chosen vectors. The method starts with an initial vector
and creates set of K + 1 vectors by the repetitive operation of the matrix A: {¥, Av,
A%, ..., A%}, Then an orthonormal set is generated from this set by the Gram-
Schmidt process. This orthonormal vectors set spans a subspace with dimension
K + 1, and the matrix A is represented in this subspace by a (K + 1) x (K + 1)
matrix. This smaller matrix can be used for the efficient evaluation of functions of
the matrix A, e.g. the exponential [Saad 1992] or the eigenvalues [Arnoldi 1951].
In our case we try to approximate the linear super-operator £ by a matrix which

2 x n?. Conceptually, we start with the initial density operator

is smaller than n
Po = P.(0), and operate K times with £ to get the set {py, Lpg, L2 Py, - - -, LE po}
which is the starting point for orthogonalization and (K + 1) x (K + 1)-dimension
matrix representation of £. We note that the operation of £ involves n x n matrix-
matrix multiplications, which scales as n3. Therefore, it is more efficient to use
the operation of L for the procedure than to use the vec-ing matrix L (Eq. (2.6))
described in Sec. 2.2.1 above.

The actual procedure follows, adapted to the notation of a super-operator and

density operators:
1. Begin with the normalized density operator p,.

2. forj=0to K
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(a) Compute a non-orthonormalized new density operator by setting: g, :=
Lp,
(b) fori=0to j
i Set: Li; = (ﬁ},ﬁjH) - Tr{,ajij}
ii. Subtract the projection on p;: p;,1 := p; 1 — Lijp;

end for

(© Sets Lyosy = o]l = T {21

Pjit1
Ljt1,j

(d) Normalize p; ., by setting p,,, 1=

end for

The procedure yields
L, =Tt {ﬁjﬁﬁj} i<j+1

For ¢ > j 4 1, the expression in the right-hand side vanishes. Thus, we can define a
(K 4+ 1) x (K 4 1) matrix which its general element is given by a matrix element of
L in the Liouville space:
Lij=Tr {ﬁiﬁﬁj}

(Note that the procedure also yields pg_; and Lxi1,x which are not necessary for
our purposes). L represents the operation of the super-operator £ on the subspace
that is spanned by the density operators {py, 1, Pas---, P} The matrix L is
referred to as the Hessenberg matrixz of L. The density operator has to be approxi-
mated by its projection on the subspace: p = ropy+rip; + 1205+ ... +7rxPr. The
vector

FE (7107T17T27"'7TK)T (27)

is the representation of the density operator in this subspace. The dynamics of the
vector 7 is generated by the matrix L that was constructed in step (2) of the above
procedure:

d

Exponentiation and eigenvalue calculations of the matrix L can be done by common
numerical techniques [Arnoldi 1951, Saad 1992].

The Arnoldi algorithm usually becomes problematic when a large dimension
approximation is required, i.e. when K is large. In such a case, a restarted Arnoldi
algorithm should be used instead (see, for example, [Tal-Ezer 2007]). This topic is
beyond the scope of this thesis.
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2.2.3 The Heisenberg representation

Not always the full state of the system will be of concern. In most cases we will be
interested only in the expectation values of some measured quantities. This fact can
reduce significantly the dimensions of the problem. For example, in the standard
thermalizing master equation the population and the coherences are decoupled, and
the population of a certain level is given by solving a single differential equation
[Breuer 2002]. The full state of the system can be reconstructed by calculating all the
expectation values of the Lie algebra of the system. Generally, a full reconstruction
of the state will scale as the Vec-ing of the density operator introduced in Sec. 2.2.1.
Nevertheless, in many cases we can use symmetries to reduce the dimensions of the
problem. For example, if the initial state of harmonic oscillator is a Gaussian state,
then it will stay Gaussian along the dynamics and only the first two moments are
necessary to retrieve the full state [Rezek 2006]. Another example is coupled two
qubits in which the full dimension of the system is 16, but only 3 operators are

sufficient to define the energy and coherence of the system [Kosloff 2002].

To describe the dynamics of the expectation values, it is common to use the
master equation in the Heisenberg representation. The operator X belonging to
dual Hilbert space of the system follows the dynamics [Alicki 2001, Breuer 2002]:

X(t) = e£"'X(0), (2.8)
which in its differential form is written explicitly as

d ¢ N B PN itor Latr <
%= TXE—[HX] (Al i——{A i } . .
oX=r - [H, +Zi:fy (AZXA S 1AALX (2.9)
If there is a a set of operators {X;}M,, M < n?, that forms a closed set under

the operation of £', meaning
M
LXK, =D 1yX; (2.10)
j=1

then we can write a closed linear system of coupled differential equations. The
expectation values x;, = <Xk> will have the corresponding set of coupled differential
equations. The analytical form of their dynamics will follow the form of Eq. (2.3).
We define the vector of expectation values R= (21, 29,...)T. This system can be

represented in a matrix-vector notation,

d — —
—R=L'R
dt ’
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where the matrix LT is defined by the equation set Eq. (2.10), (LT)kj = li;. The
dimension of this matrix is M?2. Note that eigenvalues of the matrix L' are complex

conjugates of a subset of the eigenvalues of the super-operator £ of Eq. (2.4).

2.3 Harmonic inversion of time signals

The analytical form of a time signal that emerge from a system of coupled linear

differential equations is generally a sum of decaying exponents:
C(t) =Y dpexp[Md] , (2.11)
k

where the complex coefficients A\, are composed from real and imaginary parts:
Ap = —Qp + 1wy, with ap > 0 € R as the decay rates and wy € R as the oscillation
frequencies. dj, are the associated amplitudes, which also can be complex.

Such time signals can be the results of an experiment or a simulation. For
studying the L-GKS dynamics, we have to analyze this time series end extract the
underlying model, which is characterized by the eigenvalues {\;} and the amplitudes
{di}. The time signal C(t), 0 < ¢t < T, is sampled at some discretized time points

{t,}, usually at equal time intervals:
cn] = C(t,) = C(ndt), 0 <n < N = |T/ot]. (2.12)

The immediate candidate for such a task is the discretized Fourier transform.
The location of the spectrum peaks are the frequencies of the time series, the widths
of the peaks are the decay rates, and the magnitudes of the peaks are the amplitudes.
However, the Fourier transform enables extracting the frequencies and decay rates
only to a limited resolution: Aw > % We need a long duration of time signals to
reproduce the eigenvalues.

To overcome this limitation, the procedure for extracting the eigenvalues from
the time series has to assume a specific model. Harmonic inversion methods assume
an analytical form of sum of decaying oscillations for the time series, Eq. (2.11),
and use this form for extracting the eigenvalues in high resolution. An overview of
harmonic inversion methods can be found at [Belki¢ 2000].

The Filter Diagonalization (FD) method [Wall 1995, Mandelshtam 2001] as-

sumes that the dynamics is generated by a complex matrix H,

C(t) = (o |e™| 1o) . (2.13)

Based on this model the FD method builds an eigenvalue problem. The parameters



2.3. Harmonic inversion 25

of the time signal are extracted from the solutions for this problem. This method is
widely used for analysis of NMR experiments [Hu 1998] and Fourier transform mass
spectrometry [Martini 2014]. It was also used in the field of ultrafast pump-probe
molecular spectroscopy [Gershgoren 2001].

In this work we used the Padé approximant (PA) method. This method assumes
the analytical form of Eq. (2.11) and uses the time series to introduce two polyno-
mials, which are employed to determine the time signal parameters. This algorithm
was used for extracting the frequencies and the amplitudes from the simulated time
signals. The algorithm is summarized in Refs. [Fuchs 2014, Belki¢ 2000]. It is pre-
sented here for the sake of completeness. The Matlab code we used is presented in
Appendix 2.4.

Given:
1. A time signal ¢[n] = C(n7), 0 <n < N, sampled at time interval 7
2. The lower edge of the frequency window w_
3. The total number of resonances of the signal K

Output: The frequencies wy and the amplitudes dj of the expansion:
cn =C(nt) = —i Z dy exp[—i(wg — w_)nT] (2.14)
k

Steps:

1. Define the polynomial Qx(2): Qr(z) = S0 apz* — 1.

Find the coefficients ay by solving the linear set of equations:
K
cn:ZakCn%, n=0,..,.K—1 (2.15)
k=1

2. Find the roots zj of the polynomial Qx(z2).

3. Obtain the frequencies wy by

wE = w_ + %ln(zk) (2.16)

4. Define the polynomial Py(z): Py(z) = Son b2

Find the coefficients by by the explicit formula:

K—k
be =Y Cosr, n=0,....K—1 (2.17)
m=0
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5. Obtain the amplitudes dj, (We use the notation Q) (x) = d%Q(Z)‘Z:x):

g — P(z)

= 0060 (2.18)

2.4 Appendix:
Matlab code for the Padé approximant har-

monic inversion

The Matlab code that we used for the Padé approximant harmonic inversion is

presented below.
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function [d, w = PadeHarnoniclnversion(Cn, K, tau, w_m nus)

%[d, w = PadeHarnoniclnversi onExtended(Cn, K, tau, w_mnus, tol)
% Fi nds the deconposition of a tine signal Cn(t), which is sanpled
with

% equal s intervals, into sumof exponentials Sumk d_k *
exp(-1li*w k*t)

% This is done by the Pade approximant harnonic inversion nethod.
%

% | nputs

% Cn - the tine signal

% K - the nunber of exponent terms in the sum

%tau - the tinme interval for the sanpling

% [w_m nus, wplus] is the frequency wi ndow to | ook at:

% w_mnus is an input, w plus = w_mnus+2*pi/tau

% (Use w _mnus=0 in case you don't know what it is)

%

% The output is the anplitudes d and frequcies w, both can be conpl ex.
% Both d and w have | ength of K

%

% Ref er ence:

% Har noni ¢ i nversi on anal ysis of exceptional points in resonance
spectra

% By J. Fuchs, J. Main, H Cartarius and G Wnner

% 2014 J. Phys. A: Math. Theor. 47 125304

% doi : 10. 1088/ 1751- 8113/ 47/ 12/ 125304

%

% (wi thout the extended part)

N = Il ength(Cn);
assert (N>=2*K,"' At | east 2K signal points are required.")

% W use only 2K tinme points.

% We choose themto be dispersed as nuch as possible
step = floor(N (2*K));

Cn = Cn(1l:step: N);

tau = step*tau;

if size(Cn,2) ~= 1 %row vector
Cn = Cn.'; % Columm
end

% The matrix for Eqn (7) : loop over n and k: Cnk(n+1, k) = Cn(n+1l+k)
% (with ntl to shift to Matlab indices)

% We use Matlab's indices instead of the |oop (the bsxfun generates a
plus table):

Cnk = Cn(bsxfun(@lus, (1:K)', 1:K));

% The 2nd pol ynom al of Eqn (6), QK(z)=(sumk a_k*z"k) -1,
% shoul d be obtained by solving a = Cnk\Cn,

% but we have to force Matlab to use pseudo-inverse

a = pinv(Cnk)*Cn(1:K);
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% The 1st polynom al of Eqn (6), P_K(z)=sumk b_k*z"k,
% is obtained directly, Eqn (8):
b = zeros(K, 1);
for k = 1: K
b(k) = a(k:K)."*Cn(1: (K-k+1)); %n+1 to shift to Matlab indices
end

% The roots of the polynonial are the frequencies.

% Matl ab's built-in ROOTS function uses the matrix A of Egn. (10)
QO = [flipud(a);-1];

PO =[flipud(b);0];

z = roots(QO0);

logz = log(z);

w = w_m nus+li/tau*l ogz; % Egn (9)

% Prepare pol ynom al s

Q1 z = polyval (pol yder(Q.O0), z);
P_0_z = polyval (P_O, z);

% Find d_k, Eqn (11)

% Wthout the (-i) factor, since we start fromthe tinme signal
d=P0z/z./Q1 z

% Sort the results by the anplitudes

[d, ind_sorted] = sort(d, ' descend');

w = wWind_sorted);

end

Published with MATLAB® R2015a




Chapter 3

Population transfer induced by
weak fields

3.1 Introduction

The main question we ask in this thesis is how the environment affects the dynamics
of driven systems. A significant application for such driving is measurements: The
principle of measurements is to examine an object by employing a probe which
minimizes the perturbation to the examined system. In molecular spectroscopy a
weak radiation field achieves this task. The basic assumption is that there is a direct
link between the energy loss from the field and the molecular spectrum. Usually,
the molecule interacts with a solvent which acts as an environment. We study the
effect of this environment.

In the present study we concentrate on phase control of the population excitation
processes in molecules. The molecule is described by the Hamiltonian ﬂo, and is
coupled by the dipole operator fi to an external light field e(¢). In the dipole limit

the resulting control Hamiltonian is of the form:
H=H,+ - e(t). (3.1)

The energy loss of the probing field at the transition frequency w; is proportional
to the population transfer [Kosloff 1992, Ashkenazi 1997, Am-Shallem 2014]:

For an isolated molecule the probability of transition from an initial state |i) to a
final state |f) can be calculated by the first order of the time dependent perturbation
theory, to get:

1 Al ! —iw; pt’
Peot®) = g BAP] [ e(tar P (33
29
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For large t we get the Fourier transform of the field, é(w), at the transition
frequency w;r. Therefore, the probability depends only on the magnitude of the
field |e(w)| at this frequency. It is clear from this description that the state to state
transition probability is independent of the phase of the excitation field é(w), and
thus it is phase insensitive.

During the last years, a series of experiments challenged this assertion: They
showed a phase-dependence of the branching ratio of the cis and trans isomers
of the retinal molecule [Prokhorenko 2005, Prokhorenko 2006]. Other experiments
showed that the phase-dependence is induced by the environment of the molecule
[van der Walle 2009]. These experiments showed phase sensitivity even in weak
fields. Other experiments examined the population transfer under chirped weak
fields, and showed dependence on the chirp of the field, therefore phase sensitivity
[Prokhorenko 2011]. These experiments were supported by numerical simulations
which showed that the phase dependence is induced by the environment [Katz 2011].

In order to examine this phenomena there is a need for a formulation in open
quantum system. Therefore we will work with the L-GKS equation. In addition,
the terminology of weak versus strong fields, as well as the terms of existence versus
non-existence of the phase sensitivity, are not well-defined. Thus we will examine
the phenomena of population transfer and phase sensitivity by the scaling of these

phenomena with the field strength.
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3.2 The scaling of weak field phase-only control

in Markovian dynamics

The scaling of weak field phase-only control in Markovian dynamics
Morag Am-Shallem and Ronnie Kosloff
Published on J. Chem. Phys. 141, 044121 (2014)
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We consider population transfer in open quantum systems, which are described by quantum dynam-
ical semigroups (QDS). Using second order perturbation theory of the Lindblad equation, we show
that it depends on a weak external field only through the field’s autocorrelation function, which is
phase independent. Therefore, for leading order in perturbation, QDS cannot support dependence of
the population transfer on the phase properties of weak fields. We examine an example of weak-field
phase-dependent population transfer, and show that the phase-dependence comes from the next order
in the perturbation. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4890822]

I. INTRODUCTION

Quantum control is devoted to steering a quantum sys-
tem toward a desired objective. Coherent control achieves this
goal by manipulating interfering pathways via external fields,
typically a shaped light field.! Early in the development of
quantum control, Brumer and Shapiro proved that for weak
fields in an isolated system, phase only control is impossible
for an objective which commutes with the free Hamiltonian.?
A qualitative explanation is that under such conditions there
are no interfering pathways leading from the initial to the final
stationary states.

More formally, the control electromagnetic field in the
time domain is €(?), and its spectrum is given by

&) = A(w)e' ", (1

where A(w) is the amplitude and @(w) is the phase. Any target
operator that commutes with the field independent Hamilto-
nian H is uncontrollable by the phase @(w).3

Experimental evidence has challenged this assertion.
Prokhorenko et al. claimed to demonstrate weak-field phase-
only (WFPO) control,*> and raised a controversy.®’ The tar-
get of control was an excited state branching ratio. The phe-
nomena were attributed to the influence of the environment.
A subsequent study by van der Walle et al. showed that such
controllability is solvent dependent.®

A careful examination of the assumptions can resolve the
discrepancy between theory and experiment, considering that
the experiments were carried out for an open quantum system.
It has been suggested that the coupling to the environment
changes the conditions under which the statement of impos-
sibility holds. A new relaxation timescale emerges which in-
terferes with the timescale influence by the pulses phase. Nu-
merical evidence that WFPO control becomes possible for an
open quantum system was shown by Katz et al.” In line with
the original proof, Spanner et al.® argued that if the coupling
between the system and the environment does not commute
with the measured observable, then the conditions for phase
insensitivity do not hold. Nevertheless, open quantum systems
have additional features which are not covered by the Hamil-
tonian time dependent perturbation theory employed to prove
the WFPO no go result. A possible opportunity for WFPO

0021-9606/2014/141(4)/044121/10/$30.00
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for control of observables commuting with the Hamiltonian
can emerge from the continuous nature of the spectrum of the
evolution operator and/or the inability to separate the system
from its environment.

To clarify this issue we will explore the conditions which
enable or disable WFPO control in an open quantum system.
We restrict this study to the axiomatic approach of open sys-
tems based on quantum dynamical semigroups (QDS). The
theory aims to find the propagator of the reduced dynamics of
the primary system under the assumption that it is generated
by a larger system-bath Hamiltonian scenario. The generator
in this case belongs to the class of completely positive maps.'?
An important consequence is that the system and bath are ini-
tially uncorrelated or, formally, are in a tensor product state at
t = 0. An additional assumption is the Markovian dynamics.
Under completely positive conditions, Lindblad and Gorini-
Kossakowski-Sudarshan (L-G{(S) proved that the Markovian

generator of the dynamics £ has a unique structure.'!'2

This generator extends the system-bath separability assump-
tion to all times. The WFPO controllability issue can be re-
lated now to observables which are invariant to the field free
dynamics.

To shed light on the existence/nonexistence of weak field
phase only control for L-GKS dynamics we examine the con-
trol of population transfer which is an invariant of the field
free dynamics. The population transfer AN can be directly ob-
served experimentally for fluorescent dyes with a unit quan-
tum yield. A complementary experiment is the weak field
spectrum of a photo absorber in solution. For both types of
experiments WFPO control of population will lead to phase
sensitivity of weak field spectroscopy.

The main result of the present study is that population
transfer and energy absorption spectroscopy in L-GKS dy-
namics depends, in the leading order, only on the autocorrela-
tion function (ACF) of the field, defined by

o]

C(r) = / dte(t + T)e(t). )

—00

The ACF does not depend on the phase of the field @(w)
(cf. Appendix A). Therefore, phase-dependent control of

© 2014 AIP Publishing LLC
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population transfer will take place only in the next order of
the field strength.

Il. THE MODEL

Consider a molecule with two potential electronic sur-
faces, H, and H,, coupled with a weak laser field € () through

the field operator V(). Starting with an initial state in the
ground electronic surface [/,), the control objective is the
population transfer to the excited surface. The system Hamil-
tonian and the field operators are, respectively,

) (H 0 ) R ( 0 ,&e(t))
H, = -], V= .3
0 H, pe)* 0

The control objective is the projection on the excited

electronic surface
. i, o
P, — : )
0 0

This objective commutes with the field free Hamiltonian
[P,,H;] =0.

The population transfer is calculated by solving for the
dynamics of the density operator p in Liouville space. The
L-GKS equation generates the dynamics:

inl — [p, (5)

where 2 20 + {2(1) is the Lindbladian, and
P =D plc)d| is the density operator represented here
in the Hamiltonian elgenstates basis, H0|c) = fiw,.|c). The

action of the superoperator V on the density matrix 0 is
defined by

Vp =1V, 7l ©)
For a specific element of the density operator |c){(d| it yields

Z(G(t)umc Hd| = € Opgyle)iml).  (7)

The action of Eo is more involved. Under the complete posi-
tivity and the Markovian assumptions, the general L-GKS ex-
pression is'! 12

V)le)(d| =

A n P . A A 1 asn o aia
Lop=[Hy. p1+i ) (AkpA,{ - 5(A,{Akp + pA,iAk)> ,
k
- ®)
where A is an operator defined in the systems Hilbert space.
The commutator with the Hamiltonian governs the unitary
part of the dynamics, while the second term on the rhs leads
to dissipation and dephasing. Notice that the target operator is
invariant to the dissipative dynamics fgf’e =0.
The initial state is an equilibrium distribution P(a) on the
ground electronic surface

po= Y P@la)al. ©)

aeg.s.

The population transfer in this case is AN = f’e. f’e will
be calculated by means of second order time dependent per-
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turbation theory of L-GKS equation. This is the lowest order
that yields population transfer. In the case of unitary dynam-

ics, i.e., ﬁo o= [ﬁo, 01, it yields the same results as the equiv-
alent calculation by the first order perturbation theory of the
Schrodinger equation. In the same manner, the next order in
population transfer calculation is the fourth power of the field
strength.

lll. POPULATION TRANSFER IN LIOUVILLE SPACE

The lowest order of population transfer, starting from the
initial condition of Eq. (9), is calculated employing second
order time dependent perturbation theory

AN@) = (B)1) = Tr{P,p,} ~ Te {P,5,P (1)},  (10)

where p, (¢ f) is the density matrix in the interaction picture,
at the final time Iy, and

t 1
. 2 S 2 2 N
/61(2)(tf) _ <_;) / dtz/ dtle_’ﬁ"(lf_tz)))(tz)
. 1.

% e—iﬁo(tz—tl)ﬁ(tl )e—iﬁo(ll _li)ﬁ() (1 1)

is the second order perturbation term in the interaction
picture.

Before we evaluate this expression in some representative
cases, it can be simplified. First, we note that if initially the

system is in equilibrium and invariant to ﬁo , then
=Lt “py = Po- (12)

Next, the order of the left operations can be changed leading

to
[f )
136/ dt2/ dtje” 150
1 I

/dtzfdtlTr e it

and, since Lindbladian dynamics preserves the trace then

2P, 5}, (13)

Tr {e iP5} = Te(P, ), (14)

it yields

~

/ dt, f dt, Te {P,V(t,)e ﬁfoUz—ﬂ)ﬁ(tl),ao}.

15)
Equation (15) is now evaluated in unitary and non-unitary
dynamics. See Appendix B for detailed calculations.

AN(p)==75
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A. Unitary dynamics generated by the Hamiltonian

In this case we get

o0
2
AN = Z P(a)mh";’| /drC*(r)e’i‘”btlt+c.c. ,
aeg.s.
bee.s 0

(16)
where p1,, is a matrix element of the operator [ in the energy
basis, C*(t) is the complex conjugate of the ACF of the field
€(p), defined in Eq. (2), and w ; = w, — w,. g.s. and e.s. denote
the ground and excited surfaces, respectively. c.c. denotes the
complex conjugate.

The ACF does not depend on the phase of the field. This
is shown in Appendix A by means of the vanishing of the
functional derivative of the ACF with respect to the phase.
Therefore, the population transfer is not affected, to this order
in the field strength, by the phase properties of the field. This
result is not new.? It is presented here in order to demonstrate
the perturbative calculation in Liouville space and to empha-
size the dependence on the ACF.

B. General L-GKS dynamics

In the present study, the L-GKS generator can only in-
duce dephasing and relaxation within the electronic surfaces.
Electronic dephasing or electronic relaxation is not consid-

ered. As a result, population transfer is generated only by V
(the commutator of \7).

The notation is simplified using the fact that all states
in the perturbation expansion are filtered by fi. We define
10,) = fila) (or (0,| = (alft, respectively), and it should be
understood as a state projected on the excited electronic sur-
face. We will also use the notation @a = 16,)(a| for the rel-
evant density matrix element. With this notation, the expres-
sion in Eq. (15) becomes

aeg.s.
bee.s

1 [ F
AN=L 3 P@ f dr(C* (@) bl[e 77O, ]16,) +e.c.).
0

a7
To proceed beyond this point additional details on the opera-

tion of (i and éo are required. Nevertheless, the dependence
on the control field is only through its ACF.

C. General non unitary dynamics

These results can be extended to a more general propaga-
tor Uyt /> 1;)- The conditions are:

1. The dynamics under weak fields can be described by a
second order perturbation theory,

t t
N2 f 2
a 1 2 2
5,2, = (_h> [dtzf dn Uty )V(ty)
1. t.

x Uy (ty, V() Ut 1.)P,- (18)
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2. The field-free propagation is homogeneous in time, and
therefore depends only on the time difference,

Uy(t,,1,) = Uy, — 1), (19)

forany ¢, 1,.
3. The initial density matrix is invariant under the field-free
propagator

Uy(0)py = po- (20)

4. The field-free propagator does not couple the two elec-
tronic surfaces

Te(ldy (0P, 5} = Te(P, 5} Q1)

Under these conditions, we can get the ACF-dependent
expression

1 v .
AN = = > P(a)/ d(C* @) (bIU(T)O,116,) + c.c.).
ey 0

(22)

IV. THE RELATION BETWEEN POPULATION
TRANSFER AND ENERGY ABSORPTION

Spectroscopy is based on using a weak probe to unravel
pure molecular properties. Absorption spectroscopy measures
the energy absorption from the field. Here, we relate this
quantity to the population transfer measured by delayed fluo-
rescence. We show that in a weak field under the L-GKS con-
ditions also the energy absorption is independent of the phase
of the field. In the adiabatic limit, i.e., for a slowly varying en-
velope function, this relation can be deduced directly from the
expression for the population transfer. For the non-adiabatic
cases, we prove an additional theorem.

A. Adiabatic limit

The power absorption is derived from the Heisenberg
equation of motion,

=t =) (- )
dt dt dt [ﬁa% 0
(23)

The expectation value of an operator A is defined as (A)
= tr(Ap). We separate the density matrix to the populations
on the upper and lower electronic surfaces g, p 2 and for co-

b, b,
= (). 24)
Pc Py

leading to the power absorption

herences 0, /6'[.,

P = ) — . .
8 c a c a c
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Total energy absorption is obtained by integrating the
power,

Iy

AE(ty) = 2Re/ ?)—jtr(ﬁﬁc(t)) dt. (26)

1

Similarly, the total population transfer is given by

I

AN(ty) = —%Zm/e(t)tr(,&ﬁc(t))dt. (27)

t.

i

The changes in energy and population are related. If we
factorize the field to an envelope A(f) and fast oscillations
with the carrier frequency w,,

€(t) = A(r)e'“!, (28)

then we can write

t

oA .
AE(t,) = ZRe/ <ia)Le(t) + me“"L’) tr(fp,.(1))dt.
I
(29)
In the adiabatic limit, i.e., for a slowly varying envelope
function, i.e.,

aA/dt

W (30)

the second term is negligible. Then we can write'> 14

AE ~ fiwAN. 31)

In such cases we use the expressions derived above for
the population transfer (Egs. (16), (17), and (22)) to obtain
the phase independence of the energy spectrum.

B. Non-adiabatic treatment

In the nonadiabatic case, we have to evaluate the second
term in Eq. (29) using the second order perturbation theory.

The coherence §_(¢) is evaluated from the first order ex-
pression for the density matrix

t

V) = —% f dre Lo V(e e L5 (32)

t.

i

Next, we substitute ﬁgl)(t) in the expression for energy ab-

sorption, Eq. (26), integrate and manipulate as described in

Appendix B. The result is that the energy absorption has a

functional dependence on the cross-correlation function of the
field with its derivative

o0 8 «

€

/ dte(t) o7

—00

(33)

T+t

However, this expression is also phase-independent. This
can be shown using the functional derivative with respect to
the phase of the field, cf. Appendix A.
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V. DISCUSSION

We demonstrated that, in general, the weak-field spec-
troscopy is functionally dependent only on the autocorrelation
function of the field. As a result, phase sensitivity is absent.
This remains true even when the dynamics is generated by the
Markovian L-GKS equation. Moreover, this is also true for
non-Markovian dynamics, generated by the time independent
Hierarchical Equations of Motion approach (HEOM).">"!7 In
such dynamics the propagator has the form of Eq. (19).

We note here that the above analysis cannot include the
influence of the field on the environment, since the L-GKS
open system dynamics does not include such a mechanism.

When a weak-field phase-only control is encountered, we
have to examine how this effect scales with the field coupling
strength. According to the above analysis, while the total pop-
ulation transfer is the leading order in the perturbation, i.e.,
second order in the field coupling strength, the phase effect
on the population transfer should be the next order, i.e., fourth
order in the field coupling strength.

In Sec. VI, we examine such an example and show that
the order of the effects are as expected.

VI. ILLUSTRATIVE EXAMPLE: POPULATION
TRANSFER IN A FOUR-LEVELS SYSTEM

A numerical evaluation of L-GKS open system dynam-
ics which obeys the four conditions given in Sec. III C was
performed. The aim was to examine a case of WFPO control,
and check the scaling of the population transfer and phase-
dependent phenomena with the field coupling strength.

A. Simulation details

The system under study is driven by a chirped Gaussian
field, and coupled to an environment with a L-GKS dissipa-
tion. The system is designed such that the final population
transfer is affected by the phase of the external field, namely,
the chirp. The coupling to the environment induces relaxation
which amplifies the chirp effect. The details of the simulations
follow. Figure 1 shows a schematic diagram of the simulated
system.

The system has four energy levels: Two ground energy
levels and two excited ones. The ground levels serve as the
ground electronic surface. The two excited levels serve as the

E.tw,

S ¥

fkm

FIG. 1. A schematic diagram of the simulated system: E, and E, are the
energies of the surfaces. w, and w, are the vibrational frequencies inside
the surfaces. f,, ~are the Franck-Condon coefficients. y is the relaxation
coefficient.
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excited electronic surface. These two levels are coupled to
each other by a Lindblad-type dissipator. Only the external
field couples between the surfaces, and the field-free Hamil-
tonian does not couple between them. The field-free Hamilto-
nian is

E,+w, O 0 0

A o E, 0 0
=l 0 0 Ete, o Y

o 0 0 E

4

where E, and E, are the energies of the surfaces, while ,
and w, are the vibrational frequencies inside the surfaces.
We used the rotating frame for the actual simulations. There-
fore, the relevant parameter is the detuning, defined by 6 = E,
- Eg — w;, where w, is the carrier frequency (see below).

The ground and excited surfaces are coupled with the
field operator

0 0 Souge(®)  fl4e(0)
0 0 t t
MV(I) —u f238( ) f138( ) ’
o™ (t)  f58"(0) 0 0
frae* @) fe" (@) 0 0

(35)
where w is the field coupling strength, f,, are the Franck-
Condon coefficients, and ¢(¢) is the external field applied to
the system. We set the Franck-Condon coefficients to mimic
the case of two displaced harmonic oscillators: f}, and f,5 are
large, while f,, and f|; are small.

The goal of these simulations is to examine the depen-
dence of final population transfer on phase properties of the
field. The field we use is a chirped Gaussian pulse. We define
the chirp at the frequency domain in such a way that changing
the chirp changes the phase properties of the field but not the
amplitude, as defined in Sec. I, Eq. (1),

1 l (0—w, o 2

n%mexp 2( Aw ) Fix(@=w)7 ),
(36)

with Aw as the bandwidth, x as the chirp, and w, is the carrier
frequency.

Introducing ~/Aw in the pre-exponential factor keeps the
total energy of the pulse unchanged while changing the band-
width, such that

é(w) =

/OO |&(w)*dw = 1. 37

oo

The inverse Fourier transform (FT) of the chirped

pulse is
1 1 t\2\ .
(- (AiR) (L))
h TO_Z%X 2 75 T,
0

€(t) = ]

(38)
with 7, = Aiw as the duration of the unchirped pulse, and 7,
= w,,7, as the extended pulse duration, caused by the chirp:

W,y = /1—|—4§.
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The environment coupling induces a relaxation from the
fourth energy level to the third one. The relaxation is de-
scribed by a L-GKS dissipator, which is induced by an annihi-
lation operator 8;, = |3)(4|. This operator has all-zero entries,
except one entry, which transfers population from the fourth
level to the third.

This operator induces coupling inside the excited surface,
but not between the surfaces. The dissipator is

A A N an | T S
Lplpl= 534:05;4 - 5(55453“0 + ps;4s34). (39)

1. The dynamics: Equation of motion, initial state, and
control target

The equation of motion is
L 0P A n A N A n A A
lﬁg = Lp = [Hy + uV@), pl +irLp[p]. (40)

Initially, the system is at ground state, i.e., the entire pop-
ulation is on the first level.
Two control targets can be defined and examined:

® The final population on the excited surface, i.e., the
sum of populations on the third and fourth levels. In
weak fields, we expect it to be the leading order in the
perturbation strength . The chirp effect is expected to
be in the next order in the perturbation.

® The final population on the second level. The popula-
tion transfer to this level is in essence a second order
process. The structure of the system makes this pop-
ulation sensitive to chirp sign, promoting cases when
higher frequencies precede lower ones (i.e., negative
chirps). In addition, the magnitudes of the Franck-
Condon coefficients (large f|, fy3, small f,, f3) cre-
ate a scenario where the relaxation in the excited sur-
face enhances the negative-chirp-induced population
transfer.

The phase-only control effect is examined by perform-
ing pairs of simulations in which the only varied parameter
is the chirp: positive chirp in one simulation and negative in
the other. The difference in the final population on the targets
between two simulations in such pairs is defined as the chirp
effect.

The values of the parameters used in the simulations are
summarized in Table I. The detuning was selected to maxi-
mize the final population transfer.

TABLE I. Simulation parameters.

Parameter Value Unit
o, 0.5 (time) ™!
o, 0.1 (time) ™!
s 02 (time) ™!
nw (several) (time)~!
A (several) (time) ™!
Sias Sz 0.9 (unitless)
Four Sz 0.1 (unitless)
Aw 1 (time)~!
X +80 (time)?
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Positive
- chirp
Negative
chirp
150 200

Population on the excited surface

0 3
-150 -100 -50 0 50 100
Time

FIG. 2. Population on the excited surface during simulations in which the
system is driven by positively (blue line with stars) and negatively (green line
with x-marks) chirped fields. The population transfer to this surface is a first
order process, and therefore the difference in the final population, which is
governed by the next order, cannot be seen on this scale.

B. Simulations results

Simulations were performed with the model described in
Egs. (34), (35), (38), and (40). The phase-only control effect
was examined by comparing similar simulations where the
only difference is the chirp sign: positive or negative. The
difference of the final population transfer between the two
cases is defined as the chirp effect. The results are presented
below.

1. Simulation dynamics

Figure 2 shows an example of the population of the ex-
ited surface during the simulations of the positive and neg-
ative chirp. The population transfer to this surface is a first
order process, and therefore the difference in the final popu-
lation, which is governed by the next order, cannot be seen on
this scale. The population of the second level is presented in
Figure 3. This population is a second order process in essence

-7

X 10
°©
3
S 0.8f
c
o
2
o 0.67
Q
£
5 0.4} —#— Positive chirp ||
5 —— Negative chirp
T
302 ]
o]
a
O el _’A‘. - . _’A‘.
-50 0 50 100 150 200 250 300

Time

FIG. 3. Population on the second level, during the same simulations as in
Figure 2. Note that the scale in this figure is different. This population is a
second order process in essence, and therefore is controlled by the chirp: Pos-
itive chirp yields a very small population transfer to the second level, while
negative chirp yields population transfer which is two order of magnitudes
larger (although still small).
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A OO o N

w

Chirp effect

-1

10 107° 10° 10
Relaxation parameter y

FIG. 4. Chirp effect versus the relaxation coefficient y. The chirp effect is
defined as the difference of the final population transfer between the simula-
tion with positive chirp and the simulation with the negative chirp. X-axis is
log-scale. The chirp effect is enhanced by the relaxation process.

(note the different scale), and therefore is controlled by the
chirp: Positive chirp yields a very small population transfer to
the second level, while negative chirp yields population trans-
fer which is by two orders of magnitudes larger.

2. Relaxation-induced chirp effect

Figure 4 presents the chirp effect as a function of the re-
laxation coupling coefficient y. The chirp effect is enhanced
by the relaxation process. In the following, we will show that
despite that enhancement, the chirp effect still scales as the
fourth order of the field strength.

3. The scaling of the population transfer
and the chirp effect with the field strength

We examined the scaling of the population transfer and
the chirp effects with the strength of the external field.

Figure 5 shows the results for the target on the ex-
cited surface. As expected, we found that the slope of the

_3’3

; ; ; ; ; 1072

: : : & 8

: : : - @

: ST Lo g
T it

10—6 ..... ?— ........... :: .............. AR : ...... 10 0

|
4

C.E. (log scale)
S

|
=)

-
o

10;2.1 1042.0 10;1.9
u (log scale)

FIG. 5. The final population transfer (P.T., upper panel) to the upper surface
and the chirp effect (C.E., lower panel) of this PT. vs. the field strength 1,
on log-log scale. Note that there is a gap in the Y-axis (emphasized by the
labels on the right side in the upper panel), although both lines are on the
same scale. The slope of the P.T. is 2, i.e., the P.T. scales as z12. The slope of
the C.E. is 4, i.e., the C.E. scales as /,L4.
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10°° . : .
—o— P.T. positive chirp |: : ’*
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FIG. 6. The final population transfer (P.T.) to the second level: The lower line
shows the P.T. for positive chirps. The upper line shows the P.T. for negative
chirps, which almost equals the chirp effect (C.E.). Both lines are plotted vs.
the field strength p, on log-log scale. The slope of the both lines is 4, i.e.,
they scale as u*.

population transfer is 2, i.e., the population transfer scales as
w2, while the slope of the chirp effect is 4, i.e., the chirp effect
scales as p*.

Figure 6 shows the results for the target on the second
level. Essentially, the population transfer to this level is of
the next order, which is in the same order of the chirp ef-
fect. Therefore, we expect to find the same scaling with field
strength for both phenomena. Actually, the population trans-
fer to this level in the case of positive chirps is very small, and
almost vanishes, and therefore the chirp effect and the popu-
lation transfer for negative chirp are almost the same. As ex-
pected, we found that the slope of population transfer for both
chirp signs, as well as the slope of the chirp effect is four, i.e.,
they all scale with field strength as u*.

VIl. CONCLUSIONS

The issue of the weak field phase only control is of fun-
damental importance. Molecular spectroscopy in condensed
phase assumes that the energy absorbed for each frequency
component in the linear regime depends only on the molecu-
lar properties. At normal temperatures the molecule is in its
ground electronic surface. By relating the energy absorbed to
the population transfer we find that the validity of molecu-
lar spectroscopy in condensed phase relies on the impossi-
bility of WFPO. Brumer and co-workers have studied exten-
sively this phenomenon.®'%!° The present study is in line
with these findings. For a molecular system modelled by the
L-GKS Markovian dynamics WFPO is impossible for observ-
ables which are invariant to the field free dynamics.

The method of proof, based on functional derivative (cf.
Appendix A), can be extended to other scenarios.

The numerical model is also consistent with the work of
Konar, Lozovoy, and Dantus?® showing fourth order scaling
of the chirp effect with the driving field strength. Contrary to
their finding that the positive chirp is sensitive to the solvent,’!
our numerical model finds strong sensitivity to negative chirp.
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Shapiro and Han?? argue that apparent linear response ex-
perimental phenomena are not necessarily weak-field effects.
In the present study, the analysis is based on order by order
perturbation theory and addresses this issue. Experimental or
numerical tests have to be extremely careful in checking the
scaling order of the effect.

Readdressing the theme of the study: Is there a weak field
phase only control in open systems? We obtained a partial
answer. Under Markovian L-GKS dynamics WFPO is im-
possible. This still leaves open the possibility of WFPO in
non-Markovian scenarios. The main assumption that should
be challenged is the tensor product separability of the sys-
tem and bath in L-GKS dynamics. Preliminary numerical ev-
idence from non separable system-bath models may point to
the possibility of WFPO for population transfer with enhance-
ment for positive chirp. More work is required to establish this
possibility.
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APPENDIX A: THE PHASE INDEPENDENCE
OF THE AUTOCORRELATION FUNCTION

The ACF of the field €(7) is the inverse FT of the spectral
density of the field, J(w) = |&€(w)|>. In this paper, the popu-
lation transfer to second order is proportional to the Laplace
transform of the ACF (cf. Eq. (16)). Therefore, a careful ex-
amination of the phase properties in this case is required.
First, we derive the phase independence of the ACF. Simi-
larly, the phase independence of the cross-correlation function
of the field with its derivative is obtained. We use the func-
tional derivative of these two correlation functions to prove
the phase independence of the absorption spectrum.

The autocorrelation function is defined as

[o¢]

C@t)= / dre(t + t)e* ().

—00

(AD)

Similarly, the cross-correlation function of the field with
its derivative is defined as

o0
o€
D) = / dt —| €*(1). (A2)
ot |,y
—00
We will use the spectral representation of the field
o0 )
€(r) = / dwé(w)e " = / dwA(w)e @ eIt (A3)
s e

where the real functions A(w) and @(w) are the amplitude
and phase, respectively. The spectral representation of the
field derivative equals the spectral representation of the field,
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multiplied by (—iw),

dety 9 [ o [ :
;(t) = / dwé(w)e™ ™ = / do(—iw)é(w)e™""
A A

(A4)
The functional derivatives of these correlation functions
with respect to the phase are

5Cty [ [se+1) se*(x)

il R bRl i E
(A5)

5D(1) (% ) de|  ser(r)

~ / T ——— @O+ - ~

3P(w) K 8¢ 0T |y, 0P(w)
(A6)

We need the following functional derivatives with respect
to the phase

Se(t - - .
€O _ A — ig@pe ",
dg(w)
Se*(t ~ U .
O _ A w)e @il — _ig*(w)ei (A7)
dg(w)
b(42)
- = i(—iw)A(®)e"P @D = [(—iw)E(w)e "
dg(w)

Substituting in the functional derivative of the correlation
functions, we get (changing integration variable in the second
linetT=1+41)

5?(0 = / drlié(w)e T e* (1) — ie(r + )& (w)e' "]
P(w) K
= i&(w)e /dre“‘”é(f)
—i f die(®)e' T | & (w)

= [&(w)e e (w) — iE(w)e Ve (w)

=0, (A8)

and, similarly,

8{)0) = / dt [i(—iw)g(w)eiw(r+t)€*(f)
sp@) ~ J
. de ~% iot
—1 E . € (C())e }

J. Chem. Phys. 141, 044121 (2014)

o .
= i(—iw)é(w)e ™" / dte'®Te(T)
%o
o0
—i / dfz—j ~e"‘“‘f*” & (w)
J 7

= i(—iw)&(w)e & () — i(—iw)é(w)e " & (w)

=0. (A9)

APPENDIX B: DETAILED CALCULATION
OF THE POPULATION TRANSFER

We show here the details of the calculations.

1. Unitary dynamics generated by the Hamiltonian

From Eq. (7) we get (the operator V transfers population
between the surfaces)

Vapla)al = Y Pla)e(ty)iu,|b)lal — € (t)ingpla) b).

aeg.s.
bee.s

) (B1)

Next, we operate with the propagator e~ 7%~ When
the dynamics is unitary, the Lindbladian includes only the
commutator with the Hamiltonian, and the propagation of an
element in the density matrix |c)(d| is simply a multiplication
by e~'“«’, where w,; = @, — w,, s0 We get

3 P(@)(elt))rp, b} {ale )

aeg.s.
bee.s
— Xty la) (ble ), (B2)
Now, we operate with ﬁ(tz), to get (using Eq. (7))
> P@){e(t)e bty (1 k) fal
acg.s.
bee.s
k
— g lDY (ke ) 4 he ), (B3)

where h.c. stands for hermitian conjugate.

Now we project on the excited surface (with f’e), and per-
form the trace. For a general element in the density matrix
|c){d|, we do so by taking the sum of diagonal matrix ele-

ments that belong to the excited surface: Y (m|c)(d|m), so
we get mee.s.

— Y P@{et)e t)itp ey imIb) (klm)

aeg.s.
bee.s
k
mee.s.
x ¢ %atmh) 4 c.c.}.

(B4)
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(m|b) and (k|m) are §,, and §,,,, respectively. When we
sum over k and m we get

= Y P@felt)e tylp, e 4 e} (BS)

aeg.s.
bee.s
Next, we integrate over f; and t,. Since the pulse has
a finite duration, we can extend the integration limits to
(_OO, OO)

Z P(a )|M‘”’I /dtz/ dt e(tl)e (;2)6—1%00 —f>+cc}

aeg.s.

bee.s -0

(B6)
We change variables in the integral, from ¢, to 7 = ¢,
— t,, and we get the integral

o0 o0 o0
/dr /dtle(tl)e*(t +1) e—l‘“haf—/dfc (T)e” iy,
0 oo 0

B7)
where C*(7) is the complex conjugate of the ACF of the field
€(?) (defined in Appendix A). Finally, we have

2 o0
AN = Z P(a )“’““”' /drc*(r)e*’%wrc.c.

aeg.s.

bee.s 0

(B3)

We see that the population transfer does not depend di-

rectly on the field, only through the field’s ACF. This result

is not new.? It is presented here in order to demonstrate the

perturbative calculation in Liouville space, and to emphasise
the dependence on the ACF.

2. General Lindbladian-generated dynamics

We show here that the population transfer depends on the
field only through the ACF also in QDS description of non
unitary dynamics.

Consider a Lindbladian that can induce dephasing and re-
laxation inside the electronic surfaces, but not between them.
We do not treat here electronic dephasing or electronic relax-

ation. Population transfer is done only by V' (the commutator
of \A7).

Here, we use a more formal notation: we do not write ex-
plicitly the matrix elements of the operator fi. Instead, for a
state |a) (or {(a|) in the ground surface, we write |0,,) = fi|a)
(or (8,| = (alft, respectively), and it should be understood as
a state in the excited electronic surface. Also, we will use the
notation (:) = 16,)(a| for the relevant density matrix element.
We also do not write explicitly the resulting states of the prop-

agation by EO, and write instead expressions like e"ﬁ ! 9
Starting with Eq. (15), and the initial state of Eq. (9), we

first operate with )A/(tl) to get

> P@)e)lb, ) al — €*(t)la) (6, (B9)

aeg.s.

J. Chem. Phys. 141, 044121 (2014)

Since |a) and (a| are in the ground surface, and since |60,)
and (6,| are in the excited surface, |0,)(al = @a and |a)(0

I
A a
= @, are off-diagonal blocks in the density matrix.

Next, we operate with the propagator e~ o) 1o get

3 P@(ette it

aeg.s.

O, — et iHLTVO,T).

(B10)
Again, the two terms here are off diagonal blocks.

When we operate with f)(tz) we get four terms. Two of
them belong to the ground surface, and therefore will be omit-
ted in the projection on the excited surface. The other terms
are

3 P@(et)e e i5EO, ]+ cc) (B

aeg.s.

Finally, like the previous calculations, we perform the
trace, extend the integration limits, change one integration
variable and integrate over the other variable, to get the
autocorrelation of the field:

h2 S P(a)/ dt(C*(x)(bl[e 147 ®,]16,) +c.c.).
aeg.s.
bee.s (B]%)

We have to obtain more details on the operation of { and ﬁo
in order to evaluate this expression further, but we see that
also here the dependence on the field is only through its ACF.
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3.3 Discussion

The experiments and simulations mentioned above challenge the premise of spec-
troscopy which asserts the direct link between the molecular spectrum and the
energy absorbed from the field. They indicate that the interaction with the en-
vironment can enable weak-field phase-only control of open quantum systems. The
analysis in the paper shows that such control is impossible under Markovian L-GKS
dynamics. Therefore, the question is still open and the assumptions should be re-
considered. Further directions have to be explored, but will not be investigated in
this thesis.



Chapter 4

Exceptional points in open

quantum systems

4.1 Introduction

The irreversibility of open quantum system dynamics is introduced into the L-GKS
equation by the dissipative term. The eigenvalues of the L-GKS generator with
the dissipator are complex, with a non-positive real part. Therefore, the resulting
evolution operator is not unitary. Instead it is a contraction operator having a norm
smaller than 1. Generally, the dynamics expressed by such an evolution operator
has the analytical form of sum of decaying oscillatory exponentials. For example,

the expectation value of an operator X will have the form:
(X(t)) = drexp[Mt] . (4.1)
k

Here \; are the eigenvalues of the generator and dj, are the associated amplitudes,
both can be complex. The complex eigenvalues A\, can be divided into real and
imaginary parts: A\, = —ay + iwg, with a; > 0 € R as the decay rates and w, € R

as the oscillation frequencies.

Another aspect of the non-hermitian character is that the generator is not always
diagonalizable. The points in the parameter space for which the generator is not

diagonalizable are called exceptional points.

43
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4.2 Preliminaries

4.2.1 Diagonalizable matrices

Suppose we have a vector-matrix differential equation:
Y =MY. (4.2)

This is a set of coupled linear differential equations. We would like to decouple this

set into a set of decoupled equations. This is done by diagonalization.

Diagonalizing the matrix M is to find a set of eigenvectors {v)} and associated
eigenvalues {\;} that have
(M — M\ I) T, = 0. (4.3)

This is done by finding the roots of the characteristic polynomial
P(\) =det (M — ). (4.4)

The roots of the characteristic polynomial are the eigenvalues. For an N x N matrix

we have a characteristic polynomial of order N, which can be decomposed as:

PO =[O =x)"™, Y r=N, (4.5)

thus each eigenvalue \p has multiplicity 7, and the sum of all multiplicities is V.

For each eigenvalue A\, we can always find a set of r; vectors such that
(M — X\)™ U o = 0. (4.6)
However, we would like to find 7 eigenvectors, i.e. r; distinct vectors that fulfill
(M — M) Vo = 0. (4.7)

If for each eigenvalue Ay there are r, such independent associated eigenvectors, then
we have a set N independent eigenvectors. This set spans the entire space, and
the matrix M is diagonalizable. We write the matrix M as M = V~'AV, with the
non-singular matrix V' which is composed from the columns vectors {vj .}, and the
diagonal matrix A which has the eigenvalues {\;} on its diagonal (each )\, appears
7, times). Then we can write Eq. (4.2) in a new basis, namely the basis {7}, }, and
write the differential equation for Y = VY:

Y =AY, (4.8)
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The resulting set of equations, Eq. (4.8) is a set of uncoupled differential equations.

For each of the components ¥, we have
Y = Amim- (4.9)

Therefore,

Tm(t) = e, (0). (4.10)

This leads to the analytical form of Eq. (4.1).

4.2.2 Non-diagonalizable matrices

However, there are matrices that do not have N independent eigenvectors. This
means that there is (at least) one of the eigenvalues, \,4, with multiplicity 7,4 > 1,
but has less than r,, eigenvectors associated with it. Therefore Eq. (4.7) does not
have 7,4 distinct solutions for this eigenvalue. Nevertheless, Eq. (4.6) still holds.
Suppose, for example, that we have an eigenvalue \,; with multiplicity r,; = 2,

with the vector v,40 obeying the eigenvector equation, Eq. (4.7):
(M — Xpal) Unao = 0, (4.11)

and that we cannot find another such eigenvector for the eigenvalue \,;. We are

still looking for another vector, v,q; that obey Eq. (4.6):
(M = Xl ) Tpaq = (M = Mg ) {(M = M) G} = 0. (4.12)

Since the only eigenvector associated with A, is v,40, we conclude that the expres-

sion in the curly brackets has to be equal to this eigenvector:
(M — Mpal) Una1 = Unao- (4.13)

This equation is referred as the generalized eigenvalue equation, and v,,4, is denoted
as a generalized eigenvector. The generalized eigenvector cannot be decoupled from
the eigenvector under operation of the matrix M. Instead, we can combine Egs.
(4.13) and (4.11) into a set of coupled eigenvalue equations, which can be written

as a set of matrix-vector equations:

Mﬁnd,O _ )\nd 1 77nd,1 (4 14)
M%,q0 0 A Und,0 . '

The set of eigenvectors and generalized eigenvectors {t}, o } spans the entire space.

We write the matrix M as M = V~1JV, where the matrix V is composed from the
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set of columns vectors {uj o }. The matrix J is not diagonal. Instead it is a block-
diagonal matrix. Each eigenvalue has a block Ji of size ry x ;. For eigenvalues
with 7, distinct eigenvectors, the block Jj is diagonal, with A; on the diagonal. For
eigenvalues without enough eigenvectors, the block has \,; on the diagonal, and 1

where 1. = is the

Tnd

on the first upper of diagonal. We write J,q = M\l , + N, ,,
rna-dimension identity matrix, and N, , is an 7,4 X r,4 matrix with ones on the first

upper off diagonal and zeros elsewhere. Such blocks are denoted Jordan blocks.

When we phrase Eq. (4.2) in the new basis ¥ = VY, we get the differential
equation Y = JY instead of Eq. (4.8). In particular, for \,4, we get a set of coupled
differential equations:

Q;nd,o = )\ndgljnd,o ) (415>
Ynd,1 = )\ndynd,l + Ynd,0,

and the solution is
Jnao(t) = € G,q0(0)

Und1 (1) = € (§,0.1(0) + tTna0(0)) .

The analytical solution involves a polynomial in ¢. If we have more than one gener-

(4.16)

alized eigenvector for a specific eigenvalue we will have higher order polynomials in
t.

The polynomial term in the solution can be also deduced from the matrix form:

In matrix-vector notation, the solution of Eq. (4.2) is:
Y (t) = MY (0). (4.17)

We use the decomposition M = V=DV, where for a diagonalizable matrix D = A

and for a non-diagonalizable matrix D = .J, to express the exponential eM? as
M =y lelty (4.18)

For a diagonalizable matrix the exponential eP? is composed from the exponentials

At

of the eigenvalues, e***; on the diagonal. For a non-diagonalizable matrix we have

the exponential of the block J,q = A\ql + N. This exponential is

JInat — e()‘ndI+N)t Andt

e = ettt (4.19)
The matrix N is nilpotent and therefore the Taylor series for e™' is finite, resulting

in a polynomial in ¢.

The analytical form of polynomial times exponential will be present also in other

dynamical features. For example, the expectation value of an operator X will have
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the form:
rp—1

(X)) =D diat®exp[Mt] (4.20)

k a=0

instead of the form of Eq. (4.1).

4.2.3 Harmonic inversion at the exceptional points

The analytical form of a time signal that emerge from a system of coupled linear
differential equations is generally a sum of decaying exponents (see, for example,
Eq. (4.1)). Experimentally, however, the problem is inverted. The result of an
experiment can be a time signal C(t), 0 <t < T, sampled at some discretized time
points {t,,}. The goal is to analyze this time series end extract the underlying model,
which is characterized by the eigenvalues {\;} and the amplitudes {dj}. This task is
achieved by the harmonic inversion method, as described in a previous chapter (cf.
Section 2.3). At exceptional points, the analytical form of the time signal is different
(see, for example, Eq. (4.20)). Therefore, the regular harmonic inversion methods
will fail in extracting the signal parameters. Generally, these methods will extract
the eigenvalues correctly, but the amplitudes will diverge. The divergence of the

amplitudes was proposed as a means to identify the exceptional points [Fuchs 2014].

4.3 Exceptional point of the L-GKS generator

Exceptional points were studied in many areas of physics. Some recent reviews can
be found at [Miiller 2008, Uzdin 2012, Moiseyev 2011, Chapter 9]. However, to the
best of our knowledge, the L-GKS equation was not studied in this context. To
initiate such a study, we have to define the parameter space for the driven open
quantum system. When the system is driven by a CW laser, it can be described
in the rotating frame by a time-independent L-GKS generator using the external
field parameters: the detuning between the system and the driving field frequency
A, and the amplitude of the field e. The parameter space for the L-GKS is com-
posed from these parameters. We investigated the exceptional points for an L-GKS
generator that is defined in this parameter space. We found a fascinating structure
of exceptional points. Generally, there are continuous lines of exceptional points in
the A-e parameter space. These lines merge into cusps of higher order degeneracy.

Examples can be found in the following research papers.
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4.4 Exceptional points for parameter estimation

in open quantum systems

The special analytical form of the dynamics at the exceptional points leads to a
divergence of the amplitudes. This divergence can be used to identify the exceptional
points. The sharp divergence enables locating the exceptional points accurately.
Another method of locating the exceptional points can employ any function that
includes terms of the kind A%\, where A\ is the difference between the coalescing
eigenvalues.

The accurate location of the exceptional points can be used for parameter es-
timation: After identifying and locating of the exceptional points, one can invert
the algebraic relations between the eigenvalues and the system parameters to ob-
tain accurate estimation of the system parameters. The accuracy stems from the
enhanced sensitivity of the dynamics near the exceptional points: Small changes
in the parameters lead to different harmonic inversions. Therefore, for parameter
estimation the harmonic inversion at the exceptional points is superior to standard
inversion methods.

We studied the exceptional points in a few examples for driven open quantum
system dynamics and suggested to search for them in the parameter space by varying
the driving laser parameters - the detuning A and the amplitude e. The accurate
location can be used then for determining the intrinsic system parameters with high
accuracy.

The following two research papers elaborate our work:

o Fzceptional points for parameter estimation in open quantum systems: analy-

sis of the Bloch equations. Published at New J. Phys. 17 113036 (2015).

e Parameter estimation in atomic spectroscopy using exceptional points. This

paper was uploaded to arXiv (arXiv:1511.07205) and will be submitted soon.
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4.5 Exceptional points for parameter estimation
in open quantum systems:

analysis of the Bloch equations

Exceptional points for parameter estimation in open quantum systems: analysis of
the Bloch equations

Morag Am-Shallem, Ronnie Kosloff, and Nimrod Moiseyev

Published at New J. Phys. 17 113036 (2015)
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Abstract

We suggest to employ the dissipative nature of open quantum systems for the purpose of parameter
estimation: the dynamics of open quantum systems is typically described by a quantum dynamical
semigroup generator L. The eigenvalues of £ are complex, reflecting unitary as well as dissipative
dynamics. For certain values of parameters defining £, non-Hermitian degeneracies emerge, i.e.
exceptional points (EP). The dynamical signature of these EPs corresponds to a unique time evolution.
This unique feature can be employed experimentally to locate the EPs and thereby to determine the
intrinsic system parameters with a high accuracy. This way we turn the disadvantage of the dissipation
into an advantage. We demonstrate this method in the open system dynamics of a two-level system
described by the Bloch equation, which has become the paradigm of diverse fields in physics, from
NMR to quantum information and elementary particles.

1. Introduction

Felix Bloch [1] pioneered the dynamical description of open quantum systems. Originally Bloch’s equations
describe the relaxation and dephasing of a nuclear spin in a magnetic field. Soon it became apparent that the
treatment can be extended to a generic two-level-system (TLS), such as the dynamics of laser driven atoms in the
optical regime [2—4]. The open TLS has been used to model many different fields of physics. The TLS or a g-bit is
at the foundation of quantum information [5-9]. In particle physics the TLS algebra has been employed in
studies of possible deviations from quantum mechanics in the context of neutrino oscillations [10], as well as
quantum entanglement [11-15], associated with electron/positron collisions and entangled systems due to
EPR-Bell correlations [16].

The TLS is the base for setting the frequency standard for atomic clocks [17]. As a result accurate
measurement of frequency is an important issue. Quantum-enhanced measurements based on interferometry
have been suggested as means to beat the shot noise limit [18]. In these methods the decoherence rate is the
limiting factor [19]. In some cases quantum error correction can increase the coherence time and the accuracy
[20]. In the present study we want to suggest an opposite strategy. By employing the non-Hermitian character of
the dynamics, the decoherence can be transformed from a bug to a feature.

2. Exceptional points (EPs) in open quantum systems

The Bloch equation is the simplest example of a quantum master equation. Bloch rederived the equation from
first principles, employing the assumption of weak coupling between the system and bath [21, 22]. These studies
have paved the way for a general theory of quantum open systems. Davies [23] rigorously derived the weak
coupling limit, resulting in a quantum master equation which leads to a completely positive dynamical
semigroup [24]. Based on a mathematical construction, Lindblad and Gorini, Kossakowski and Sudarshan (L-

© 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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GKS) obtained the general structure of the generator £ of a completely positive dynamical semigroup [25, 26].
In the Heisenberg representation the L-GKS generator becomes [27, ch 3]:
dg X ra o At ITate <
—X = — +1i|H, X[+ (V k__I:VVk’X:I ), (1)
dt ot [ ] zk: ¢ 2Lk -+
where X is an arbitrary operator. The Hamiltonian H is Hermitian and operators V are defined to operate in
the Hilbert space of the system. The[ - ,-] , denotes an anti commutator.
The set of operators {X} supports a Hilbert space construction using the scalar product:
X, Xo) = tr{X TXZ }. A crucial simplification to equation (1) is obtained when a set of operator is closed to the
generator £. Then we can rephrase the dynamics with a matrix-vector notation [28]:

Y = MY )

where Y is the vector of basis operators and M is the representation of the generator £ in this vector space. The
eigenvalues of the matrix M reflect the non-Hermitian dynamics generated by £. In general they are complex
with the steady state eigenvector having an eigenvalue of zero. The solution for this equation is:

Y (t) = eMY (0).

When M is diagonalizable, we can write M = T A T ! fora non-singular matrix T'and a diagonal matrix A,
which has the eigenvalues { ); } on the diagonal. Then we have e’ = Te 'T~ !, with the diagonal matrix ™,
which has the exponential of the eigenvalues, e*!, on its diagonal. The resulting dynamics of expectation values
of operators, as well as other correlation functions, follows a sum of decaying oscillatory exponentials. The
analytical form of such dynamics is:

(X)) =>di exp[ —iwkt], 3)
k

where —i wy, denoted as complex frequencies, are the eigenvalues of M, dy are the associated amplitudes, and
both wy and dy can be complex. The real part of the complex frequency wy represents the oscillation rate, while
the imaginary part, Im(wy) < 0 represents the decaying rate.

For special values of the system parameters the spectrum of the non-Hermitian matrix M is incomplete. This
is due to the coalescence of several eigenvectors, referred to as a non-Hermitian degeneracy. The difference
between Hermitian degeneracy and non-Hermitian degeneracy is essential: in the Hermitian degeneracy, several
different orthogonal eigenvectors are associated with the same eigenvalue. In the case of non-Hermitian
degeneracy several eigenvectors coalesce to a single eigenvector [29, ch 9]. As a result, the matrix M is not
diagonalizable.

The exponential of a non-diagonalizable matrix M can be expressed using its Jordan normal form: M = T]
T~'. Here, J is a Jordan-blocks matrix which has (at least) one non-diagonal Jordan block; J; = A1 + N, wherel
is the identity and N'has ones on its first upper off-diagonal. The exponential of M is expressed as ™" = Te&/'T" !,
with the block-diagonal matrix ¢/’ which is composed from the exponential of the Jordan blocks ei] t.For non-
Hermitian degeneracy of an eigenvalue )\;, the exponential of the block J; will have the form: e = e MI+Nf =
e*'eNt. The matrix Nis nilpotent and therefore the Taylor series of e™" is finite, resulting in a polynomial in the
matrix Nt. This gives rise to a polynomial behaviour of the solution, and the dynamics of expectation values will
have the analytical form of

1]

(X (1)) = sz: di o t® exp[iwgfk)t], (4)
k a=0

replacing the form of equation (3). Here, w{"*’ denotes an eigenvalue with multiplicity of r; + 1. Note that for

non-degenerate eigenvalues, i.e. 7, = 0, we have diy = dyand w{ = wy. The difference in the analytic behaviour

of the dynamics results in non-Lorentzian line shapes, with higher order poles in the complex spectral domain.

The point in the spectrum where the eigenvectors coalesce is known as an exceptional point (EP). When two
eigenvalues of the master equation coalesce into one, a second-order non-Hermitian degeneracy is obtained. We
refer to it as EP2, while a third-order non-Hermitian degeneracy is denoted by EP3.

This study addresses the scenario of the dynamics of a system coupled to a bath. The formalism is a reduced
description of a tensor product of the system and the bath [27, 30]. The coupling to the bath introduces
dissipation and dephasing into the dynamics. The state is represented as a density operator in Liouville space,
and the dynamics is governed by the L-GKS equation. The non Hermitian properties of the dynamical generator
L is caused by tracing out the bath degrees of freedom. We employ the Heisenberg picture with a complete
operator basis set in Liouville space.

Previous studies of the physics of EPs investigated the scenario of scattering resonances phenomena. In that
different scenario, the non Hermitian properties of the effective Hamiltonian are caused by the interaction

2
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between the discrete states via the common continuum of the scattering states [31, 32]. In those studies only
coherent dynamics is considered and the dissipation and dephasing phenomena are absent.

Examples for EPs have been described in optics [33, 34], in atomic physics [35-40], in electron—-molecule
collisions [41], superconductors [42], quantum phase transitions in a system of interacting bosons [43], electric
field oscillations in microwave cavities [44], in PT-symmetric waveguides [45], and in mesoscopic
physics [46,47].

Recently, Wiersig suggested a method to enhance the sensitivity of detectors using EPs [48]. Below we
suggest to employ the EPs for the purpose of parameter estimation.

3. Identifying the EPs and parameter estimation

The analytical form of decaying exponentials, equation (3), is used in harmonic inversion methods to find the
frequencies and amplitudes of the time series signal [49-51]. These frequencies and amplitudes can be employed
to estimate the system parameters. If the sensitivity of the estimated frequencies is increased with respect to the
system controls, the accuracy of the parameter estimation is enhanced. Such sensitivity increase can be achieved
using the special character of the dynamics at EPs.

At EPs the analytical form includes also polynomials (equation (4)). Fuchs et al showed that applying the
standard harmonic inversion methods to a signal generated by equation (4) leads to divergence of the amplitudes
di. An extended harmonic inversion method can fix the problem. The divergence of the amplitudes d at the
vicinity of EP can be used to locate them in the parameter space very accurately [52]. This is a consequence of the
special non analytic character close to the EP (see in ch 9 in [29]).

Relying on the ability to accurately locate the EPs in the parameter space, we suggest to use the EPs for
parameter estimation. The procedure we suggest follows:

(1) Accuratelylocate in the parameter space the desired EP by iterating the following steps:

(a) Perform the experiment to get a time series of an observable for example the polarization as a function
of time.

(b) Obtain the characteristic frequencies and amplitudes of the signal using harmonic inversion methods.

(¢) Inthe parameter space, estimate the direction and distance to the EP and determine new parameters for
the next iteration.

(ii) Invert the relations between the characteristic frequencies and the system parameters at the EP to obtain the
system parameters.

The accurate location of the EPs, followed by inverting the relations, will lead to accurate parameter
estimation.

4. Determination of the physical parameters in two level systems

4.1. The Bloch equation

The Bloch equation describes the dynamics of the three components of the nuclear spin, S,, S,, and S,, under the
influence of an external magnetic field, or a two-level atom in external electromagnetic field. In the rotating
frame, we can write the equations in a matrix-vector notation:

S) (L oA o )5 0
L
d| . 1 - 0
R = —A - — € , 5
a S, . S|+ (5)
1
N N
S, T \S. 5

with T} and T} as the dissipation and dephasing relaxation parameters, and the detuning from resonance A and
the amplitude e as the field parameters. See details in appendix A.

The Bloch equations can be derived from the L-GKS equation of the two-level system, with the effective
rotating-frame Hamiltonian
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Figure 1. A map of the non-Hermitian degeneracies of the eigenvalues of the matrix M of equation (6), as a function of eand A, for
fixedI' = 0.1. The lines represent second order exceptional points (EP2). The cusps, where A = + \/1/108 Te= \/8/108 T (red
asterisks), are third order exceptional point (EP3). In the area inside the ‘triangle’, marked with pale blue, the eigenvalues of the matrix
M are real. The EP2 curve distinguishes between points with real and complex eigenvalues.

H=AS, + féx,

along with relaxation and dephasing terms. see appendix B for details.
Reducing the number of parameters, the master equation can be incorporated in the matrix:

N
2
M= , 6
AT ©)
2
0 —e¢ —-T
withT = 2L — Lasthe general relaxation coefficient (see appendix B).

27 L
The dynamics is determined by the exponential e, which typically describes oscillating decaying signal, see

equation (3). Nevertheless, for specific parameters leading to EP the dynamics is modified to include
polynomials, see equation (4).

4.2. EPs in the Bloch equation

The EPs are non-Hermitian degeneracies in the matrix M of equation (6). The task is to express the EPs using the
parameters of this matrix. Explicit derivations are presented in appendix C. Non-Hermitian degeneracies of the
eigenvalues [29], EP2, occur when

T4A2 ¢ 16(A2 + 52)3 + F2(8A4 — 20262 — 54) =0.

Figure 1 shows a map of EP2 curve as a function of e and A for fixed I" = 0.1. Such figures were obtained in the
study of analytical solutions for the Bloch equation [53-55].

A third order EP, EP3, occurswhen A = £,/1/108 I', ¢ = /8/108 I (red asterisks in figure 1). These
triple-degeneracies EP3 occur twice, and have a cusp-like behaviour, emerging from the EP2-curves, identifiable
as a section through an elliptic umbilic catastrophe [56]. This topology is also consistent with an analysis of non
Hermitian degeneracies in a two-parameters family of 3 x 3 matrices [57]. In very strong driving fields the
matrix M will loose symmetry [58, 59] maintaining the cusps but skewing the topology.

4.3. EP identification and parameter estimation

We now describe the two steps of the method for accurate determination the physical parameters. The first step
is to identify the desired EP using a sequence of measured time-dependent signals. The second step is to invert
the relations and determine the system parameters.

4.3.1. Identifying the second and third order EPs

To identify the EPs we used time series of the polarization observable S, = (S.), initially at the ground state. We
simulated the dynamics with varying field parameters (¢, A) generating a time series of polarization S [n] = S, (1 6¢).
This signals served as the input for the harmonic inversion.

4
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Figure 2. Identifying an EP2 for I' = 0.1 and € = 0.01. The left y-axis (purple asterisks) shows the absolute value of the difference
between the frequencies, |w, — w|, versus the detuning A. The non-Hermitian degeneracy point is located with high resolution. The
right y-axis shows the corresponding amplitude, obtained by the regular harmonic inversion method |d, | (red stars), and by the
extended method |d; | (blue points). The diverging behaviour of |d; | indicates that the degeneracy is an EP.

The parameters A and e were tuned close to an EP. Generically we should have
S.(8) = de 0 4 dye it | dye i,
butin the EP2 (r, = 1) we get
S.(t) = de7 1" + (dz,o + do, t)e_iw(zl>t,
and for EP3 (r, = 2)
S:(0) = (duo + duat + dyo?)e 4™,

(See equations (3) and (4).) We located suspected EPs by identifying possible degeneracies of the assigned
frequencies wy. As stated earlier, applying standard harmonic inversion methods for the time series generated by
anon-diagonalizable matrix, leads to divergence of the amplitudes d; [52]. This divergence can be used to locate
the EPs accurately. A verification can be obtained by using the extended harmonic inversion method.

This procedure was employed to identify an EP2 for fixed I" = 0.1 and ¢ = 0.01, with varying A. The purple
asterisks at figure 2 displays the absolute value of the difference between the frequencies |w, — wy|, obtained by
the harmonic inversion for each parameter set. The degeneracy point is clearly observed. The diverging
behaviour of the amplitudes is shown in red stars. It is consistent with the degeneracy of the frequencies. The EP2
islocatedat A = 1.021 x 107, consistent with the prediction. Using a finer mesh of sampling points the EP
can be identified with a resolution exceeding 0.5 x 107,

The EP3 was identified by a 2D search performed by varying e and A, for fixed I' = 0.1. We searched for the
degeneracies of the three eigenvalues by employing the 2D function

1 1 1
F A, 5 F :l > 7
@ e 1) =log (W — w2) (W — ws) (w3 — wy) @

which should diverges at the EP curve. Numerically, we get high values at this curve, with highest values obtained
atthe EP3. The upper panel of figure 3 shows the sharp curve of peaks following the curve of EPs. The highest
point on the merging two ridges is the EP3. The lower panel of figure 3 shows the sum of the absolute values of
the amplitudes, calculated by the standard harmonic inversion. The curve of the EPs is clearly identified.

Refining the search leads to very high resolution, and the EP3 can be identified with a high accuracy,
approaching the theoretical valuesof A = {/1/108 I',e = /8/108 I.

An efficient algorithm to identify the EP3 is demonstrated based on a two-dimensional search in the
parameter space of A and e. This procedure enables the experimentalists to identify accurately the laser
parameters for which the EP3 is obtained. We use the maximum of the function equation (7) as the objective
leading to EP3.

Evaluating the function at each desired point in the parameter space include the following steps:
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Figure 3. Identifying the triple exceptional point EP3. The upper panel shows the 2D function F (A, ¢, I') presented in the text. The
highest point corresponds to the triple-EP point EP3. The lower panel shows the sum of the absolute values of the amplitudes, which
were calculated by the regular harmonic inversion method.

(i) Time series: obtain a time series of the polarization by performing the experiment or the numerical
simulation.

(i) Frequencies: calculate the frequencies from the time series by harmonic inversion.
(iil) Function evaluation: evaluate the function F(A, €, I') from the calculated frequencies.

Standard search methods can stagnate due to the high values at the EP2 curve. Another difficulty is the cusp
behaviour of the EP2 curve close to the EP3. To overcome these diffculties we implemented a ‘climbing the
valley’ procedure: staying on the valley of the local minima ensures the search overcomes the stagnation due to
the EP2 curve. The procedure follows:

(1) Preliminary step—initial point:

(a) Locate points inside the triangle-like EP curve (see figure 4). The inner area of the curve is characterized
by real-only eigenvalues.

(b) Performa 1D search to find a minimum on a straight line.

(i) Valley ascend: each iteration ascends up the valley to a point with higher value of the function F. This is done
by finding a minimum on the circular arc that is centred at the current point, enclosed by two radii. The
angles of these radii can be predefined or defined on each iteration. We perform the following steps:

(a) Determining the angular range. Predefined or from the previous iterations.

(b) Determining the radius. The radius is the distance from the current point to nearest point on the EP2
curve that is in the angular range.

(c) Finding the next point. Performing a 1D search on the circular arc that is defined by the angular range
and the radius (see blue arc in figure 4). The point for the next iteration is the point on the arc with the
minimal value of F (see end of green line in figure 4).

These steps converge to the desired EP3 point. Figure 4 demonstrates the progress in the ‘valley ascend’
method with a few iterations.
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Figure 4. A sketch of the iterations progress in the ‘valley ascend’ method.The collors on the background and the black contour lines
represent the function F(A, ¢, I') of equation (7). In each iteration we plotted with blue line the circular arc on which we searched for
the minimum. The black asterisks show these minima, which form the curve, plotted with a dashed light green line, that ‘climbs’ in the
valley of the objective function.

The Valley ascend method presented above is a generic method, and can be used also for searching higher
order degeneracies in other systems. For the Bloch equation case, where the generating matrix, equation (6), is a
3 X 3 matrix, the EP3 is the point where the characteristic polynomial

Py =(w—w)w—w)(w— ws) ®)

has roots with multiplicity of 3. Therefore we can use the special properties of the cubic equation and perform a
regular root search. We define r, s and ¢ as the coefficient of the polynomial Pa_, r(w) defined in equation (8):

(w— w)(w — w)(w— w3) =W+ rw? + sw+ t. 9)

We define the functions
pA, 6, T)=5s— %rz
(AeF)—2r3—1rs+t (10)
7= e 27 3 ’

and perform a 2D conventional root search. The point in the parameter space where these two functions vanish
is point where the three eigenvalues are degenerate. We have applied this method using standard method of 2D
root search obtaining high accurate values of the EP3.

4.3.2. Physical parameter estimation from the value at the EP

For the TLS the system parameters are the frequency w; associated with the energy gap, the general decay rate I'
and the dipole strength pi.. The external experimentally controlled parameters are the driving frequency v and the
power amplitude €. The parameters of equation (6) can be related with € = p&€ and A = w, — v. One would
like to estimate the system parameters from experiments. After locating accurately the EP, we can determine the
parameters by inverting the relations between the eigenvalues and the system parameters.

To obtain high accuracy, we used the identification the triple-degeneracy point EP3 presented above, so both
parameters—A and e— are located accurately. The accurate location of A and e makes the parameter
estimation very robust to uncertainties in the location of the EPs. This is a consequence of the special non
analytic character close to the EP3 (see appendix D). Therefore, the system parameters I', w;and o can be
determined to a high degree of accuracy at this point. From the eigenvalues of the matrix M in equation (6) we
getl' = %(wl + w; + ws3). To obtain e and A one has to invert nonlinear relations (see appendix C). At the EP3,

the inversion becomes: w; = v + /1/108 T',u = /8/108 F/E.

4.3.3. Noise sensitivity

Parameters estimation naturally raises the issue of sensitivity to noisy experimental data. The noise sensitivity
will be determined by the method of harmonic inversion. If the sampling periods have high accuracy then the
time series can be shown to have an underlying Hamiltonian generator. This is the basis for linear methods, such

7
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as the filter diagonalization (FD) [49, 50]. The noise in these methods results in normally distributed underlying
matrices, and the model displays monotonous behaviour with respect to the noise. This was verified analytically
and by means of simulations in [60]. As a result sufficient averaging will eliminate the noise. Practical
implementations require further analysis with evidence of nonlinear effects of noise. For example, Mandelshtam
et al analysed the noise-sensitivity of the FD in the context of NMR experiments [61, 62] and Fourier transform
mass spectrometry [63]. For some other methods, a noise reduction technique was proposed in [51].

5. Discussion

Bloch’s equation has become the template for the dynamics of open quantum systems. Such systems typically
decohere with a dynamical signature of decaying oscillatory motion. It is therefore surprising that the existence
of non Hermitian degeneracies has been overlooked. Our finding of an intricate manifold of double
degeneracies EP2 and triple degeneracies EP3 in the elementary TLS template suggests that any quantum
dynamics described by the L-GKS generator [25, 26] will exhibit a manifold of EPs.

Non Hermitian degeneracies of the EP have a subtle influence on the dynamics. The hallmark of EP
dynamics is a polynomial component in the decay leading to non-Lorentzian lineshapes. We suggest an
experimental procedure to identify the EP in Bloch systems, using harmonic inversion of the polarization time
series. The sensitivity of harmonic inversion in the neighbourhood of an EP enables us to accurately locate the
EP, and therefore allows us to determine the system parameters: the energy gap w, the dipole transition moment
1, and the decoherencerate I'.

This study is only the first step in establishing parameter estimation via EPs. A generalization to larger
Liouville spaces is under study for atomic spectroscopy. Under the influence of driving fields and due to
spontaneous emission, atoms and ions can have a structure of N-level system with relaxation. In these systems
we expect non-Hermitian degeneracy of high order. The structure of the EPs in these systems can be used for
estimating the energy differences, the lifetimes, and branching ratios. Work in this direction is in progress.

Many quantum systems are open and their dynamics has dissipative nature, which is described well by the
L-GKS equation. Therefore we expect to find EPs in many quantum systems. Under the appropriate
circumstances these EPs can be used for accurate parameter estimation.
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Appendix A. Bloch equations

The Bloch equation describes the dynamics of the three components of the nuclear spin, Sy, S, and S, under the
influence of an external magnetic field H. The equations as appear in Bloch’s original paper ([1], equation (38))

are
1
Sx =7v(S,H, — S;H, —Sx
/7( v y) T
1
S, =v(S,H, — SyH, —S
y 7( ) Y
. 1 0
S, = y(sty - sny) - E(sz - sz). (A.1)
T, and T, are two relaxation parameters (the pure dephasing rate % is related by % = % + %), vis the
2 2 1 2

gyromagnetic ratio, and S, is the equilibrium value of S, under the influence of constant external magnetic field
H, = H,. These equations can be recast in a matrix-vector notation:
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Sx 1 Sx 0
—— AH, —9H
T v Yy
d 1 0
—\S|=1-""H. — = H: ||S$]|+ ) A.2)
v 2 T y (
1 1
H, —~H, — — —s?
O I Y | © B

For an external field H with the components H, = H, cos wt, H, = —H, sin wt, H, = Hy, we define the
rotating frame:

S, = S.cos wt — ﬂysin wt
Sy =~ Ssin wt — §ycos wt. (A.3)

With the notations e = yH; and A = vH, — wwe have (see also [4]):

Sx — i A 0 Sx 0
T
dl| . 1 - 0
0 —€ — 1 iSZ0
Sz L )\S. 4

These equations also describe, in the dipole approximation, a two-level atom in external electromagnetic
field. In this case, the system parameters are the the unperturbed frequency of the system w, and the dipole
strength p. The external experimentally controlled parameters are the driving frequency v and the power
amplitude &. The parameters of equation (A.4) are related with ¢ = € and A = w; — v. In the absence of
dissipation the eigenvalues of the matrix are pure imaginary, and the dynamics is a free precession of the
polarization vector characterized by the Rabi frequency: 2 = /€2 + A?. When dissipation is present the
eigenvalues of the homogeneous part of equation (A.4) become complex, reflecting a decaying oscillation
dynamics leading asymptotically to a steady state.

Appendix B. Derivation of the Bloch equation from the L-GKS equation

In the Heisenberg representation the L-GKS generator becomes:

dx - 56—’: Ci[A K]+ ;(v;m -, x}) B.1)

where X is an arbitrary operator. The Hamiltonian H is Hermitian and V is defined to operate in the Hilbert
space of the system. The curly brackets denote an anti commutator. The set of operators { X} supports a Hilbert
space construction, with the scalar product defined as: X, X)) = tr XT)A(Z .
For two-level system, the effective rotating-frame Hamiltonian under a driving field with detuning A and
driving frequency € is:
H = AS, + €5,. (B.2)

The TLS L-GKS equation for an operator X with relaxation and pure dephasing becomes

~ﬂ$,$ﬁﬂ, (B.3)

where k. are kinetic coefficients, x, /xk_ = exp(—/w/kgT), and yis the pure dephasing rate [2, 64].
To rephrase the equation in a matrix-vector notation, We use the polarization operators and the identity

. . o ~ o~ A om\T . .
matrix to form the vector of basis operators: S = (Sx, S,, S, I) . Then equation (B.3) can be written as

Y S0, . . / . . .. .
S = M'S , withan appropriate4 x 4 matrix M . We can reduce the dimensions by writing an inhomogeneous

. 4 (s & a\l
equation for the three-component vector S = (Sx, S,, SZ) :

9
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S—=(M— (S - 8), (B.4)

with' = k_ + Kk, — 7,Tasthe3 x 3identity matrix, §eq that fulfills
(I — M)S'eq = (0, 0, (k; — #_)D)T and the matrix:

- — A 0
2
M= . B.
I @
2
0 —¢ —T

Equation (B.4) can be merged with the Bloch’s equation (A.4) where % = Ky + k_and % =
1 2

Y+ 3y + K.
The general solution for this equation is:

—

S(#) = M (Sy = Sq) + Seq (B.6)

with §, = S (0).

The master equation equation (B.3) is a common form for TLS found in the literature [7, 65, 66].
Equation (B.5) which determines the EP interpolates between two extreme cases. The first is associated with
spontaneous emission, thenI" = x_ . The second is a hot singular bath dominated by pure dephasing,
thenl' = — ~.

Appendix C. Eigenvalues of the matrix M

The task s to find the eigenvalues of the generator matrix (6).
We first define the variables:

Y= 12A% + 1262 — I?
X =— 36A% + 18¢2 — I'2. (C.1)

We also define:

WX T

— (F4A2 + 16(A2 + 62)3 + F2(8A4 — 2022 — 54))1/2. (C.2)

With these definitions the eigenvalues of equation (6) become:

m=—2r+ Hwerxor - — X
3 6 (W + Ix)'/3

"y = — EI‘ + 1 elST(W 4+ TX)1/3 + ei%”;
3 6 (W + Ix)'/3

my=— 21 + L e w4+ 1)1 4 et |, (3)
5 6 (W + LX)/

Forreal W (i.e. for I'?X? + Y?* > 0)all eigenvalues are real. For 'x? 4+ Y° < 0,Wis complex, and two of the
eigenvalues are complex (complex conjugate to each other).

Non-Hermitian degeneracies of the eigenvalues occur when Wvanishes. In such cases the second and third
eigenvalues are degenerated, leading to EP2. A third order EP, EP3, occurs for X = Y = 0. This happens when
A ==1,/1/108 T', ¢ = \/8/108 I'. These triple-degeneracies EP3 occur twice, and have a cusp-like behaviour,
emerging from the EP2-curves, identifiable as an elliptic umbilic catastrophe [56]. This topology is also
consistent with the analysis of non Hermitian degeneracies of a two-parameters family of 3 x 3 matrices, done
by Mailybaev [57]. In very strong driving fields the matrix M will loose symmetry [58, 59] maintaining the cusps
but skewing the topology.

Appendix D. Non analytic character close to the EP3

There is a special non analytic character close to the EP3: when v — v and € — EFP? then the three
frequencies obtained by the standard harmonic inversion coalesce, leading to a branch point (see ch 9 in [29]):

10
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1
wi=123 = w? + eiz%[ak(z/ - I/EP3) + ﬂk(f — 5EP3)]3 (D.1)

where a; and 3y are parameters. At the EP3, i.e. for v — v and £ — £FP3, we get Owy/Ov — oo and
Owy/0E — o0, leadingto OT'/Ov — ocoand IT'/OE — oo.
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Abstract. The dynamics of spontaneous emission of an atomic system is studied in
the framework of an open quantum system. The resulting quantum master equation
for the atomic system is non hermitian. The generator £ can possess non-hermitian
degeneracies, i.e. exceptional points (EP), for specific values of the external laser
driving amplitude and detuning from the atomic lines. We suggest to employ the
special properties of these EPs for accurate parameter estimation. The method is
demonstrated for the atomic spectrum of S — P transitions of ®°Rb and 4°Ca *.

1. Introduction: Electronic transitions and spontaneous emission in atomic
systems

Atomic spectroscopy is unique in its experimental accuracy, able to achieve a dynamical
range of precision of up to 18 significant digits. High-performance frequency standards
is the technological result of this precision leading to applications such as network
synchronization and GPS [1|. This technology is enabled by atomic clocks |2, 3].
High accuracy has implications in other fields of physics such as radioastronomy (very-
long-baseline interferometry) [4], tests of general relativity [5], and particle physics [6].
Atomic spectroscopy has been a primary source of fundamental constants |7|. For
example, a small deviation of the Rydberg constant can indicate the radius of the
proton |8].

1.1. Electronic transitions and spontaneous emission

Atomic spectroscopy is the study of electronic transition in atoms. The spectral
lines correspond to Bohr frequencies of the transitions between energy levels of the
atom. Within this viewpoint the spectral theory involves calculating the eigenvalues
of the atomic hermitian Hamiltonian. The observed spectrum is then predicted by
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perturbation theory assuming weak excitation and knowledge of the transition dipole
matrix elements.

The simple picture of atomic spectroscopy is hampered by the notion that atoms
are imbedded in the radiation field. The primary influence is spontaneous emission
and Lamb shifts [9]. In principle one can employ quantum field theory and treat the
radiation field and the atom using a Hamiltonian description [10].

H= Hatom + Hradiation + Hinteraction~ (1)

Our aim is to concentrate on the atomic spectra. We therefore employ a reduced
description where we derive effective equations of motion for the atomic system by
tracing out the radiation field. This is the approach incorporated in open quantum
systems. In this case the reduced dynamics is described by a non-hermitian generator L.
We will show that due to non-hermitian degeneracies there is a profound and unexpected
influence on the atomic spectrum.

1.2. The L-GKS equation for spontaneous emission

The phenomena of spontaneous emission (SE) cannot be described by a unitary
description, such as the Schrodinger equation for the wave function, or the counterpart
Liouville-von-Neumann master equation for density matrices. = Hamiltonian-based
approaches incorporate only coherent dynamics. Dissipation and dephasing phenomena
are properly described by the quantum master equation [11, 12|. The general structure of
the quantum master equation was introduced by Lindblad [13] and Gorini, Kossakowski
and Sudarshan [14] (L-GKS). Based on a mathematical construction they obtained the
general structure of the generator £ of a completely positive dynamical semigroup. The
L-GKS master equation (known also as the Lindblad equation) adds dissipative terms
to the master equation which handles SE:

op R Ul A A aaf Lrat i R

E =Lp = _ﬁ |:H7 P} + Zra—w (A(a,b) PA(ayb) - 5 |:A(a7b)A(a,b)7 PLL ) (2)
(a,b)

where the [-, -] denotes a commutator, and the [-,-] | denotes an anti commutator.

The first term is the commutator of the Hamiltonian with the density matrix, which
generates the unitary dynamics. The second term is the dissipator, which generates the
spontaneous emission. The sum is over the pairs of levels (a, b): Each of the annihilation
operators

A@p) = Ay = [b)(al (3)
generate a decay from the upper source level |a) to the lower destination level |b). The
anti commutator [Azmb)‘&(a,b), p . expresses the decrease in population of the excited
state |a), while the resulting increase of population of the lower state |b) is expressed by

the term A(a,b) f)A(a’b). Note that the anti commutator contains the term

AlunyAan = (Ja)(B]) (b){al) = [a)(a] = P,, (4)
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where P, is the projection operator, projecting on the subspace spanned by |a).
Therefore, the decrease in population of the excited state is expressed using only the
population on this state, and does not require knowledge of other states.

The decay rate for the pair of levels (b, a), I',_p, can be obtained by a microscopic
derivation of the quantum optical master equation from the Hamiltonian of Eq. (1)
under the weak coupling limit. The Born-Markov approximation is employed where the
perturbation parameter is the dipole interaction between the atom and the radiation at
temperature 7' = 0. The rate obtained is equivalent to the golden rule formula [15]:

3

Losp = %% || (5)
with w,, as the transition frequency, ¢ the speed of light, and d,; the transition dipole
matrix element. For states with defined angular momentum, the transition dipole matrix
element becomes:
:éw_gba’(JaHfHJbHQ (6)

3 2 2 +1

Here, « is the fine structure constant, and J,, J, are the angular momenta of the states

FULHb

|a) and |b). (J,||E|| J») is the reduced dipole matrix element between J, and J.

The total decay rate from a state |a) is the sum I'y, = )", I',;,. This decay rate
defines the lifetime of the excited state: 7, = ', !.

The spontaneous emission rate is completely determined by the fundamental
physical constants: i.e. magnetic moment of the electron and the nuclei, etc. These
constants determine the values of the energy levels splitting and lifetime. By inversion,
an accurate measurement of the energies and lifetime constitutes an appropriate
determination of universal parameters.

1.3. Population leakage

Typically in atomic systems the excitation and de-excitation transitions are not closed.
Population can leak to other levels of the atomic system. The population is expressed
by the diagonal entries in the density matrix p, and the total population is Tr{p}.
The dissipative term in Eq. (2) conserves the total population in the system, i.e.
0: Tr{p(t)} = 0. To incorporate population loss we utilize the fact that decrease of
population in an excited state is described by the anti commutator terms, which uses
only the population on this state and does not require knowledge about other states.
Therefore the dissipator £ will include additional terms composed only from the anti
commutators. Such terms cause a decrease in the population of the excited state which
are not compensated by an increase of population of other states. For each excited state
|a) the additional term will have the form:

£0p = = 5Tasear [P )] (7
The total decay rate from the state |a) is now I'y = T'gjear + >, Tase.  We define
Xa = Liear/Ta as the branching fraction that decays from the excited state |a) to states
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out of the primary system. Introducing such leaking terms into the dissipator reduces
the total population, and therefore 0, Tr{p(¢)} < 0.
The total spontaneous emission part of the L-GKS equation will have the form:

Lspp =3 (; Las <A<a,b>PAI b~ {pwﬁh) — 2l atear [15‘“’3 L)

2 AaT 5 A
=TT (A(a,b) pAy ~ 4T [Pui]

If the excited state |a) decays to a manifold B with N states |b) € B with equal decay
rate, then we have I, = (1 — xo)'o/Np. The spontaneous emission part will have the

(8)

form:

Lspp = ZF ( o) ZA(ab)pA(ab) ;[f’mﬁL)- (9)

beB

1.4. Pure dephasing

Pure dephasing is the loss of coherence without change in population. Random
fluctuations of the energy levels will generate pure dephasing. A possible mechanism is
caused by elastic collisions with other atoms in the chamber. An additional mechanism
is caused by noise in the monitoring or driving laser. As a result, the pure dephasing
rate can be controlled, for example by changing the density of the atomic gas, or by
generating fluctuations in the external field. We denote the pure dephasing rate by
Laeph-

Within the L-GKS equation pure dephasing is described by a generator £ which

commutes with the Hamiltonian, for example £ = [y, I:I, I:I, }

1.5. The Heisenberg form

An alternative description is to describe the dynamics in an operator base. As a result
the L-GKS equation is employed in the Heisenberg representation |16, 15, 17|, the
hermitian conjugate of Eq. (2). The equation of motion for an operator X becomes:
do 00X i 11 &

2% - [H X] T, (Al XA, [Pa,X} . 10
@ "ot Tk +§ %”( (ap) ) T g + (10)

For system with population leakage the equation will have additional anti commutator
terms as in Eqgs. (8) and (9).

2. Dynamics of driven open atomic systems at the exceptional points

The dynamics generated by £ will be represented by an explicit matrix vector notation.
The density matrix p, which is an element in Liouville space, is represented as a vector,
while £, which is a linear superoperator operating in this space, is represented by
a matrix. There are a few methods to generate such a representation cf. a recent
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demonstration [17]. In this study we employed the Heisenberg approach for the two-
level systems, and the vec-ing approach for larger systems. The vec-ing approach flattens
the density matrix into a vector, representing the L-GKS generator by an appropriate
matrix. This results in N? x N? matrices for the L-GKS generator. We denote the
vector representation of the density matrix p as p, and the matrix representation of £
by L. In this notation, Eq. (2), is expressed by a matrix-vector equation:

F=Lp (11)
The eigenvalues of the matrix L reflect the non-hermitian dynamics generated by £. In
general they are complex with the steady state eigenvector having an eigenvalue of zero.
2.1. L-GKS Dynamics and exceptional points

The solution for Eq. (2), given an initial density matrix p,, and assuming that the
generator L is time-independent, can be formally expressed by:

At = c“py. (12)
In the matrix-vector representation we have:
p(t) = e p(0). (13)

The dynamics described by Eq. (13) typically is described by a sum of decaying
oscillatory exponentials. The dynamics of expectation values of operators, as well as
other correlation functions, will have the analytical form (see Appendix A):

(X(1)) = Z dj; exp[—iwyt] , (14)

where —iwy, are the eigenvalues of L, dj. are the associated amplitudes, and both w;, and
dj can be complex.

The spectrum of the non-hermitian matrix L is a function of the external parameters
of the system. For specific values the spectrum becomes incomplete. This is due to the
coalescence of several eigenvectors, denoted as a non-hermitian degeneracy. For such
parameters the matrix L is not diagonalizable. Such points in the parameter space
are known as exceptional points (EP). At the exceptional point the dynamics has a
polynomial character. The temporal value of expectation values of operators has the
form:

XO) =33 deat” expl -] (15)

k a=0
which replaces the form of Eq. (14) (see Appendix A).

When two eigenvalues of the master equations coalesce into one, a second-order
non-hermitian degeneracy is obtained. We refer to it as a second order exceptional
point and denote it with EP2. A third-order non-hermitian degeneracy is denoted by
EPS3. There are points in the parameter space in which n pairs of eigenvectors coalesce,
each pair into a distinct eigenvector. They will be denoted as EP2".
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2.2. Identification of EPs using the dynamics

The analytical form of decaying exponentials, Eq. (14), is used in harmonic inversion
methods to find the frequencies and amplitudes of the time series signal [18, 19, 20].
Harmonic inversion methods are widely used for analysis of experiments in diverse fields
such as NMR spectroscopy [21], Fourier transform mass spectrometry |22|, and ultrafast
pump-probe molecular spectroscopy [23].

However, at exceptional points the analytical form is different: Fuchs et al. showed
that applying standard harmonic inversion methods, which were designed for Eq. (14),
to a signal generated by Eq. (15), leads to divergence of the amplitudes dj [24]. We
used the Padé approximant harmonic inversion algorithm presented in Refs. [20, 24].
The divergence of the amplitudes d in the vicinity of exceptional points is employed to
accurately locate them in the parameter space |24, 25|.

2.3. Parameter estimation using EPs

The ability to accurately locate the EPs in the parameter space is used for parameter
estimation. The procedure is as follows:

(i) Accurately locate in the parameter space the desired exceptional point by iterating
the following steps:

(a) Perform an experiment to obtain a time series of a physical observable.

(b) Obtain the characteristic frequencies and amplitudes of the signal.

(c¢) In the parameter space, estimate the direction and distance to the EP and
determine new parameters for the next iteration.

(ii) At the EP, invert the relations between the characteristic frequencies and the system
parameters to obtain the system parameters.

The accurate location of the exceptional points, followed by inverting the relations,
will lead to an accurate parameter estimation. This procedure was used to estimate
the parameters of the Bloch system from iterations of time series [25]. This parameter
estimation is robust to uncertainties in the location of the EPs. The noise sensitivity is
affected by the harmonic inversion. See a short discussion regarding noise in harmonic
inversion methods in Appendix C.

3. Effective two-level systems and Bloch-like EPs

3.1. Closed two-level systems

Under the influence of polarized driving fields, some atomic transitions behave as
a closed two-level system. An example is the transition between the hyperfine
states |52Sy/5, F = 3,mp = 3) and }52P3/2,F =4,mp =4) of the ®¥Rb atom, with
o" polarization. The selection rules impose that all the transitions - stimulated and
spontaneous - occur only between these states. The system parameters are: System
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frequency of w,—384.229241689 THz (assuming no Zeeman splitting), decay rate of
'=38.117x10%!, and dipole moment of y=2.98931 eay [26]. We define the detuning
between the system frequency w, and the electromagnetic field carrier frequency w; as
A = ws—wy,. The resonance Rabi frequency is Qg = —uEy/h, where Ejy is the amplitude
of the electromagnetic field.

We employ the Heisenberg representation to describe the dynamics. We define |s)
as the lower state, and |p) as the upper state. The dynamics are described by the set of
operators:

(16)

—_ N K
Il
__?_
- S~ ~—
~
=
I
s
~ ~— ~—
A~~~
I R

We form a four-vector from these operators. We write the Heisenberg equations,
Eq. (10), for the operators in this vector, and get a differential equation with a 4 x 4
matrix [17]. The conservation of population is expressed by %i = 0. Therefore we can
omit the equation for the operator I, and add an inhomogeneous term instead. This
results in the Bloch equations [25]. To find the exceptional points we need only the
homogeneous part of the equation, which is incorporated in the matrix:

A0
M=| -A -L o |. (17)
0 —-Qp T

The EPs of this matrix compose a deltoid-like curve. The curve is demonstrated
in Figure 1 (the x = 0 curve. The other curves in this Figure refer to systems
with population leakage and will be described below). The cusps of this EP-curve
are identified as EP3. The accurate location of the EP3 can be used to estimate the
parameters of such systems, as described on Section 2.3 above and in a previous study
[25].

3.2. Two-level systems with population leakage

The Bloch equation can be extended to include SE that leaks into states that are external
to the Hamiltonian, resulting in population loss, see Section 1.3 above. Here are two
examples for such systems:

e Rubidium atom.  Consider the TLS composed by the two hyperfine states
52S1/2, F = 3,mp = 2) and |[5*Pyss, F =4, mp = 3) of the ®Rb atom [26], with
o™ polarization. The selection rules impose stimulated transitions between these

states, but the excited state, 52P3/2, F=4mp= 3>, decays spontaneously also
to other states in the system. Under ot polarization there are no transitions from
these other states back to the TLS. Therefore we can treat this system as a TLS

with population loss.
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e Calcium ton. Consider the TLS composed by the two states |4281/2,mj = —1/2>
and [42Py 5, m; = 1/2) of the “°Ca™ ion, with ¢ polarization (Cf. Section 4.2 and
Figure 2 below). Again, there are stimulated transitions between these states, but
the excited states decay also to ‘32D3/2> states (=~ 6.5% of the decay rate) and to
the state ’4281/2, my = 1/2> (50% of the remaining decay rate). The population on
these states does not revert to the TLS [27].

The Heisenberg equation in this case is (cf. Eq. (9) with Np =1 and Eq. (10) ):
96-"1mo]r ((1 08,08 - 1 [8,5.. oL) | (18)
Here I' is the total decay rate of the excited state. It is the sum of the decay rate into
the lower level |s) as in Eq. (10) above, and of the decay rate out of the system as in
Eq. (7). x is the branching fraction that decays to states out of the primary system.
S, = [p)(s| and S_ = |s)(p| are the raising and lowering operators. We write the

equations for the four operators of Eq. (16). In this case %i # 0 and we cannot omit,
the equation for this operator. The resulting set of equations is:

X ~-ir A 0 0 X
afY [ _| -a T Qg 0 Y 19)
al zZz | | 0 -9 —-(1-%T —(1-%T Z |

I 0 0 —AT —AT I

The rate of population decay out of the system is xI', and therefore the lifetime of the
population is 7/x, which is larger than the lifetime without leakage.

When we look at the exceptional points of this matrix, we find that the shape
of EP-curves is determined by the loss parameter y. Figure 1 shows EP-curves for
different values of x. The total decay rate I' can be calculated from the eigenvalues of
the matrix in Eq. (19): the sum of the eigenvalues is always 2I". The branching fraction
x of a given system can be found by fitting the resulting EP-curve to the appropriate
branching fraction.

4. EPs in the H line of the Calcium ion

4.1. The *°Ca™ ion

The #°Ca is the most abundant Calcium isotope. The total spin of the “°Ca nucleus
vanishes. The ground state of the “°Ca* ion, includes 18 electrons in closed shells, and
the remaining single electron occupying the lower orbital of the 4'" shell. Therefore
40Ca™ jon is isoelectronic to alkali metals. However, since the total spin of the nucleus
vanishes, there is no hyperfine structure.

The structure of the energy levels of the “°Ca™ ion have been found to be suitable
for many applications. In particular, °Ca®™ has been used in the field of quantum
computing and quantum information |28, 29, 30, 31, 32, 33|, for atomic clocks and the
frequency standard [34, 35, 3, 2, 1, 36, 37| and recently as a single-atom heat engine
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Figure 1. A map of the Bloch-like EP-curves of the matrix in Eq. (19), which
describes the dynamics of a two-level system with spontaneous emission, when some
of the excited population decays out of the system, with x as the branching fraction.
Figure in scaled coordinates could correspond to any leaking TLS such as Rb or Ca™.
The curves are two-fold non-hermitian degeneracy (EP2). The curves merge into cusps
which are identified as FP3. The map of the EP-curves can be used for estimation
of the system parameters: the system frequency, the decay rate, and the branching
fraction.

[38]. The spectrum of “°Ca™ has been also employed in the quest for drifts of the fine
structure constant over a time span of many billion years [39, 40].

4.2. The H transition of the *°Ca™ system

At the ground electronic state the electron occupies the orbital 4s, with an orbital
angular momentum [ = 0. The total angular momentum including the electron spin
becomes j = % The spectroscopic notation for the ion at this state is 42S; 5. At the
first excited electronic state, the electron occupies the orbital 4p, with an orbital angular
momentum [ = 1. This state has a fine structure splitting due to spin-orbit coupling
cither j = 3 (denoted as 4*Py ), or j = 2 (denoted as 42Py)s).

The transition from 4281/2 to 42P1/2 is known as the H line. The transition from
4281/2 to 42P3/2 is known as the K line. These terms stem from the study of the solar
spectrum. In the following we concentrate on the H line, i.e. the 42S;5 & 4Py
transition. The frequency of this transition was measured to be 755222766.2(1.7)MHz
[39]. The 4%Py/, has a lifetime of 7 ~ Tns, and it spontaneously decays back to the
4281/2 state, as well as to the 32D3/2 state. The branching between these two decays

is I'p,s &~ 0.935 X I'y1as. We treat the decay into the 32D3/2 state as leakage out of
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the system, with x = 1 —0.935 = 0.065. Each of the states 4°S; 5 and 4°Py, is two-

fold degenerated, with sub-levels of m; = +1.

applied, the Zeeman effect removes degeneracies. The magnetic-field-dependent shift in

When an external magnetic field is

the transition frequency is +19kHz /T for the Am = +1 transitions (i.e., the transitions
that is induced by circularly polarized electromagnetic fields) [39]. This shift is the sum
of two contributions: The decrease of energy of the lower sub-level of the Sy, (=75%)
and the increase of the upper sub-level of the Py, (=25%). The ratio is determined by
the appropriate Landé factors. For a linearly polarized electromagnetic field, Am = 0
transitions are induced. Therefore, we expect to obtain only half of the above shift,
i.e. £9.5kHz/uT. However, in weak magnetic fields this shift is obscured by the natural
linewidth in the standard frequency-domain spectroscopy [39, for example|. A scheme
of the relevant energy levels is presented in Fig. 2.

14)  my = +1/2
|3) m] = —1/2 = S -

12) my=+1/2

1) my=-1/2 < '

Figure 2. A scheme of the relevant energy levels in “°Cat. The 2S; /5 and 2Py,
orbitals have total angular momentum of j = % They are split by magnetic field
two sub-levels of m; + % External electromagnetic fields with ¢ and o~ circular
polarizations induce Am = 41 and Am = —1 transitions, respectively. Linearly
polarized electromagnetic fields (7 polarization) induce Am = 0 transitions. The
excited population at the 2Py, state spontaneously decays to the ?S;/, and Dg /o

states. Energy levels are not to scale.

4.3. The system model

The energy levels structure and the spontaneous emission of the “°Ca* jon system allow
the use of EPs in the task of parameter estimation. The reduced system Hamiltonian
includes of 4 levels (see Figure 2 for a sketch of these levels). The 42S;/, sub levels
are denoted as |1) and |2), and the 4Py, sub levels are denoted as |3) and |4). The
rotating wave Hamiltonian, under the influence of an oscillating electromagnetic field
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of detuning A and amplitude g, and under a constant magnetic field which induces
a split of wy; between the two S,/ sub-levels, and a split of wy3 between the two Py,
sub-levels, is:

%(UJ43 — A) 0 QR 0
A 0 l(—(,«)43 — A) 0 QR
Hy=~n 2 . (20
0 QR 0 %(ng + A) 0 ( )
0 Qr 0 %(—UJm + A)

The spontaneous emission is incorporated into the dynamics by the dissipative part of
the L-GKS equation, as described in Section 1.2 above. We used the operators

A, = s)(pl, (21)
where |s) denotes the states of the two lower levels - |1) and |2), and |p) denotes the
states of the upper levels - |3) and |4). This results in four terms in the dissipator,
where each of the P/, sub-levels decays to each of the S/, sub-levels, with rate of
I'p,os, = %F(pﬁs)wm = I*TXFtotal. Another two terms describe the decay from the P/,
sub-levels to the D3/, state, using only the anti-commutator terms as shown in Eq. (7),
with the decay rate of I'p_,p = XT'totas- These dynamical terms are incorporated in £
leading to the dynamical equation for the 4 x 4 density matrix p:

gﬁ =—= [Hoy } Z Liotal

EPl/Q S€S1/2

A aaf Lrs o
(p,s) P A(p,s) - 5 |:P;D7 p} + (22)

4.4. Locations of the EPs and parameter estimation

Experimentally, the first step is to obtain a time series from the driven system. As an
example, we mimic a possible experiment by simulating the time series of the emission
signal by solving Eq. (22). The initial condition is obtained by first setting the laser
detuning and amplitude to obtain steady state. To overcome the population leakage,
the population from Dj/y is repumped to P; /5 using an auxiliary laser. After a steady
state is reached, the auxiliary laser is turned off, obtaining p(0). The decay signal is now
collected from p(t) for a particular observable in an ordered time grid. The left panel
of Figure 3 shows an example for such time signals. The time series is the input for the
harmonic inversion, which extracts the frequencies and amplitudes of the time signal.
The frequencies are determined by the system parameters, while the initial state p(0)
determines the amplitudes. The right panel of Figure 3 shows the obtained frequencies
in the complex plane. The time interval in this figure is 100ns, reflecting the population
decay life time Tyopuiation = Tse/X ~ 108ns. To map the EP at the parameter space,
this procedure is repeated for other values of the laser detuning and amplitude.

For any such parameter set defining £, the sum of the 16 eigenvalues of £ can be

shown to be: > wp = 8. A similar relationship was obtained for the two-level

k=1
system, where the sum of the 4 eigenvalues is 2I".
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Figure 3. Left panel: An example of two emission time signals of Ca®, obtained by
simulating the dynamics of the populations and the coherences. The initial state is the
steady state with re-pumping lasers switched on. The transient dynamics is initiated
by turning the pumping laser off. The time interval in this figure, 100ns, reflects the
population decay life time Tpopuiation ~ 108ns. Right panel: The locations in the
complex plane of the complex frequencies that were obtained from these signals using
harmonic inversion (HI). The actual eigenvalues of the generator £ are marked with
asterisks. Different subsets of the generator eigenvalues were obtained for different
signals. The frequencies of the population signal are marked by circles, while the
frequencies of the coherence signal are marked by diamonds.

To calculate the expected locations of the exceptional points in the parameter space
of the amplitude and detuning, we used the MFRD and the eigenvalues condition number
methods (see Appendix B and Refs. |41, 42]). The map of EP-curves is shown in Figure
4 for the “°Ca™ ion, with Zeeman splitting of 200MHz. Note the gaps in the Y-axis.
The resulting EP-curves of the 4-level system are more involved than the 2-level case.

Close to each of the resonances between the upper and lower levels, there is an EP-
curve which is similar to the deltoid EP-curve we got for the Bloch system [25]. The
exact frequency of the resonances can be found by locating pairs of EPs with detunings
above and below the resonance, while maintaining a fixed amplitude. The shape of the
curves can be fitted to estimate the branching ratio.

These resonance frequencies can be verified by locating the distinct EP on the right
of the Bloch-like curves. These two isolated points are classified as EP2%, i.e coalescence
of four pairs of eigenvectors with four distinct eigenvalues. Each of these points is located
with detuning A at the same frequency as the resonance, and amplitude of Qp = %Ftotal-
These points can be used also to extract the total decay rate I'.

Between the two Bloch-like EP-curves, in the 42S; 5 < 4P ), transition frequency,
there is a curve of degeneracy points. However, we could not determine whether
these degeneracies are exceptional points. Anyway, locating these degeneracies can
be employed for determining the transition frequency.

To summarize, the suggested procedure for parameter estimation which include
four transition frequencies, laser driving power, spontaneous emission rate and leakage.



Parameter estimation in atomic spectroscopy using exceptional points 13

(1)

110

100

90

—_
o
T
L

L
o

Detuning [MHZ]
o

-100

-110

0 10 20 30 40
Q,, [MHz]

Figure 4. A map of the EP-curves of *°Ca™ ion, with Zeeman splitting of 200MHz,
under linearly polarized driving field. Each of the Bloch-like curves (compare to the
Bloch curves at Figure 1) is found on a resonance between a pair of sub-levels, one
from 42S1/2 and one from 42P1/2. Note the gaps in the Y-axis of the different curves.
To the right of each of the Bloch-like EP-curves, there is a point of EP2* (marked
with asterisks), in which 4 pairs of eigenvectors coalesce into 4 distinct eigenvectors.
The detuning at these points is the splitting of the relevant resonance. The amplitude
is QR = irtotal-

Between the two Bloch-like EP-curves, at the detuning A = 0, which is the H-line
transition frequency, there is a degeneracy-curve of the L-GKS generator. It is not
decisive whether this curve is an EP-curve.

The sum of the 16 frequencies obtained by the harmonic inversion of the time signal
16

can be used to estimate the total spontaneous emission rate: . wg = 8T pra-
k=1

The locations of the Bloch-like curves are used for the estimation of the frequencies
of the resonances between the Zeeman sub-levels.

The shapes of the Bloch-like curves are used for the estimation of the branching
ratio (In particular the EP3 points).

The locations of the EP2* points are used to verify the resonances frequencies and
the decay rate.

The location of the degeneracy curve between the Bloch-like curve is used to
estimate the H line transition frequency.

Repeating this procedure for various magnitudes of the external magnetic field can



Parameter estimation in atomic spectroscopy using exceptional points 14

be used for tracing the Zeeman and Paschen-Back effects.

For small external magnetic field, the Bloch-like curves approach each other and
interfere. The shape of these curves is then skewed. This is demonstrated in Figure 5,
which shows the map of EP-curves for the “°Ca™ ion, with Zeeman splitting of 30MHz.
However, the resonances frequencies can be estimated using the locations of the EPs at
small amplitudes, and verified by the location of the isolated EP2* points. In addition
to those EP-curves and points, we observed other two isolated EP22, at larger detuning
and slightly larger amplitude. We did not find exact analytical expressions for these

points.
40 f *
20 | —7
s | N
o 0fF
k=
o —< \ *
20 1 N
-40 *
0 10 20 30 40

Q. [MHz]

Figure 5. A map of the EP-curves of *°Ca™ ion, with Zeeman splitting of 30MHz.
The general structure is similar to the case of 200MHz splitting (Figure 4) but the
Bloch-like curves get closer and interfere. The interference leads to skewing of these
curves. The EP2? still can be located and employed for parameter estimation. Another
two isolated EP22 can be seen at the right corners.

4.5. Dependency of the EPs on other dephasing rates

Most of the sources for pure dephasing of laser-driven atomic spectroscopy are well
controlled experimentally, for example varying the density of the ion gas or the medium
gas, or the instrument noise in the laser amplitude and frequency. Care must be taken
when analyzing FP-curves in atomic spectra to get the relaxation rate I', since the rate
depends on the various relaxation and dephasing rates in the system. For example, in
the Bloch equations, if the spontaneous emission rate is I'sz and pure dephasing rate
I'pp, then the relaxation rate that appears in the matrix of Eq. (17)is: ' =T'sg —T'pp
[25].
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Generally, every noise source that can be added to the L-GKS equation, is
reflected by the complex eigenvalues of the generator £. These eigenvalues are complex
frequencies of the time signal. Therefore the noise source can be traced by the harmonic
inversion. The noise will result in changes in the EP-curves map. The experimental
noise will influence only the harmonic inversion. See Appendix C for a short discussion
regarding noise in harmonic inversion methods.

As an example, the influence of noise in the amplitude of the driving laser was
analyzed. Such a noise is modeled in the L-GKS equation by a double commutator with
the laser amplitude operator Vde,,h, which commutes with 2z amplitude part of the
Hamiltonian:

N 1
Vdeph = \/;

The dissipation generated by the double commutator with this operator is not pure

(23)

oS = O

1
0
0

O = O O
_ o O O

00

dephasing since it also generates relaxation.

We calculated the EP-map in the parameter space for dissipation rate of I'ge,n, =
0.01ns~! with Zeeman splitting of 200MHz. The upper Bloch-like EP-curve of the
results is presented in Figure 6, along with the associated two EP2%. For comparison, the
upper curve of the noiseless case (presented in Figure 4) is also shown. Two prominent
differences can be found. The first is that the two branches do not merge at a small
amplitude. Instead they are split symmetrically around the resonance. The splitting
magnitude is equal to the depahsing rate I'4p,. The second difference is the splitting of
the EP2* into two distinct EP22s. This splitting is not symmetric, therefore we cannot
deduce the system parameters from the locations of these EP2%s.

"
= 11ol—
2 400 %
c
T 907
Q 1 1
30 40

Q, [MHz]

Figure 6. Blue line: The upper Bloch-like EP-curve for dissipation rate of I'yepn =
0.01 ns~! and Zeeman splitting of 200MHz, along with the associated two EP22 (blue
asterisks). The orange dashed line and x’ are the EP-curve and the EP2* obtained
for the noiseless case (Tgepn, = 0ns~!), shown on Figure 4 above. For the case of
Lgepn = 0.01ns™ !, the two branches do not merge at a small amplitude. Instead, they
are split symmetrically around the resonance. The splitting magnitude is equal to the
depahsing rate I'gepp. In addition, the added dephasing splits the EP2* of the noiseless
case into two distinct EP2%s .
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5. Discussion

The irreversible character of the L-GKS equation is well known and indicated by the
semi-group character of the evolution operator [43, 44, 15, 45]. The generator of the
dynamics L is therefore non hermitian. This means that non-hermitian degeneracies
EP play an important role in open quantum systems.

So far, EP were studied in the coalescence of two resonances. The resonances were
metastable states associated with predissociation or autoionization phenomena and with
leaking modes in waveguides [46, 47]. A theoretical quest for multiple EPs [48], or for
high order EPs in dissipative physical systems is pursued [49, 50, 51, 52|, specifically in
the spectra of atoms in external fields [53].

The first study of EP in the context of the L-GKS equation, was for the simple two-
level-system described by the Bloch equations [25|. In the present study, we generalize
to open two-level system where population can leak out. Then we extend to a four-
level system where the splitting can be controlled by a magnetic field. We found a rich
and fascinating structure of EP’s and EP-curves, including higher-order EPs. Such
phenomena is expected for many other open quantum systems described by the L-GKS
equation.

The methods developed pave the way for a generic framework of employing EPs for
parameter estimation of atomic systems. The dynamics near the EPs have enhanced
sensitivity due to their analytic properties: Small changes in the parameters lead
to different harmonic inversion. Therefore, for parameter estimation, the harmonic
inversion at the EPs is superior to standard inversion methods.

The first stage is to predict the FP map of the system: The state of an atom driven
by a CW laser can be described in the rotating frame by a time-independent L-GKS
equation. The parameter space for such a L-GKS generator contains the field amplitude
and the detuning frequency. Such a parameter space can be scanned using the MFRD
method to find approximate locations of degeneracies of the generator. The location
and character of these degeneracies are then examined using the condition number of
the eigenvalues, to identify and locate the EPs. The second stage is to search for the
predicted EPs experimentally: The time signals obtained from the experiments are
analyzed using harmonic inversion. The resulting frequencies and amplitudes are then
used to find the degeneracies and exceptional points. Finally, we estimate the system
parameters by comparing the predicted and the experimental EPs.

An interesting different system for an EPs search can be two molecular electronic
surfaces, with vibrational relaxation. A simple model for such a system can include only
four levels [54], or even three - one level from the ground state and two vibrational levels
from the excited state. Such systems can have multiple steady states, and therefore can
possess richer dynamics.
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Appendix A. Dynamical signature of the EPs

The solution for the L-GKS equation in the matrix-vector representation, Eq. (11), is:

A(t) = e 5(0). (A1)
When L is diagonalizable, we can write L = TAT !, for a non-singular matrix 7T
and a diagonal matrix A, which has the eigenvalues {\;} on the diagonal. Then we have

M= TeMT L (A.2)

At is a diagonal matrix, which has the exponential of the eigenvalues,

The matrix e
exp[A;t], on its diagonal. The resulting dynamics of expectation values of operators, as
well as other correlation functions, follows a sum of decaying oscillatory exponentials.

The analytical form of such dynamics is:
(X(t)) = dyexp—iwgt] , (A.3)
k

where —iwy, are the eigenvalues of L, dj are the associated amplitudes, and both w; and
dy can be complex.

For special values of the system parameters the spectrum of the non-hermitian
matrix L is incomplete. This is due to the coalescence of several eigenvectors, referred
to as a non-hermitian degeneracy. The difference between hermitian degeneracy and
non-hermitian degeneracy is essential: In the hermitian degeneracy, several different
orthogonal eigenvectors are associated with the same eigenvalue. In the case of non-
hermitian degeneracy several orthogonal eigenvectors coalesce to a single eigenvector
[47]. As a result, the matrix L is not diagonalizable, and the exponential et cannot be
expressed using the eigenvalue decomposition.

The exponential of a non-diagonalizable matrix L can be expressed using its Jordan
normal form: L = TJT~'. Here, J is a Jordan-blocks matrix which has (at least) one
non-diagonal Jordan block; J; = A\, + N, where [ is the identity and /N is has ones on
its first upper off-diagonal. The exponential of L is expressed as

el =Tel' T, (A.4)
The exponential of the block J; in e/t will have the form:

oJit — NIEENE _ At Nt (A.5)
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The matrix N is nilpotent and therefore the Taylor series of e™! is finite, resulting in a
polynomial in the matrix Nt. This gives rise to a polynomial behaviour of the solution,
and the dynamics of expectation values of operators will have the analytical form of

Tk
(X)) =33 dyat® exp[—iw™1] | (A.6)

k a=0
instead of the form of Eq. (A.3). Here, cu,(f’“) denotes a frequency with multiplicity of
1, + 1. Note that for non-degenerate frequencies, i.e. r, = 0, we have d;o = dj and
w,(fo) = wy. The difference in the analytic behaviour of the dynamics results in non-
Lorentzian line shapes, with higher order poles in the complex spectral domain. The

point in the spectrum where the eigenvectors coalesce is known as an exceptional point
(EP).

Appendix B. Searching for EPs at the parameter space

Given a parameters-dependent matrix, the task is to find the exceptional points, i.e., to
calculate the parameters set for which the matrix is not diagonalizable.

Appendiz B.1. Condition number of an eigenvalue

The diagonalization of matrices in the vicinity of a defective matrix is extremely sensitive
to perturbations. The sensitivity of the diagonalization can be characterized by the
condition numbers of its eigenvalues. Therefore the divergence of the condition number
of an eigenvalue can be used to find exceptional points. The condition number of an
eigenvalue A\ of a matrix A with y and x as the corresponding (normalized) left and
right eigenvectors, respectively, is defined by:
1

k(A A) = S (B.1)
where y* is the hermitian transpose of y [55, 56, 42|. At exceptional points the left and
right eigenvectors are perpendicular, and the scalar product yx vanishes, leading to
divergence of the eigenvalue condition number. The condition number of the eigenvalues
is implemented in the Matlab function CONDEIG.

Appendixz B.2. Newton methods

There are a few methods that use the special properties of the exceptional points in
order to find them iteratively:

e Mailybaev developed a Newton method of finding multiple eigenvalues with one
Jordan block and corresponding generalized eigenvectors for matrices dependent
on parameters. The method computes the nearest value of a parameter vector
with a matrix having a multiple eigenvalue of given multiplicity [57]. This method
worked well for us in some cases, but failed to find points in which two different
eigenvalues had double multiplicity.
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e Akinola and coworkers used an implicit determinant method to obtain a numerical
technique for the calculation of a two-dimensional Jordan block in a parameter-
dependent matrix [58].

Appendiz B.3. The MFRD method for finding a double eigenvalue of a
parameter-dependent matrix

Jarlebring and coworkers suggested a method that for a given two n X n matrices, A
and B, computes all pairs (A\,u) such that A is a double eigenvalue of A+ uB [41]. The
method they suggest is the method of fixed relative distance (MFRD). It is based on
the assumption that in the vicinity of the double eigenvalue (i.e., for close enough )
there are two close eigenvalues A and (14 €)A. In order to find such A and p we have to
solve the following coupled eigenvalue equations:

(A+pB)u = Au (B.2)
(A+uB)v =A(1+¢€)v, (B.3)
where [ is the n x n identity matrix. This kind of problem is called “the two-parameter

eigenvalue problem”. The most common way to solve and analyze two-parameter
eigenvalue problems is by means of three so-called matrix determinants

A= —-I®B+(1+¢B®I (B.4)
A= —A9B+B®A (B.5)
Ao=T@A—(1+0)A®I. (B.6)

These are n? x n? matrices. After constructing these matrices, we solve the following
generalized eigenvalues problems:

)\A()Z = Alz
1oz = Aoz,

B.7)

—~~
oy
oo

to get the approximation for 4 and A and a tensor product z = u ® v.
The value of € has to be small, in order to reflect the double eigenvalue, but not
too small in order to maintain stability. As a rule of thumb, a good choice is

e~ el (B.9)

mach’

where €,,.., is the machine precision.
To summarize, the steps of the method follows. Given two n X n matrices A and
B:

(i) Choose appropriate € (see Eq. (B.9)). For €40, = 2.2 x 1071¢ (Matlab), we have

/3~ 6x 1076

(ii) Construct the matrix determinants of Eq. (B.6).
(iii) Solve the generalized eigenvalues Eq. (B.8) problem to get the approximation for
1 and A.
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By construction, This method yields only an approximation to the pairs (\,u). But this
approximation can be an initial guess for an iterative method or an exact one to get an
exact pair (A\,u).

Appendix C. Noise sensitivity of the harmonic inversion

Parameters estimation naturally raises the issue of sensitivity to noisy experimental
data. The noise sensitivity will be determined by the method of harmonic inversion. If
the sampling periods have high accuracy then the time series can be shown to have an
underlying Hamiltonian generator. This is the basis for linear methods, such as the filter
diagonalization (FD) [18, 19]. The noise in these methods results in normally distributed
underlying matrices, and the model displays monotonous behaviour with respect to the
noise. This was verified analytically and by means of simulations In Ref. [59]. As a
result sufficient averaging will eliminate the noise. Practical implementations require
further analysis with evidence of nonlinear effects of noise. For example, Mandelshtam
et. al. analysed the noise-sensitivity of the FD in the context of NMR experiments
[21, 60] and Fourier transform mass spectrometry |22]. For some other methods, a noise
reduction technique was proposed in Ref. [20].
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4.7 Discussion

Exceptional points have gained growing interest in recent years  [Miiller 2008,
Moiseyev 2011]. In particular, the search for multiple EPs [Ryu 2012], or for high
order EPs in dissipative physical systems [Heiss 2008, Demange 2012, Heiss 2015a,
Heiss 2015b]. However, most previous studies of the EP phenomenon have been
based on non hermitian Hamiltonians caused by the interaction of the discrete states
via the common continuum of scattering states. Such Hamiltonian-based approaches
incorporate only coherent dynamics, while the dissipation and dephasing phenomena
are absent.

The study of exceptional points in this thesis utilizes this concept to a new field:
Markovian open quantum systems. The L-GKS formalism is a reduced description
of a system and bath scenario, and the non hermitian properties of the dynamical
generator are caused by tracing out the bath degrees of freedom. The dissipation
and dephasing phenomena are properly described by this formalism. The excep-
tional points here are non-hermitian degeneracies of the L-GKS quantum dynamical
semigroup generator. They represent dynamical properties of the system, where few
decay modes of the system coalesce. The studies reported here initiate a new per-

spective on the dynamics of open quantum systems which invites further research.



Chapter 5
Conclusions and outlook

The studies presented in this thesis investigated the dynamics of driven Marko-
vian open quantum systems. The main objective of the research was to examine
the impact of the surrounding environment on the interaction of quantum systems
with external driving fields. A subsequent question is the limits of validity of the

Markovian assumptions.

We studied the weak-laser-driven population transfer between electronic surfaces
in molecules. Such a scenario frequently takes place in spectroscopy. The framework
for this study was the weak-field phase-only (WFPO) control of quantum systems.
For an objective which commutes with the free Hamiltonian, WFPO control of an
isolated system is impossible [Brumer 1989, Spanner 2010]. A series of experiments
and simulations questioned this premise, and suggested that WEFPO control can be
achieved by the environment of the system [Prokhorenko 2005, Prokhorenko 2006,
van der Walle 2009, Prokhorenko 2011, Katz 2011].

We formulated the question of WFPO control of an open quantum system
within the L-GKS framework. We showed that under an additional certain set
of assumptions, the scaling with the field strength of phase-dependent phenom-
ena is not altered. This set of assumption (Eq. (18)-(20) in the research paper
[Am-Shallem 2014]) can be used to analyze the dynamics of other systems, which
have different dissipators, or even systems that are not described by the L-GKS
framework. In particular, we extended these results to systems with a field-free
propagator which depends only on the time difference (time-homogeneous field-free
propagation, see Eq. (19) of the research paper). Such time-homogeneity is a char-
acter of dynamics which is generated by a linear differential equation (as oppose
to an integro-differential equation) with time-independent field-free part. Therefore
these results can be extended to a broad set of systems, including a larger set of
non-Markovian systems, generated by the time independent Hierarchical Equations
of Motion approach [Meier 1999, Ishizaki 2005, Jin 2008], in which the propagator
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has a similar form.

The evidences for WFPO control still need a theory. We pointed out that the
WEFPO control can originate from non-Markovian dynamics. The non-Markovian
character can be manifested by non-separability of the system-+environment struc-
ture. It can also arise by memory effects. However, extra care must be taken when
attributing the WFPO control to non-Markovian effects, since the set of assumption
we used in our study comprises more than only Markovian dynamics.

An additional direction for such a theory is to examine the influence of the
external fields on the environment. The analysis of the WFPO control that we
carried out cannot include the influence of the field on the environment, since the
L-GKS open system dynamics does not include such a mechanism. Nevertheless,
a non-direct influence can be presented, through the system dynamics. A careful
derivation of the master equation can lead to field-induced dissipation [Levy 2014,
for example]. We have indications that the field-induced dissipation can lead to
WEFPO control. We performed numerical simulations of a simple model driven by
a pulse of a chirped Gaussian external field. In addition to the standard hermitian
coupling between field and the system, we added a small non-hermitian coupling
term. We assigned different phases to different pulses by altering the chirp rate.
Comparing the final population transfer among several values of the chirp of the
field, we found a prominent dependence on the chirp rate.

In the non-Markovian formalism the influence of the external fields on the envi-
ronment can be described explicitly. If the environment can be controlled or mea-
sured, the space available for the system can be expanded. Therefore there could be
more ways to drive an initial given state to a target state. This can lead to enhanced
controllability [Wu 2007, Lloyd 2001]. In particular, WFPO control might emerge
from the impact of the fields on the environment.

Lastly, these observations may challenge the time-dependent perturbation the-
ory we used. The common time-dependent perturbation theory relies on the time
reversibility of the evolution. The contraction of the available space in Markovian
dynamics [Altafini 2004] leads to non-reversibility on long times. In addition, in the
vicinity of exceptional points there is a subtle difference in the dynamics which can
lead to time-irreversibility. Moreover, the non-analytical properties of the eigenval-
ues in the vicinity of exceptional points suggests that the standard time-dependent

perturbation theory has to be revised to handle such cases.

The irreversibility of Markovian dynamics is reflected by the contracting non
unitary evolution propagator. The eigenvectors of non unitary operators are not
orthogonal. The emergence of exceptional points in the dynamics of open quantum

systems is the extreme manifestation of non orthogonality. The subtle difference
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of the dynamics at exceptional points is therefore an indication for the essential
different character of the dynamics.

We investigated the exceptional points of the L-GKS generator in the parameter
space of laser amplitude and detuning. We suggested to estimate the system pa-
rameters by employing the ability to locate accurately the exceptional points. The
method can be employed for precision spectroscopy of atoms and molecules which
is related to the measurement of the fundamental constants. High accuracy has
implications also in other fields of physics, such as radioastronomy, tests of general
relativity, and particle physics. We believe that this method can be developed and
incorporated as a standard tool for precise measurements.

Other types of systems can be accounted for in this context. For example, the
vibrational relaxation inside molecular electronic surfaces can be described by the
L-GKS equation with dissipative terms for relaxation, excitation and dephasing.
Another example is a series of laser-coupled quantum dots where each quantum dot
is relaxed due to the interaction with the external environment. The exceptional
points in such systems can indicate circumstances where the time reversal symmetry
is broken. The breaking of time-reversal symmetry makes the dynamics essentially
different and new effects and phenomena can arise. An example discussed above is
that the time dependent perturbation theory may have a different analytical form
in the vicinity of an exceptional point. This kind of research is still being explored.

Exceptional points can emerge also in non-Markovian dynamics. On such dy-
namics the non unitary evolution propagator is not limited to contractions, reflecting
the ability of the information to flow back and forth between the system and the en-
vironment. The change of purity of the system is not monotonic and it can increase
and decrease alternately. The richer possibilities of the dynamics suggest that the
concept of exceptional points in non-Markovian systems does appeal as a further

research objective.
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WIYTY T1I59 107 I SW 7220573 71 TIN2277 I TIZI77 RYNA NOY IPNNN NN INND 1N Yy
YOIND NN NAPWN 1T INON .01 0N L-GKS nXnwn S 981N YW D»nsyn DY99YN 00NN Y9
ND DM DAPNN ,NT XY DXPTIND DMIVNINN DY DINNDN DY NAY .NPIAPTN DY YDVDOTN
NN XN NNIVNN NOR MNP .(exceptional points) NPTIND MTIPI NP2 ONTN ,DMOVININ
NN MM 1) .09 DY 1IDINIPND NNMIND NANYND NT NIPNA NINNN NPT .NPDIT NP INPD
YHNYY D103 YTINNT S9IND 1IN TDPOIMNMPN DY MLIVA vidY YT DY NdNOTN DY YTINON d9IND
POYTHN I9IND THIYNY MIN DY 13 NNDNA WHNWND NDYNT PN I9INI NP TINNN MTIPIN DY NIIRD SYNNIND
.N2IYNN HY DN DIV NN

DIVNIAN ANIN NN OXPTHIN NIN DIVNIA .NVIOYD DNIN INYNN DTV DY MPTNM NTIVIDINNN
NNYM .Y DMIVNID 2NN ITHINN INPN DY NPTINT MTIPIN IR MIPN . L-GKS nxnwn dv a8vn by
TN MTIPI NNIANN NONR MNMPY .MANY NMIMIPY MK NT 2NN NPTINOT MTIPIN YDINV 19INIYV
NV HYY TIVA MNNYN DY NPINTN DY NONR MTIPI KW NIDOYNN NN NIPN .MI2) TN 970N PN ¥ N2
VY NYAYN NNN DXNIOVN DY NMIVNAD

MOMP NPT NwNnnD NwRYN L-GKS nxNwnd 9nra nowan NoNTtn NN 702 INNWN
.DOPOPONN NPYDIN MVIMP MINNTNINPND TV NPV NTINNN — NPIDD DXDINT NN NDVDDT
NPTINT MTIPIN DY MMIPYN NN NIAYIN NIPNI XY 1T INNWND DY NPTINDD MTIPIN [, NINT MY
91971 VIV ,TPNINYN MPTNN — NIIWNN HY DXIVNINN NPT NIIYND NINTEIND VYN )T NOIYNI
AR B Rip)|

DYMLN HY MHVNADN NVIVAN NN PPNN IPIND INNY N DY L-GKS nxnwna wnnvnd ynm
Y 1991 ,0TIDM DMOPIDAN DOYAPN YT DY DIYIAPI NONI NPMOLNX MIIWN DY DMVNIN .OMINYN
SV PYTN NN 22230 NNIVNVON NVIIAN NN ININN NI TIDN .0MVNION DY NPNTH NN PIY
NN — NPTINMT MTIPIN MYINNA DIV NIIWN NVOY - VYN NVIVYN .YIPN NTITH MPIOV
S Mn9 Pa DM2YNN DY ML DITVPADI TN NVIVN NN NIXTN .PIND MO TN HY PNIDNN NN
4oCat y2) 5Rb owona P mina
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NYOVIN NIIWNN DY NPPNRYTN .TENINON N2220Y TN OT DY NIMAND MNINS NPLINP MOIWYN
DININND NNON HY NVIYA DOVNNYN NDNIN .NIRD TIDNI TIDOY 1NN DIVYNIND YDV 19IN . TIINNIN
0NN DY NOW NYAYNN TIT,PPY 19INI NDIDN NN YNON 19INI PIPIYN NIIWNN NN INND »TD
SV OONNN NIRNWN YT DY NPT IR INNND NPIPIN NINN NPLINP MDY DY DIMININ NININN
ST9270 ANnwn ova o) nnn,L-GKS

DYDINN NN M3 PPON NNRINN DIXIND DIINXN MTY DY NPLINP MIIWN KW MNPNIVIND
NN )INAD STD WHRWH MNNNN DTYN NI — INPDINVPAD N NPOOI MNHDNT SNV .71 NPID9]
DN AXNY NOIWNN AR XXAND NI DY MINN NTY NYNNYNY — NPOVIIMP NP, NIIWNN

LDMONON NYTY DY NIDOR NNN MDY DY NN TN DY N2%100 DY NYIYNN NN IPN 1T 90X NTiaya
: YN NV NTPNNN

UON NTY DY NTNON MNON P NWHRNYNRN NPNPIN MIIWN YW NP1 YV (scaling) owpn

MNING NPVLIMNP MW DY NPT (exceptional points) NPTINON MTIPIN

N2V WON ATV SV i1iNOT IIDNA (77 IWONWHT NPT NI SV 7772 S 01222771 NUNA APNNRN
SW YAV YNY NDIDY 12 YININD NV NPT INNMY ,NINPDN MNPOIIVPID DY DINNN TINN
NYSN NTYN TINNX,NNPYIN DY 230 WIHN NP NTY IWURD .NYDIND NIIWN HYW NPPNRYTH HY N220N
NPIPN NIV P PY WP WY RO TIDN NNIN .NDIPIININ YW TIXNND NN NPNIAD NUNRYN NOPIINI
MOIYN DY I INONN NIYINN NN YT DY NIIWIND 1T DNIN .ANIPINN DY D1IVPION PIAD NTYN HY
SW MDD ANNN DY MIAVN IR NONNN NTYN DY NINON MNONY NNIN NIYISND DNN .MTHIN
BamRiYaly]

97NN 195 .Y NN NDAPNN MININD MOIWNIY NIYYNN NN MZYND NPXDINID) DNDN HY NITO
MR SY DVYNMNL YINOXY TIN DIYIN DIXORND MTY DY NINAN NINON DY NYAVNN NN NN TNN
L- axnwn »m Sy mnNnmn MNnNg moIyna POIvoIN 12yn YW wNInn DX NN, OV .MMng
2YNY NN OPNRDTH DX NMY YT T ARNYNI DY MY TN MyIoNn nna nwnnvin .GKS
INON MNONND NYAVIN NPNY ,NTYN DY NINDNP-IVIND NPNPND TIT P INONN NTYWIA NYN POIDIIND
MNONA POIVIIND YN DY MYN INND MDD XY NPYNROTN ,NYINN DY D¥NN 9701 )00 .NTYN DY
290N DPDNINA OMDNN NN PADNY W TIN NINNIND .WON NTY DY NINON

MNON NTYA NYNRNYN .WON NTYN NIRIIND MIDIDIIN 12YN DY 7PSOOD ST DY MININD NN NIXTH
NMNONY T2 ,NNY NIRS VY900 2957 YOHYW NT NN XLV 97N DY INODINI DY IDINNPND 1NN Hya
,NIYIANN DY 9¥21191 ATOY YNNINND NIN NPDIDIIND I2YNHY NXIN .97VN ANPA NINVAND DTV DY NININ
Y NIPNI NXVIANY ,NPDIDIIND 12YN DY 9N NYIWN ,NNT NNIYD NN NTYN PHIN DY N ImDD
YI9NN DY NI TO2 P DY, NINON NN NYIVN NN
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