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 תודות

 .אני מודה לרוני קוזלוב על הייעוץ והיחס החם לאורך כל העבודה המשותפת
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 ודיונים.על אינספור שיחות  ,עדו שפרו

 

  , ובפרט:והמורחבת המצומצמתלמשפחתי,  הבה והערכהדש בהרבה אקמו

 שניםך כל הרו, על העידוד והאמונה לאשגיתאשתי ל 

 חיים ז"ל וידידה, שלמדו אותי להתבונן ולשאולעמיקם  –הורי ל 

  הראל, עמיחי וישי ניצן, –לילדי 
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Abstract

Open quantum systems are characterized by coupling to an external environment.

The dynamics of the system is affected by the coupling, and typically relaxation

and dephasing processes emerge. We adopt a framework of a reduced description,

treating the primary system explicitly and the environment implicitly. The reduced

description of Markovian open quantum systems utilizes the L-GKS quantum master

equation, also known as the Lindblad equation, to describe the dynamics.

The interaction of quantum systems with external driving fields is used in many

areas of physics and chemistry. Two generic examples are spectroscopy, where the

driving field is used to probe the system, and coherent control, which employs an

external field to drive the system to a desirable state.

In this thesis we investigated the influence of the environment on the dynam-

ics of systems under the driving of external fields. In particular, we studied two

phenomena:

• The scaling of weak field phase-only control in Markovian dynamics;

• Exceptional points in the dynamics of Markovian open quantum systems.

Our work on the scaling of weak field phase-only control in Markovian dynamics

stems from the field of molecular spectroscopy, and is a noteworthy example for a

situation where the influence of the environment on the driven-system dynamics can

appear. When a weak radiation field is applied to a molecule, the energy absorbed

from this field interrogates the energy levels of the molecule. The basic assumption

is that there is a direct link between the energy loss from the field and the energy

spectrum of the molecule. This assumption is justified by the time dependent per-

turbation theory for isolated systems, which states that the phase properties of the

weak driving fields do not alter the final state of the system.

A series of experiments and numerical simulations suggested that this assertion

does not hold for open systems. Therefore, the effect of the phase properties of

driving weak fields has to be analyzed within an open system formalism. To cope

with this task, we considered population transfer in open quantum systems described

by the L-GKS equation. We used the second order perturbation theory of this

equation to analyze the dynamics. We showed that the population transfer depends
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on a weak external field only through the field’s autocorrelation function which

is phase independent. Therefore, for the leading order in the perturbation, this

dynamics cannot support the dependence of the population transfer on the phase

properties of the weak field. Subsequently, the experiments have to be explained in

an alternative formalism.

The analysis was demonstrated by an example of a weak-field phase-dependent

population transfer. The field is a Gaussian laser pulse with a chirp, meaning that

each spectral component has a different phase. We showed that while the population

transfer scales as the square of the field strength, which is the leading order in the

perturbation, the chirp effect, which expresses the phase-dependence in such cases,

scales as the next order in the perturbation.

Our work on exceptional points of the L-GKS equation requires a mathematical

foundation: The eigenvalues of the L-GKS generator are complex, reflecting uni-

tary as well as dissipative dynamics. For certain values of parameters defining the

generator, non-hermitian degeneracies emerge, known as exceptional points (EP).

At these points the matrix that represents the generator in not diagonalizable. The

resulting dynamics comprises polynomial behaviour. This unique time evolution can

be revealed using harmonic inversion methods, and can be used experimentally to

locate the EP accurately. We suggested to employ this feature to determine the

intrinsic system parameters with high accuracy.

We investigated the EP of an L-GKS generator that is defined by the parameter

space composed from the external field parameters. We found that generally there

are continuous lines of EP in the parameter space, which merge into cusps of higher

order degeneracy. We studied the implications of such points in the open system

dynamics of the Bloch equations and the spontaneous emission of laser-driven atoms.

The Bloch equation is the simplest example for the L-GKS equation, and has

become the template for dissipative quantum dynamics in many area of physics,

from NMR to quantum information and elementary particles. Nevertheless, the

EP of this equation were not studied before. We calculated the EP -curves of this

system, and suggested a procedure to determine accurately the system parameters,

i.e., the system frequency, the dipole moment and the relaxation coefficient.

The spontaneous emission of excited atoms is properly described by the L-GKS

equation. The parameters of such atomic systems are determined by fundamental

physical constants, therefore an accurate parameter estimation is advocated. The

decoherence associated with the spontaneous emission limits the performance of

common measurement techniques. The method of parameter estimation using EP

turns the disadvantage of the dissipation into an advantage. We demonstrated the

method for the atomic spectrum of S → P transitions of 85Rb and 40Ca+.
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Preface

Quantum mechanics of isolated systems is a well-established and thoroughly-studied

theory. The predictions of the theory were verified by experiments to a very high

accuracy.

In practice, any quantum system is coupled to external environments. The cou-

pling of the system to the environments induces essential changes to the nature of

the dynamics. Typically, the coupling causes relaxation and dephasing. Many as-

pects of the dynamics of open quantum systems were studied. However, other effects

of the environment on the dynamics of such systems still have to be unravelled.

This work is devoted to the investigation of Markovian open quantum systems

that interact with external fields. The interaction of electromagnetic fields with

matter, especially with atoms and molecules, is ubiquitous in physics and chemistry.

For example:

• In many types of measurements the measured system is driven with external

fields and the effects are probed. For example, spectroscopy is based on using

a weak probe to unravel pure molecular properties. Specifically, absorption

spectroscopy measures the energy absorption from the field.

• In coherent control the goal is to drive a quantum system to a desired state

by an external field. In particular, coherent control was suggested to con-

trol population transfer in molecular electronic surfaces and chemical reaction

channels.

• Light-matter interaction is ubiquitous in natural phenomena. For example,

the terrestrial solar spectrum, which has central significance in solar energy

applications, is a result of the interaction of the radiation from the sun with

the molecules in the atmosphere .

We studied the effects of the environment of the dynamics of such systems. To

present coherently the thesis outline, a concise theoretical background is needed. In

the following we describe the theoretical framework for this study. Subsequently we

present the research subjects and thesis outline.
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Chapter 1

Theoretical background:

The dynamics of open quantum

systems

Built into the dynamics of isolated quantum systems is time reversal, meaning that

any time-evolution from an initial state to a final state, can be reverted to the initial

state. In quantum mechanics this property is reflected mathematically by employing

unitary operators for the description of the evolution. The operator norm of unitary

operators is 1. A unitary operator Û can be expressed as an exponential of an

anti-hermitian operator iĤt (where Ĥ is a hermitian operator and we use ~ = 1):

Û = eiĤt. (1.1)

The eigenvalues of an anti-hermitian operator are always purely imaginary, and

therefore the eigenvalues of the unitary operator are of magnitude 1, located on the

unit circle of the complex plane.

A Markovian open quantum system interacts with its environment in a non-

reversible way. The systems loses information into the environment. This results in a

contraction of the available space of states. The evolution is described by contracting

operators instead of unitary operators. The norm of a contracting operator is less

than 1, and it is expressed as an exponential of a generating operator which is

neither hermitian nor anti hermitian. The eigenvalues of this generating operator

are complex, with negative real part, and therefore the magnitude of the eigenvalues

of the evolution operator is less than 1.

In this work we studied effects of the environment on the dynamics of a driven

Markovian open quantum system. Below, we briefly present the necessary theoret-

ical background for such studies. A thorough presentation can be found in many

sources, e.g., Refs. [Breuer 2002, Alicki 2002, Alicki 2007, Nielsen 2011].

3



4 Chapter 1. Theoretical background

1.1 Isolated quantum systems

Any real quantum system is coupled and interacts with some environments. Never-

theless, the concept of isolated quantum systems is of great benefit. The dynamics

of isolated quantum systems can be described by the unitary dynamics of wave

functions, density operators, and expectation values of observable operators. These

methods are outlined below.

1.1.1 Wave function description

Wave functions and the Hilbert space. The state of isolated quantum systems

is usually described by a wave function |ψ〉. The wave function is an element in a

Hilbert space that includes the possible states of the system. The scalar product in

this Hilbert space is expressed using Dirac’s bra–ket notation:

(
|φ〉 , |ψ〉

)
= 〈φ |ψ〉 (1.2)

The squared absolute value of the wave function serves as the population probability,

therefore the norm satisfies:

|〈ψ| ψ〉|2 = 1. (1.3)

The description of quantum systems using wave functions in a Hilbert space

employs the linear operators that operate on elements in this space. The hermitian

adjoint of an operator M̂, denoted M̂†, is the operator that satisfies

〈
φ
∣∣∣M̂ψ

〉
=
〈

M̂
†
φ
∣∣∣ψ
〉

(1.4)

for any two wave functions |φ〉 and |ψ〉. A hermitian operator is an operator that

equals to its adjoint, Ô
†

= Ô.

Dynamics. The dynamics of the wave function is generated by the hermitian

Hamiltonian operator ĤS and governed by the Schrödinger equation:

∂

∂t
|ψ(t)〉 = − i

~
ĤS |ψ(t)〉 . (1.5)

(in the following we use ~ = 1). Starting from an initial state |ψ(t0)〉, the resulting

evolution for time-independent Hamiltonian is:

|ψ(t)〉 = e−iĤS(t−t0) |ψ(t0)〉 . (1.6)

The dynamics preserves the norm, meaning that the population is conserved.
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The evolution can also be described by the propagator Û(t, t0), which is the

operator that propagates the state from time t0 to time t:

|ψ(t)〉 = Û(t, t0) |ψ(t0)〉 . (1.7)

The differential equation for the propagator is:

∂

∂t
Û(t, t0) = −iĤSÛ(t, t0), (1.8)

with the condition Û(t, t) = 1̂ for any time t, where 1̂ is the identity operator. The

resulting evolution with a time-independent Hamiltonian is:

Û(t, t0) = e−iĤS(t−t0). (1.9)

The dynamics of the wave function, Eq. (1.6), is reproduced with the evolution of

the propagator (Eq. (1.9)), along with Eq. (1.7).

Since the Hamiltonian ĤS is hermitian, the evolution is an exponential of an

anti hermitian operator, and therefore it is unitary. The immediate consequence is

that the hermitian conjugate is equal to the inverse:

Û
†
(t, t0) = eiĤS(t−t0) = Û

−1
(t, t0). (1.10)

Inverting the propagator is equivalent to propagating the system inversely from time

t to time t0. The unitary evolution reflects the reversibility of the dynamics.

The time evolution forms a one-parameter family of maps. This map is closed,

associative, includes the identity operator Û(t, t) = Î, and includes the inverse of

any element of it as shown above. Therefore this family of maps forms a group.

1.1.2 Density operator description

Density operators. To pave the way to a more general description, and to enable

the description of open quantum systems, we describe the state of a quantum system

by the density operator ρ̂. The counterpart of the isolated-system wave function

|ψ〉 is the pure-state density operator, composed from a single wave function:

ρ̂pure = |ψ〉 〈ψ| . (1.11)

A more general density operator mixes a number of states:

ρ̂mixed =
∑

i

ai |ψi〉 〈ψi| ,
∑

i

ai = 1, ai ≥ 0 (1.12)
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The population probability is expressed by the diagonal of the density operator, and

therefore the counterpart of Eq. (1.3) is:

Tr {ρ̂} = 1, (1.13)

where the trace of a matrix (denoted as Tr{·}) is the sum of its diagonal elements.

In addition to this constraint, a general density operator has to be hermitian and

positive semi-definite.

The mixed states cannot be represented by the wave function formalism. We

measure the mixing of the density operator by the purity, defined as:

P = Tr
{
ρ̂2
}
, (1.14)

The purity alway fulfills P ≤ 1, where for a pure state we have P = 1, while for a

mixed state P < 1. In both cases, the total population is 1.

Liouville space. The density operator is an element in the Liouville space of

operators (this space is also known as the Hilbert-Schmidt space). The Liouville

space is a Hilbert space, with the scalar product defined as

(
X̂1, X̂2

)
≡ Tr

{
X̂1
†
X̂2

}
. (1.15)

It is useful to choose the Identity operator and a set of traceless operators as the

basis to the Liouville space.

Linear operators that operate on elements in the Liouville space of operators

are usually referred to as super-operators. Hilbert space definitions and conventions

apply also to the Liouville space. In particular, the adjoint of a super-operator M,

denoted as M†, is the super-operator that satisfies

(
Â,MB̂

)
=
(
M†Â, B̂

)
, (1.16)

for any two operators Â and B̂ in the Liouville space.

Dynamics. The dynamics of the density operator of an isolated system is gener-

ated by the von-Neumann equation:

∂

∂t
ρ̂ = −i

[
Ĥ, ρ̂

]
, (1.17)

where
[
Ĥ, ρ̂

]
denotes the commutator of the Hamiltonian Ĥ with the density op-

erator ρ̂. We look at the commutator with the Hamiltonian as a super-operator,
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denoted by
[
Ĥ, ·

]
. This super-operator is hermitian, as can be derived using the

definitions Eqs. (1.16) and (1.15):

(
Â,
[
Ĥ, ·

]
B̂
)
≡
(
Â,
[
Ĥ, B̂

])
=
([

Ĥ, Â
]
, B̂
)

≡
([

Ĥ, ·
]

Â, B̂
)
,

(1.18)

and therefore ([
Ĥ, ·

])†
=
[
Ĥ, ·

]
. (1.19)

The resulting evolution is expressed using the exponential of this super-operator:

ρ̂(t) = e−i[Ĥ,·](t−t0)ρ̂(t0). (1.20)

The evolution can be encapsulated in the propagator, which is the super-operator

that propagates the density operator:

U(t, t0) = e−i[Ĥ,·](t−t0). (1.21)

The propagator is unitary since the commutator is hermitian. Under unitary evo-

lution the purity is conserved. In particular, for a density operator that originated

from a pure wave function as in Eq. (1.11), the dynamics will be the same as of Eq.

(1.6):

ρ̂pure(t) = e−i[Ĥ,·](t−t0)ρ̂pure(t0)

= e−i[Ĥ,·](t−t0) |ψ(t0) 〉〈ψ(t0)|
= e−iĤ(t−t0) |ψ(t0) 〉〈ψ(t0)| e+iĤ(t−t0)

= |ψ(t) 〉〈ψ(t)| .

(1.22)

Conceptually, the dynamics of a mixed-state density operator can be decomposed

to the dynamics of the mixing wave functions. In a similar manner to Eq. (1.22),

the dynamics can be shown to be equivalent to the dynamics generated by the

Schrödinger equation, Eq. (1.5).

1.1.3 Observables

Quantum mechanics associates measured quantities to observable operators. The

expectation value of such an observable expresses its associated measured quantity.

For a pure state |ψ(t)〉, the expectation value of an observable Ô is defined using
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the wave function |ψ(t)〉, or the appropriate density operator ρ̂(t) = |ψ(t)〉 〈ψ(t)|:
〈
Ô(t)

〉
≡
〈
ψ(t)

∣∣∣Ô
∣∣∣ψ(t)

〉

= Tr
{

Ô ρ̂(t)
}

≡
(
Ô, ρ̂(t)

) (1.23)

The hermitian conjugation was omitted since the observables are hermitian opera-

tors. The definition 〈Ô(t)〉 = Tr{Ô ρ̂(t)} holds also for mixed-state density opera-

tors. We use the propagator and its adjoint to assign the dynamics of the expectation

value to the operator:

(
Ô, ρ̂(t)

)
=
(
Ô,U(t, t0) ρ̂(t0)

)
=
(
U †(t, t0) Ô, ρ̂(t0)

)
≡
(
Ô(t), ρ̂

)
. (1.24)

The differential equation that generates this dynamics is the Heisenberg equation:

∂

∂t
Ô = i

[
Ĥ, Ô

]
, (1.25)

which is the hermitian adjoint of the von-Neumann equation, Eq. (1.17).

1.2 Driven quantum system

In many instances we are interested in the dynamics that result from the driving of

an external field. Examples for such driving are: Absorption spectroscopy, which

measures the energy absorption from the driving field [Tannor 2007, Chapter 14];

Coherent control of population transfer in molecular electronic surfaces and of chem-

ical reaction channels [Tannor 2007, Chapter 16], [Shapiro 2003, Rice 2000]; the in-

teraction of the radiation from the sun with the atmosphere molecules [Bird 1984,

Bird 1983, Riordan 1986]. The driving of the external fields is described by addi-

tional terms in the Hamiltonian:

Ĥ(t) = Ĥ0 + Ĥf (t) = Ĥ0 +
∑

k

fk(t)V̂k, (1.26)

where V̂k are operators that operate on the Hilbert space, and fk(t) are time-

dependent coefficients. For time-dependent Hamiltonians the propagator involves

the time-ordering operator T :

Û(t, t0) = T exp

{
−i
∫ t

t0

Ĥ(τ) dτ

}
, (1.27)
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instead of Eq. (1.6). A similar expression will replace the evolution of the density

operator, Eq. (1.20). Nevertheless, the evolution is still unitary, reflecting the

reversibility of the dynamics under the proper time-reversal of the external fields.

The dynamics of Eq. (1.27) can be expressed explicitly using the Dyson series

or the Magnus expansion [Blanes 2009]. However, in this thesis we limited the

evolution to simple scenarios, namely low order time dependent perturbation theory

(based on the Dyson series), and the rotating wave Hamiltonian. These frameworks

are described below.

1.2.1 Time dependent perturbation theory

Dyson series. The time dependent perturbation theory (TDPT) is based on ex-

pressing the propagator as a composition of two operators:

Û(t, t0) = Û0(t, t0)ÛI(t, t0), (1.28)

where Û0(t, t0) = exp{-iĤ0(t − t0)} is the propagator generated by the time in-

dependent part of the Hamiltonian, and ÛI(t, t0) is generated by the interaction

Hamiltonian,

ĤI(t) = Û
−1

0 (t, t0)Ĥf (t)Û(t, t0). (1.29)

The Dyson equation is an integral equation reflecting the Schrödinger equation:

ÛI(t, t0) = 1̂ +

∫ t

t0

dτ ĤI(τ)ÛI(τ, t0). (1.30)

A recursive substitution of ÛI(t, t0) in this equation leads to the infinite Dyson

series. If the interaction Hamiltonian is small, the series can be truncated to give:

ÛI(t, t0) = 1̂ +

∫ t

t0

dτ1 ĤI(τ1) +

∫ t

t0

dτ1

∫ τ1

t0

dτ2 ĤI(τ1)ĤI(τ2) + · · · . (1.31)

A similar practice holds for the approximation of the propagator of the von-Neumann

equation.

Expectation values. When we describe the evolution of expectation values it is

important to keep track of the relevant orders of the small parameter. Suppose the

small parameter is λ. The second-order approximation for the wave function can be

expressed as:

|ψ(t)〉 ≈ |ψ0(t)〉+ λ |ψ1(t)〉+ λ2 |ψ2(t)〉 . (1.32)



10 Chapter 1. Theoretical background

The resulting second-order approximation for the expectation value of the operator

Ô is: 〈
Ô(t)

〉
≈
〈
ψ0(t)

∣∣∣Ô
∣∣∣ψ0(t)

〉

+ λ
(〈
ψ0(t)

∣∣∣Ô
∣∣∣ψ1(t)

〉
+ c.c

)

+ λ2
〈
ψ1(t)

∣∣∣Ô
∣∣∣ψ1(t)

〉

+ λ2
(〈
ψ2(t)

∣∣∣Ô
∣∣∣ψ0(t)

〉
+ c.c

)
.

(1.33)

We see that the first-order wave function yields also second-order terms for the

expectation value. But to obtain the full second-order term we need also |ψ2(t)〉 (if〈
ψ2(t)

∣∣∣Ô
∣∣∣ψ0(t)

〉
6= 0), therefore the second order TDPT is required. If we use the

TDPT for density operator instead, we have

ρ̂(t) ≈ ρ̂0(t) + λρ̂1(t) + λ2ρ̂2(t), (1.34)

and the expansion of the expectation value follows order by order with the density

operator expansion:

Tr
{

Ô ρ̂(t)
}
≈ Tr

{
Ô ρ̂0(t)

}
+ λTr

{
Ô ρ̂1(t)

}
+ λ2Tr

{
Ô ρ̂2(t)

}
. (1.35)

There are situations where
〈
ψ2(t)

∣∣∣Ô
∣∣∣ψ0(t)

〉
= 0, e.g., when the observable

measures population transfer that is induced only by the time dependent part of the

Hamiltonian, i.e., Ĥf (t), and is not allowed by Ĥ0. On such cases only first-order

TDPT is needed for the wave function description, but the equivalent description

using the density operator will require the second order approximation.

1.2.2 Rotating frame

Many systems in atomic and molecular physics may be separated into two subsys-

tems. These two manifolds have an energy difference ∆E, and are coupled through

an external field. For example, a molecule with two electronic surfaces can be subject

to a laser that excites the molecule to the excited surface.

Suppose that the separated subsystems are described by the Hamiltonians Ĥ1

and Ĥ2. The total free-field Hamiltonian is:

Ĥ0 =

(
Ĥ2 0

0 Ĥ1

)
. (1.36)

These subsystems are coupled by a time-dependent laser field f(t). The field
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operator is described by

Ĥf (t) =

(
0 µ̂f(t)

µ̂†f(t)∗ 0

)
, (1.37)

where the operation of the field operator is represented by the linear operator µ̂.

The total Hamiltonian is Ĥ = Ĥ0 + Ĥf .

If the field is composed from an envelope f̃(t) and oscillations with the carrier

frequency ωL,

f(t) = f̃(t)eiωLt, (1.38)

we can use the rotating frame for a more convenient representation of the problem.

We define the rotation operator

R̂(t) = exp
{
−iωL

2
Ŝzt
}
, Ŝz =

(
1̂ 0

0 −1̂

)
. (1.39)

The rotation operator is used to rotate the wave function

∣∣∣ψ̃(t)
〉

= R̂(t) |ψ(t)〉 . (1.40)

The Schrödinger equation for the rotated wave function employs the rotating frame

Hamiltonian, ĤRF ,
∂

∂t

∣∣∣ψ̃(t)
〉

= −iĤRF

∣∣∣ψ̃(t)
〉

(1.41)

with

ĤRF = R̂(t)ĤR̂
†
(t)− ωL

2
Ŝz =

(
Ĥ2 − 1

2
ωL µ̂f̃(t)

µ̂f̃(t)∗ Ĥ1 + 1
2
ωL

)
, (1.42)

The rotating wave Hamiltonian eliminates the rapid oscillation of the field. It

also reduces the energy difference between the subsystems to δ ≡ ∆E − ωL.

1.3 Open quantum systems: Reduced description

The concept of isolated quantum systems is a useful idealization. However, real

systems are coupled to the surroundings. A generic model starts with describing the

system under study as a part of a composition of the system and the environment.

The Hamiltonian of such a construction is

Ĥ = ĤS ⊗ ÎE + ÎS ⊗ ĤE + V̂S−E. (1.43)

Here, the operators Ĥ and Î denote the Hamiltonians and the Identity operator,

respectively, and the subscripts S and E represent the system and the environment,
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respectively. The operator V̂S−E is the interaction between the system and the

environment.

A full description has to account for all the degrees of freedom of the system

and the environment. However, only the system degrees of freedom are of interest.

Therefore, we attempt to describe only the system explicitly, and to integrate out the

environment degrees of freedom, so they will affect the description only implicitly.

The goal is to reduce the description to a small number of variables and obtain a

practical way to treat the system. Such a description is called a reduced description.

There are several ways to derive the reduced description of the dynamics. They

all involve partial tracing on the environmental degrees of freedom:

ρ̂S ≡ TrE {ρ̂} , (1.44)

but can use different approximations. The resulting dynamics has to conserve the

properties of the density operator:

1. Tr {ρS(t)} = 1.

2. ρS(t) is positive semi definite.

3. ρS(t) is hermitian.

The dynamics is not limited to hermitian generators and generally it is not unitary.

This reflects the non uniform character of the dynamics, caused by the flow of

information from the system to the environment and back. An immediate result of

the non unitary dynamics is that the purity is not conserved with such dynamics

and it can increase or decrease during the evolution.

1.3.1 The Kraus map

A very general description of the time evolution is the Kraus map [Kraus 1971,

Kraus 1983, Alicki 2007]. This map requires that the dynamics will be linear and

trace preserving. Additionally, the density operator of the entire composition of the

system and the environment should be initially a separable state:

ρ(0) = ρS(0)⊗ ρE(0), (1.45)

where ρ̂S and ρ̂E are the density operators of the system and the environment,

respectively. Under such conditions, the system dynamics can be represented in the

Kraus form:

ρS(t) = Φ [ρS(0)] =
∑

i

K̂iρS(0)K̂†i . (1.46)
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The operators {K̂i} are the Kraus operators, which should satisfy the condition:

∑

i

K̂iK̂
†
i = Î. (1.47)

Every map that can be represented in the Kraus form is a completely positive

map [Alicki 2001]. The time evolution of the quantum system is required to be

completely positive. The complete positivity requirement is a strengthening of the

positivity property: The tensor product of two completely positive maps is always

completely positive. This is contrary to positive maps, since the tensor product of

two positive maps may be non positive. The complete positivity of the dynamics

ensures that the density operator preserves its properties.

1.3.2 Markovian dynamics

For Markovian dynamics further simplifications can be applied. The physical inter-

pretation of the Markovian assumption is that the dynamics of the environment is

much quicker than that of the system. Therefore, any information that transfers

from the system to the environment is lost, leading to a ”no-memory” effect. Davies

rigorously derived the weak coupling limit, resulting in a quantum Master equation

which leads to a completely positive dynamical semigroup with negligible memory

effects [Davies 1974]. The term semigroup implies that the time evolution forms a

family of maps which does not form a full group. It lacks the negative range of the

parameter t, which implies that the inverse property required from a group is miss-

ing. Physically, this property is the manifestation of irreversible dynamics which

allows us to distinguish the future from the past. To summarize, the quantum dy-

namical semigroup is a continuous one parameter family of maps {Λt, t ≥ 0}, that

satisfies [Alicki 2001]:

1. Λt is complete positive.

2. Λt is trace preserving.

3. Λt+s = ΛtΛs t, s ≥ 0, semigroup Markov property.

4. Λt is strongly continuous.

The total density operator in such dynamics remains a tensor product at all times:

ρ(t) = ρS(t)⊗ ρE(t). (1.48)
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1.3.3 The L-GKS equation

Based on a mathematical construction, Lindblad, as well as Gorini, Kossakowski

and Sudarshan, (L-GKS) obtained the most general structure of the generator L
of a completely positive dynamical semigroup [Lindblad 1976, Gorini 1976]. The

equation of motion is the L-GKS equation, known also as the Lindblad equation:

∂
∂t
ρS = L(ρS) ≡ −i

[
Ĥ, ρS

]
+

∑
i γi

(
ÂiρSÂ†i − 1

2

{
Â†iÂi, ρS

})
,

≡ LH(ρS) + LD(ρS)
(1.49)

with {Âi} a set of orthonormal traceless operators, and {B̂, Ĉ} is the anti com-

mutator of the operators B̂ and Ĉ. The super-operator L is the L-GKS generator,

known also as the Lindbladian. LH and LD are the Hamiltonian and the dissipative

parts of the Lindbladian, respectively.

In the absence of the dissipator LD, the equation resembles the von-Neumann

equation, and generates unitary evolution. Under the presence of dissipator LD
the evolution is not unitary. Using the definition of an adjoint super-operator, the

adjoint of the dissipator LD can be shown to have the form:

L†DX̂ =
∑

i

γi

(
Â
†
iX̂Âi −

1

2

{
Â
†
iÂi, X̂

})
. (1.50)

The dissipator is neither hermitian nor anti-hermitian. Therefore the purity is not

conserved in such dynamics. The purity change is only due to the dissipator LD.

Therefore, if an external field acts only on the system, the purity cannot be altered

by the field. This leads to ’contraction’ of the reachable space under the driving of

external fields [Altafini 2004].

For a time-independent L-GKS generator, the evolution is given formally by:

ρ̂S(t) = eLtρ̂S(0). (1.51)

When the open system interacts with external fields, the dissipator may have to be

modified. For example, in a strong periodic driving, one has to use Floquet analysis

to derive the quantum master equation [Alicki 2006, Levy 2012]. Another regime is

the adiabatic limit, where the Hamiltonian can be instantaneously diagonalized and

the master equation is derived accordingly [Geva 1994]. However, if the fields are

weak the dissipator can be described as field-independent. The dynamics for such

a time-dependent L-GKS equation will involve the time ordering operator T , as in

Eq. (1.27).



Outline

The distinct nature of Markovian open quantum systems is peculiar and fascinating.

The goal of this work is to unravel a few aspects of the emerging dynamics. We

investigated the effect of the environment on the dynamics of the system under the

influence of external driving fields.

• Chapter 2, Numerical methods for the analysis of the L-GKS dynamics, dis-

cusses the numerical methods we used at this work. The particular properties

of the Markovian dynamics require employing different numerical tools for the

analysis of the L-GKS equation.

• Chapter 3, Population transfer induced by weak fields, studies the weak-field

phase-only control of open quantum systems. We employed the time depen-

dent perturbation theory of the L-GKS equation to investigate laser-driven

population transfer in molecules. We compared the effect of the phase of the

weak driving field on the open and isolated system dynamics, and examined

the consequences of the coupling of the system to the environment.

• Chapter 4, Exceptional points in the dynamics of Markovian open quantum

systems, studies exceptional points of the L-GKS equation.

Non-hermitian degeneracies are known as exceptional points. They gives rise

to a subtle unique time evolution, which can be revealed using harmonic inver-

sion methods. We studied the implications of such points in the open system

dynamics of two system classes:

– The two-level system described by the Bloch equations. We calculated

the map of exceptional points for this system, and suggested to employ

the exceptional points for the estimation of the system parameters.

– The spontaneous emission of atomic systems. The additional complexity

of these systems leads to a more complex map of exceptional points. We

calculated the map of exceptional points and suggested to employ them

for accurate parameter estimation.

• Chapter 5, Conclusions and outlook, discusses the thesis and presents conclud-

ing remarks.
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Chapter 2

Numerical methods for the

analysis of the L-GKS dynamics

2.1 Introduction

The coupling of a quantum system to the external environment incorporates relax-

ation and dephasing processes into the dynamics. The L-GKS equation describes

the dynamics of such Markovian open quantum systems [Breuer 2002, Alicki 2007].

There is an essential difference between the characteristics of the dynamics of open

and isolated systems. This difference is manifested in the properties of the generat-

ing equations. Therefore, the numerical tools needed for the analysis of the L-GKS

dynamics are different from the common tools used in quantum mechanics.

The L-GKS equation, Eq. (1.49), is a first order linear differential equation,

described by the operation of the super-operator L on the density operator ρ̂:

dρ̂

dt
= Lρ̂. (2.1)

When the super-operator L is time independent, the formal solution is:

ρ̂(t) = eLtρ̂(0). (2.2)

Typically, the resulting dynamics of the system observables (expectation values and

other correlation functions) C(t) will have the analytical form of sum of decaying

oscillations‡:

C(t) =
∑

m

dme
λmt, (2.3)

‡There are special cases where the super-operator is not diagonalizable. In such cases, known as
exceptional points, the exponential eλt is multiplied by a polynomial of t. A study of exceptional
points in L-GKS systems can be found in Chapter 4 of this thesis.

17
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where λm are the exponential coefficients and dm are the associated amplitudes, both

can be complex. We may divide λm into its real and imaginary parts, λm = −αm +

iωm, with αm ≥ 0 ∈ R as the decay rates and ωm ∈ R as the oscillation frequencies.

The coefficients λm are the eigenvalues of the super-operator L, obtained by the

eigenvalue equation:

Lσ̂m = λmσ̂m. (2.4)

These eigenvalues can be used for the analysis of the L-GKS dynamics.

Below we describe the numerical tools we used for the analysis of the L-GKS

dynamics. The main numerical methods we used in this work are:

• Numerical simulations of the dynamics generated by the L-GKS equation.

• Characterizing the L-GKS generator by means of its eigenvalues.

• Analysis of the generated dynamics.

Section 2.2 describes the formulation of the L-GKS equation as a matrix-vector

equation. Such a formulation eases the use of common numerical methods for sim-

ulations of the dynamics and eigenvalue calculations. Section 2.3 describes the

harmonic inversion method we used for analysis of the dynamics.

2.2 Matrix-vector representations

As noted above, the dynamics can be investigated by exponentiation of the super-

operator L, Eq. (2.2), or by its eigenvalues, Eq. (2.4). The exponential and the

eigenvalue problem of the (linear) super-operator L are well defined. However, the

standard formulation of the L-GKS equation defines the operation of the L-GKS

generator as sum of left and right matrix multiplications with the density operator.

This formulation challenges the use of common numerical techniques for the expo-

nentiation and for the eigenvalues calculation. Calculations of the exponentiation

and the eigenvalue equation of linear operators can be done by common numerical

techniques if the linear operator is represented by a matrix. Therefore, it is advan-

tageous to represent the L-GKS equation, Eq. (2.1), as a matrix-vector differential

equation. This means that we are looking for a matrix L and a vector ~rs such that

the dynamics are expressed as
d

dt
~rs = L~rs. (2.5)

In this representation, the vector ~rs represents the state of the system, or some

information about it, e.g. a set of expectation values.

Suppose the density operator ρ̂ is an n×n matrix (if ρ̂ is a function of continuous

variables, e.g. ρ̂(r, r′), these variables have to be discretized). The set of all n × n
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density operators forms a Liouville space of dimension n2. In this Liouville space,

we consider the density operator ρ̂ as an n2 vector. Similarly, we consider the super-

operator L, which is an operator operating on elements in this linear space, as an

n2 × n2 matrix.

The above observation is the first step towards the representation we seek. In

the following, we describe three approaches that use this concept to introduce such

a representation:

1. Vec-ing the density operator is the most natural way to construct an n2 vector

for the density operator, and a suitable n2×n2 matrix for the super-operator.

2. The Arnoldi method approximates a large matrix in smaller dimensions, en-

abling simpler numerical calculations.

3. With the Heisenberg picture of the L-GKS equation we can search for a rep-

resentation with a dimension smaller than n2.

These three approaches are described below.

2.2.1 Vec-ing the density operator

In this method, known as vec-ing [Machnes 2014, Roger 1994, Chapter 4], the n×n
density operator ρ̂ is flattened into an n2 vector ~r . This flattening is done by

ordering the columns of ρ̂ one below the other, so the (a, b) entry of the matrix

ρ̂ is the (b− 1)n+ a entry of the vector ~r. This is equivalent to choosing the

representation basis as the set of matrices with all-zero entries, except one.

The next task is to find the suitable matrix that will represent the operation of

the super-operator L on the density operator. We make the following observations

[Machnes 2014, Roger 1994]:

1. A left multiplication of the matrix ρ̂ by an n×n matrix A, i.e. Aρ̂, is equivalent

to an operation on the vector ~r by the n2 × n2 matrix I ⊗ A, where I is the

n× n identity matrix, and ⊗ is the Kronecker direct product.

2. Similarly, a right multiplication of the matrix ρ̂ by an n×n matrix B, i.e. ρ̂B,

is equivalent to an operation on the vector ~r by the n2 × n2 matrix BT ⊗ I.

Here T denotes the transpose of the matrix.

3. Finally, a combination of left and right matrices multiplication, Aρ̂B, is equiv-

alent to an operation on the vector ~r by the n2 × n2 matrix BT ⊗ A.

The L-GKS super-operator is a sum of such right and left multiplications. Therefore,

the construction of the n2 × n2 matrix representation for the L-GKS generator has
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the parts as follows. For the commutator:

[
Ĥ, ρ̂

]
→
(
I ⊗ Ĥ− Ĥ

T ⊗ I
)
~r.

For the dissipative part:

Âiρ̂Â
†
i →

((
Â
†
i

)T
⊗ Âi

)
~r

Â
†
iÂiρ̂ →

(
I ⊗ Â

†
iÂi

)
~r

ρ̂Â
†
iÂi →

((
Â
†
iÂi

)T
⊗ I
)
~r.

Then we write

L =− i
(
I ⊗ Ĥ− Ĥ

T ⊗ I
)

+
∑

i

γi

((
Â
†
i

)T
⊗ Âi −

1

2

(
I ⊗ Â

†
iÂi +

(
Â
†
iÂi

)T
⊗ I
))

,
(2.6)

and represent Eq. (2.1) as
d

dt
~r = L~r

as desired.

The mapping of the density operator into a density vector yields in a dramatic

increment in the dimension of the problem, which becomes n2 instead of n ‡. This

yields unfavorable scaling of the desired computations with n:

• Eigenvalue approach. Computation of the complete eigenvalue spectrum of L

is performed via the diagonalization of L. Diagonalization of a matrix scales

as the cube of its dimension. Hence, the diagonalization of L scales as n6.

• Exponentiation methods. The exponentiation of the matrix for time propaga-

tion, eLt, can be computed via various ways [Moler 2003]. Remarkably, two

branches are of interest:

1. Directly employing the diagonalization of L.

2. Numerical approximations, which usually involve matrix-matrix multipli-

cations.

Both diagonalization and matrix-matrix multiplications scale as the cube of

the matrix dimension. Therefore, the overall scaling of the exponentiation is

also n6.

‡The density operator ρ̂ is hermitian. Therefore there are only n(n + 1)/2 unique entries and
not n2. This fact can be used to reduce the size of the vectors and matrices, known as a half-
vectorization [Abadir 2005, Chapter 11]. However, we will not discuss this here.
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The calculation cost of the operation of the exponential eLt on an initial vector

~r0, i.e. eLt~r0, can be reduced by employing matrix-vector multiplications, and

therefore scales as n4 [Al-Mohy 2011].

For systems larger than a few degrees of freedom, such computations are expensive,

and become practically impossible for systems larger than a few hundreds DOF.

The scaling problem suggests that we have to look for approaches that use a

smaller number of dimensions. The following two approaches address this issue.

The Arnoldi method uses a small-dimension approximation of a large matrix. The

operator representation seeks for a small subset of variables that are sufficient to

describe the quantities of interest. These two approaches are described in the next

two sections.

2.2.2 Arnoldi method

The Arnoldi method is a method to approximate a large matrix A in a smaller

dimension [Trefethen 1997]. This is done by choosing an appropriate set of a small

number of vectors, which should be representative of the relevant subspace for a

specific problem. Then the desired matrix is represented in the reduced subspace

which is spanned by the chosen vectors. The method starts with an initial vector ~v

and creates set of K+ 1 vectors by the repetitive operation of the matrix A: {~v, A~v,
A2~v, . . . , AK~v}. Then an orthonormal set is generated from this set by the Gram-

Schmidt process. This orthonormal vectors set spans a subspace with dimension

K + 1, and the matrix A is represented in this subspace by a (K + 1) × (K + 1)

matrix. This smaller matrix can be used for the efficient evaluation of functions of

the matrix A, e.g. the exponential [Saad 1992] or the eigenvalues [Arnoldi 1951].

In our case we try to approximate the linear super-operator L by a matrix which

is smaller than n2 × n2. Conceptually, we start with the initial density operator

ρ̂0 ≡ ρ̂s(0), and operate K times with L to get the set {ρ̂0,Lρ̂0,L2ρ̂0, . . . ,LKρ̂0}
which is the starting point for orthogonalization and (K + 1)× (K + 1)-dimension

matrix representation of L. We note that the operation of L involves n× n matrix-

matrix multiplications, which scales as n3. Therefore, it is more efficient to use

the operation of L for the procedure than to use the vec-ing matrix L (Eq. (2.6))

described in Sec. 2.2.1 above.

The actual procedure follows, adapted to the notation of a super-operator and

density operators:

1. Begin with the normalized density operator ρ̂0.

2. for j = 0 to K
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(a) Compute a non-orthonormalized new density operator by setting: ρ̂j+1 :=

Lρ̂j
(b) for i = 0 to j

i. Set: Li,j :=
(
ρ̂†i , ρ̂j+1

)
= Tr

{
ρ̂†i ρ̂j+1

}

ii. Subtract the projection on ρ̂i: ρ̂j+1 := ρ̂j+1 − Li,jρ̂i
end for

(c) Set: Lj+1,j :=
∥∥ρ̂j+1

∥∥ ≡
√

Tr
{
ρ̂†j+1ρ̂j+1

}

(d) Normalize ρ̂j+1 by setting ρ̂j+1 :=
ρ̂j+1

Lj+1,j

end for

The procedure yields

Li,j = Tr
{
ρ̂†iLρ̂j

}
i ≤ j + 1

For i > j + 1, the expression in the right-hand side vanishes. Thus, we can define a

(K + 1)× (K + 1) matrix which its general element is given by a matrix element of

L in the Liouville space:

Li,j = Tr
{
ρ̂†iLρ̂j

}

(Note that the procedure also yields ρ̂K+1 and LK+1,K which are not necessary for

our purposes). L represents the operation of the super-operator L on the subspace

that is spanned by the density operators {ρ̂0, ρ̂1, ρ̂2, . . . , ρ̂K}. The matrix L is

referred to as the Hessenberg matrix of L. The density operator has to be approxi-

mated by its projection on the subspace: ρ̂ ≈ r0ρ̂0 + r1ρ̂1 + r2ρ̂2 + . . .+ rKρ̂K . The

vector

~r ≡ (r0, r1, r2, . . . , rK)T (2.7)

is the representation of the density operator in this subspace. The dynamics of the

vector ~r is generated by the matrix L that was constructed in step (2) of the above

procedure:
d

dt
~r = L~r.

Exponentiation and eigenvalue calculations of the matrix L can be done by common

numerical techniques [Arnoldi 1951, Saad 1992].

The Arnoldi algorithm usually becomes problematic when a large dimension

approximation is required, i.e. when K is large. In such a case, a restarted Arnoldi

algorithm should be used instead (see, for example, [Tal-Ezer 2007]). This topic is

beyond the scope of this thesis.
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2.2.3 The Heisenberg representation

Not always the full state of the system will be of concern. In most cases we will be

interested only in the expectation values of some measured quantities. This fact can

reduce significantly the dimensions of the problem. For example, in the standard

thermalizing master equation the population and the coherences are decoupled, and

the population of a certain level is given by solving a single differential equation

[Breuer 2002]. The full state of the system can be reconstructed by calculating all the

expectation values of the Lie algebra of the system. Generally, a full reconstruction

of the state will scale as the Vec-ing of the density operator introduced in Sec. 2.2.1.

Nevertheless, in many cases we can use symmetries to reduce the dimensions of the

problem. For example, if the initial state of harmonic oscillator is a Gaussian state,

then it will stay Gaussian along the dynamics and only the first two moments are

necessary to retrieve the full state [Rezek 2006]. Another example is coupled two

qubits in which the full dimension of the system is 16, but only 3 operators are

sufficient to define the energy and coherence of the system [Kosloff 2002].

To describe the dynamics of the expectation values, it is common to use the

master equation in the Heisenberg representation. The operator X̂ belonging to

dual Hilbert space of the system follows the dynamics [Alicki 2001, Breuer 2002]:

X̂(t) = eL
†tX̂(0), (2.8)

which in its differential form is written explicitly as

d

dt
X̂ = L†X̂ ≡ i

~

[
Ĥ, X̂

]
+
∑

i

γi

(
Â
†
iX̂Âi −

1

2

{
Â
†
iÂi, X̂

})
. (2.9)

If there is a a set of operators {X̂k}Mk=1, M < n2, that forms a closed set under

the operation of L†, meaning

L†X̂k =
M∑

j=1

lkjX̂j (2.10)

then we can write a closed linear system of coupled differential equations. The

expectation values xk ≡
〈
X̂k

〉
will have the corresponding set of coupled differential

equations. The analytical form of their dynamics will follow the form of Eq. (2.3).

We define the vector of expectation values ~R ≡ (x1, x2, . . .)
T . This system can be

represented in a matrix-vector notation,

d

dt
~R = L† ~R,
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where the matrix L† is defined by the equation set Eq. (2.10),
(
L†
)
kj

= lkj. The

dimension of this matrix is M2. Note that eigenvalues of the matrix L† are complex

conjugates of a subset of the eigenvalues of the super-operator L of Eq. (2.4).

2.3 Harmonic inversion of time signals

The analytical form of a time signal that emerge from a system of coupled linear

differential equations is generally a sum of decaying exponents:

C(t) =
∑

k

dk exp [λkt] , (2.11)

where the complex coefficients λk are composed from real and imaginary parts:

λk = −αk + iωk, with αk ≥ 0 ∈ R as the decay rates and ωk ∈ R as the oscillation

frequencies. dk are the associated amplitudes, which also can be complex.

Such time signals can be the results of an experiment or a simulation. For

studying the L-GKS dynamics, we have to analyze this time series end extract the

underlying model, which is characterized by the eigenvalues {λk} and the amplitudes

{dk}. The time signal C(t), 0 ≤ t ≤ T , is sampled at some discretized time points

{tn}, usually at equal time intervals:

c[n] ≡ C(tn) = C(nδt), 0 ≤ n ≤ N = bT/δtc. (2.12)

The immediate candidate for such a task is the discretized Fourier transform.

The location of the spectrum peaks are the frequencies of the time series, the widths

of the peaks are the decay rates, and the magnitudes of the peaks are the amplitudes.

However, the Fourier transform enables extracting the frequencies and decay rates

only to a limited resolution: ∆ω ≥ 1
T

. We need a long duration of time signals to

reproduce the eigenvalues.

To overcome this limitation, the procedure for extracting the eigenvalues from

the time series has to assume a specific model. Harmonic inversion methods assume

an analytical form of sum of decaying oscillations for the time series, Eq. (2.11),

and use this form for extracting the eigenvalues in high resolution. An overview of

harmonic inversion methods can be found at [Belkić 2000].

The Filter Diagonalization (FD) method [Wall 1995, Mandelshtam 2001] as-

sumes that the dynamics is generated by a complex matrix H,

C(t) =
〈
ψ0

∣∣e−iHt
∣∣ψ0

〉
. (2.13)

Based on this model the FD method builds an eigenvalue problem. The parameters
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of the time signal are extracted from the solutions for this problem. This method is

widely used for analysis of NMR experiments [Hu 1998] and Fourier transform mass

spectrometry [Martini 2014]. It was also used in the field of ultrafast pump-probe

molecular spectroscopy [Gershgoren 2001].

In this work we used the Padé approximant (PA) method. This method assumes

the analytical form of Eq. (2.11) and uses the time series to introduce two polyno-

mials, which are employed to determine the time signal parameters. This algorithm

was used for extracting the frequencies and the amplitudes from the simulated time

signals. The algorithm is summarized in Refs. [Fuchs 2014, Belkić 2000]. It is pre-

sented here for the sake of completeness. The Matlab code we used is presented in

Appendix 2.4.

Given:

1. A time signal c[n] = C(nτ), 0 ≤ n < N , sampled at time interval τ

2. The lower edge of the frequency window ω−

3. The total number of resonances of the signal K

Output: The frequencies ωk and the amplitudes dk of the expansion:

cn ≡ C(nτ) = −i
∑

k

dk exp[−i(wk − w−)nτ ] (2.14)

Steps:

1. Define the polynomial Qk(z): Qk(z) =
∑K

k=1 akz
k − 1.

Find the coefficients ak by solving the linear set of equations:

cn =
K∑

k=1

akcn+k, n = 0, ..., K − 1 (2.15)

2. Find the roots zk of the polynomial Qk(z).

3. Obtain the frequencies ωk by

ωk = ω− +
i

τ
ln(zk) (2.16)

4. Define the polynomial Pk(z): Pk(z) =
∑K

k=1 bkz
k

Find the coefficients bk by the explicit formula:

bk =
K−k∑

m=0

akcn+k, n = 0, ..., K − 1 (2.17)
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5. Obtain the amplitudes dk (We use the notation Q(1)(x) = d
dz
Q(z)

∣∣
z=x

):

dk =
P (zk)

zkQ(1)(zk)
(2.18)

2.4 Appendix:

Matlab code for the Padé approximant har-

monic inversion

The Matlab code that we used for the Padé approximant harmonic inversion is

presented below.



1

function [d, w] = PadeHarmonicInversion(Cn, K, tau, w_minus)
% [d, w] = PadeHarmonicInversionExtended(Cn, K, tau, w_minus, tol)
% Finds the decomposition of a time signal Cn(t), which is sampled
 with
% equals intervals, into sum of exponentials Sum_k d_k *
 exp(-1i*w_k*t)
% This is done by the Pade approximant harmonic inversion method.
%
% Inputs
% Cn - the time signal
% K - the number of exponent terms in the sum
% tau - the time interval for the sampling
% [w_minus, w_plus] is the frequency window to look at:
%    w_minus is an input, w_plus = w_minus+2*pi/tau
%    (Use w_minus=0 in case you don't know what it is)
%
% The output is the amplitudes d and frequcies w, both can be complex.
% Both d and w have length of K.
%
% Reference:
% Harmonic inversion analysis of exceptional points in resonance
 spectra
% By J. Fuchs, J. Main, H. Cartarius and G. Wunner
% 2014 J. Phys. A: Math. Theor. 47 125304
% doi:10.1088/1751-8113/47/12/125304
%
% (without the extended part)

N = length(Cn);
assert(N>=2*K,'At least 2K signal points are required.')

% We use only 2K time points.
% We choose them to be dispersed as much as possible
step = floor(N/(2*K));
Cn = Cn(1:step:N);
tau = step*tau;

if size(Cn,2) ~= 1 % row vector
  Cn = Cn.'; % Column
end

% The matrix for Eqn (7) : loop over n and k: Cnk(n+1,k) = Cn(n+1+k)
% (with n+1 to shift to Matlab indices)
% We use Matlab's indices instead of the loop (the bsxfun generates a
 plus table):
Cnk = Cn(bsxfun(@plus,(1:K)',1:K));

% The 2nd polynomial of Eqn (6),  Q_K(z)=(sum_k a_k*z^k) -1,
% should be obtained by solving a = Cnk\Cn,
% but we have to force Matlab to use pseudo-inverse
a = pinv(Cnk)*Cn(1:K);
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% The 1st polynomial of Eqn (6),  P_K(z)=sum_k b_k*z^k,
% is obtained directly, Eqn (8):
b = zeros(K,1);
for k = 1:K;
  b(k) = a(k:K).'*Cn(1:(K-k+1)); % n+1 to shift to Matlab indices
end

% The roots of the polynomial are the frequencies.
% Matlab's built-in ROOTS function uses the matrix A of Eqn. (10)
Q_0 = [flipud(a);-1];
P_0 = [flipud(b);0];
z = roots(Q_0);
logz = log(z);
w = w_minus+1i/tau*logz; % Eqn (9)

% Prepare polynomials
Q_1_z = polyval(polyder(Q_0),z);
P_0_z = polyval(P_0,z);

% Find d_k, Eqn (11)
% Without the (-i) factor, since we start from the time signal
d = P_0_z./z./Q_1_z;

% Sort the results by the amplitudes
[d, ind_sorted] = sort(d,'descend');
w = w(ind_sorted);

end

Published with MATLAB® R2015a
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Chapter 3

Population transfer induced by

weak fields

3.1 Introduction

The main question we ask in this thesis is how the environment affects the dynamics

of driven systems. A significant application for such driving is measurements: The

principle of measurements is to examine an object by employing a probe which

minimizes the perturbation to the examined system. In molecular spectroscopy a

weak radiation field achieves this task. The basic assumption is that there is a direct

link between the energy loss from the field and the molecular spectrum. Usually,

the molecule interacts with a solvent which acts as an environment. We study the

effect of this environment.

In the present study we concentrate on phase control of the population excitation

processes in molecules. The molecule is described by the Hamiltonian Ĥ0, and is

coupled by the dipole operator µ̂ to an external light field ε(t). In the dipole limit

the resulting control Hamiltonian is of the form:

Ĥ = Ĥ0 + µ̂ · ε(t). (3.1)

The energy loss of the probing field at the transition frequency ωif is proportional

to the population transfer [Kosloff 1992, Ashkenazi 1997, Am-Shallem 2014]:

∆E(ωif ) = ~ωif∆N. (3.2)

For an isolated molecule the probability of transition from an initial state |i〉 to a

final state |f〉 can be calculated by the first order of the time dependent perturbation

theory, to get:

Pi→f (t) =
1

~2
|〈f |µ̂|i〉|2|

∫ t

0

e−iωif t
′
ε(t′)dt′|2 (3.3)

29
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For large t we get the Fourier transform of the field, ε̃(ω), at the transition

frequency ωif . Therefore, the probability depends only on the magnitude of the

field |ε(ω)| at this frequency. It is clear from this description that the state to state

transition probability is independent of the phase of the excitation field ε̃(ω), and

thus it is phase insensitive.

During the last years, a series of experiments challenged this assertion: They

showed a phase-dependence of the branching ratio of the cis and trans isomers

of the retinal molecule [Prokhorenko 2005, Prokhorenko 2006]. Other experiments

showed that the phase-dependence is induced by the environment of the molecule

[van der Walle 2009]. These experiments showed phase sensitivity even in weak

fields. Other experiments examined the population transfer under chirped weak

fields, and showed dependence on the chirp of the field, therefore phase sensitivity

[Prokhorenko 2011]. These experiments were supported by numerical simulations

which showed that the phase dependence is induced by the environment [Katz 2011].

In order to examine this phenomena there is a need for a formulation in open

quantum system. Therefore we will work with the L-GKS equation. In addition,

the terminology of weak versus strong fields, as well as the terms of existence versus

non-existence of the phase sensitivity, are not well-defined. Thus we will examine

the phenomena of population transfer and phase sensitivity by the scaling of these

phenomena with the field strength.
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We consider population transfer in open quantum systems, which are described by quantum dynam-
ical semigroups (QDS). Using second order perturbation theory of the Lindblad equation, we show
that it depends on a weak external field only through the field’s autocorrelation function, which is
phase independent. Therefore, for leading order in perturbation, QDS cannot support dependence of
the population transfer on the phase properties of weak fields. We examine an example of weak-field
phase-dependent population transfer, and show that the phase-dependence comes from the next order
in the perturbation. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4890822]

I. INTRODUCTION

Quantum control is devoted to steering a quantum sys-
tem toward a desired objective. Coherent control achieves this
goal by manipulating interfering pathways via external fields,
typically a shaped light field.1 Early in the development of
quantum control, Brumer and Shapiro proved that for weak
fields in an isolated system, phase only control is impossible
for an objective which commutes with the free Hamiltonian.2

A qualitative explanation is that under such conditions there
are no interfering pathways leading from the initial to the final
stationary states.

More formally, the control electromagnetic field in the
time domain is ε(t), and its spectrum is given by

ε̃(ω) = Ã(ω)eiϕ̃(ω), (1)

where Ã(ω) is the amplitude and ϕ̃(ω) is the phase. Any target
operator that commutes with the field independent Hamilto-
nian Ĥ is uncontrollable by the phase ϕ̃(ω).3

Experimental evidence has challenged this assertion.
Prokhorenko et al. claimed to demonstrate weak-field phase-
only (WFPO) control,4, 5 and raised a controversy.6, 7 The tar-
get of control was an excited state branching ratio. The phe-
nomena were attributed to the influence of the environment.
A subsequent study by van der Walle et al. showed that such
controllability is solvent dependent.8

A careful examination of the assumptions can resolve the
discrepancy between theory and experiment, considering that
the experiments were carried out for an open quantum system.
It has been suggested that the coupling to the environment
changes the conditions under which the statement of impos-
sibility holds. A new relaxation timescale emerges which in-
terferes with the timescale influence by the pulses phase. Nu-
merical evidence that WFPO control becomes possible for an
open quantum system was shown by Katz et al.9 In line with
the original proof, Spanner et al.3 argued that if the coupling
between the system and the environment does not commute
with the measured observable, then the conditions for phase
insensitivity do not hold. Nevertheless, open quantum systems
have additional features which are not covered by the Hamil-
tonian time dependent perturbation theory employed to prove
the WFPO no go result. A possible opportunity for WFPO

for control of observables commuting with the Hamiltonian
can emerge from the continuous nature of the spectrum of the
evolution operator and/or the inability to separate the system
from its environment.

To clarify this issue we will explore the conditions which
enable or disable WFPO control in an open quantum system.
We restrict this study to the axiomatic approach of open sys-
tems based on quantum dynamical semigroups (QDS). The
theory aims to find the propagator of the reduced dynamics of
the primary system under the assumption that it is generated
by a larger system-bath Hamiltonian scenario. The generator
in this case belongs to the class of completely positive maps.10

An important consequence is that the system and bath are ini-
tially uncorrelated or, formally, are in a tensor product state at
t = 0. An additional assumption is the Markovian dynamics.
Under completely positive conditions, Lindblad and Gorini-
Kossakowski-Sudarshan (L-GKS) proved that the Markovian

generator of the dynamics ˆ̂L has a unique structure.11, 12

This generator extends the system-bath separability assump-
tion to all times. The WFPO controllability issue can be re-
lated now to observables which are invariant to the field free
dynamics.

To shed light on the existence/nonexistence of weak field
phase only control for L-GKS dynamics we examine the con-
trol of population transfer which is an invariant of the field
free dynamics. The population transfer �N can be directly ob-
served experimentally for fluorescent dyes with a unit quan-
tum yield. A complementary experiment is the weak field
spectrum of a photo absorber in solution. For both types of
experiments WFPO control of population will lead to phase
sensitivity of weak field spectroscopy.

The main result of the present study is that population
transfer and energy absorption spectroscopy in L-GKS dy-
namics depends, in the leading order, only on the autocorrela-
tion function (ACF) of the field, defined by

C(τ ) =
∞∫

−∞
dtε(t + τ )ε∗(t). (2)

The ACF does not depend on the phase of the field ϕ̃(ω)
(cf. Appendix A). Therefore, phase-dependent control of

0021-9606/2014/141(4)/044121/10/$30.00 © 2014 AIP Publishing LLC141, 044121-1
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population transfer will take place only in the next order of
the field strength.

II. THE MODEL

Consider a molecule with two potential electronic sur-
faces, Ĥg and Ĥe, coupled with a weak laser field ε(t) through

the field operator V̂(t). Starting with an initial state in the
ground electronic surface |ψ0〉, the control objective is the
population transfer to the excited surface. The system Hamil-
tonian and the field operators are, respectively,

Ĥ0 =
(

Ĥe 0

0 Ĥg

)
, V̂(t) =

(
0 μ̂ε(t)

μ̂ε(t)∗ 0

)
. (3)

The control objective is the projection on the excited
electronic surface

P̂e =
(

1̂e 0

0 0

)
. (4)

This objective commutes with the field free Hamiltonian
[P̂e, Ĥ0] = 0.

The population transfer is calculated by solving for the
dynamics of the density operator ρ̂ in Liouville space. The
L-GKS equation generates the dynamics:

i¯
∂ρ̂

∂t
= ˆ̂Lρ̂, (5)

where ˆ̂L = ˆ̂L0 + ˆ̂V(t) is the Lindbladian, and
ρ̂ = ∑

ρcd |c〉〈d| is the density operator represented here
in the Hamiltonian eigenstates basis, Ĥ0|c〉 = ¯ωc|c〉. The

action of the superoperator ˆ̂V on the density matrix ρ̂ is
defined by

ˆ̂V ρ̂ = [V̂, ρ̂]. (6)

For a specific element of the density operator |c〉〈d| it yields

ˆ̂V(t)|c〉〈d| =
∑
m

(ε(t)μmc|m〉〈d| − ε∗(t)μdm|c〉〈m|). (7)

The action of ˆ̂L0 is more involved. Under the complete posi-
tivity and the Markovian assumptions, the general L-GKS ex-
pression is11, 12

ˆ̂L0ρ̂ = [Ĥ0, ρ̂] + i
∑

k

(
Âkρ̂Â†

k − 1

2

(
Â†

kÂkρ̂ + ρ̂Â†
kÂk

))
,

(8)
where Â is an operator defined in the systems Hilbert space.
The commutator with the Hamiltonian governs the unitary
part of the dynamics, while the second term on the rhs leads
to dissipation and dephasing. Notice that the target operator is

invariant to the dissipative dynamics ˆ̂L∗
0P̂e = 0.

The initial state is an equilibrium distribution P(a) on the
ground electronic surface

ρ̂0 =
∑

a∈g.s.

P (a)|a〉〈a|. (9)

The population transfer in this case is �N̂ = P̂e. P̂e will
be calculated by means of second order time dependent per-

turbation theory of L-GKS equation. This is the lowest order
that yields population transfer. In the case of unitary dynam-

ics, i.e., ˆ̂L0ρ̂ = [Ĥ0, ρ̂], it yields the same results as the equiv-
alent calculation by the first order perturbation theory of the
Schrödinger equation. In the same manner, the next order in
population transfer calculation is the fourth power of the field
strength.

III. POPULATION TRANSFER IN LIOUVILLE SPACE

The lowest order of population transfer, starting from the
initial condition of Eq. (9), is calculated employing second
order time dependent perturbation theory

�N (t) = 〈P̂e〉(t) = Tr{P̂eρ̂I } ≈ Tr
{
P̂eρ̂I

(2)(t)
}
, (10)

where ρ̂I (tf ) is the density matrix in the interaction picture,
at the final time tf, and

ρ̂I
(2)(tf ) =

(
− i

¯

)2
t
f∫

t
i

dt2

t2∫
t
i

dt1e
−i

ˆ̂L0(t
f
−t2) ˆ̂V(t2)

× e−i
ˆ̂L0(t2−t1) ˆ̂V(t1)e−i

ˆ̂L0(t1−t
i
)ρ̂0 (11)

is the second order perturbation term in the interaction
picture.

Before we evaluate this expression in some representative
cases, it can be simplified. First, we note that if initially the

system is in equilibrium and invariant to ˆ̂L0 , then

e− i
¯

ˆ̂L0(t1−t
i
)ρ̂0 = ρ̂0. (12)

Next, the order of the left operations can be changed leading
to

Tr

⎧⎪⎨
⎪⎩P̂e

t
f∫

t
i

dt2

t2∫
t
i

dt1e
− i
¯

ˆ̂L0(t
f
−t2)

ρ̂

⎫⎪⎬
⎪⎭

=
t
f∫

t
i

dt2

t2∫
t
i

dt1 Tr
{
e
− i
¯

ˆ̂L0(t
f
−t2)P̂eρ̂

}
, (13)

and, since Lindbladian dynamics preserves the trace then

Tr
{
e− i

¯
ˆ̂L0t2 P̂eρ̂

} = Tr{P̂eρ̂}, (14)

it yields

�N (tf )=− 1

¯2

t
f∫

t
i

dt2

t2∫
t
i

dt1 Tr
{
P̂e

ˆ̂V(t2)e− i
¯

ˆ̂L0(t2−t1) ˆ̂V(t1)ρ̂0

}
.

(15)
Equation (15) is now evaluated in unitary and non-unitary

dynamics. See Appendix B for detailed calculations.
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A. Unitary dynamics generated by the Hamiltonian

In this case we get

�N =
∑

a∈g.s.
b∈e.s

P (a)
|μab|2
¯2

⎧⎨
⎩

∞∫
0

dτC∗(τ )e−iω
ba

τ + c.c.

⎫⎬
⎭ ,

(16)
where μab is a matrix element of the operator μ̂ in the energy
basis, C*(τ ) is the complex conjugate of the ACF of the field
ε(t), defined in Eq. (2), and ωcd ≡ ωc − ωd. g.s. and e.s. denote
the ground and excited surfaces, respectively. c.c. denotes the
complex conjugate.

The ACF does not depend on the phase of the field. This
is shown in Appendix A by means of the vanishing of the
functional derivative of the ACF with respect to the phase.
Therefore, the population transfer is not affected, to this order
in the field strength, by the phase properties of the field. This
result is not new.3 It is presented here in order to demonstrate
the perturbative calculation in Liouville space and to empha-
size the dependence on the ACF.

B. General L-GKS dynamics

In the present study, the L-GKS generator can only in-
duce dephasing and relaxation within the electronic surfaces.
Electronic dephasing or electronic relaxation is not consid-

ered. As a result, population transfer is generated only by ˆ̂V
(the commutator of V̂).

The notation is simplified using the fact that all states
in the perturbation expansion are filtered by μ̂. We define
|θa〉 ≡ μ̂|a〉 (or 〈θa| ≡ 〈a|μ̂, respectively), and it should be
understood as a state projected on the excited electronic sur-
face. We will also use the notation �̂a ≡ |θa〉〈a| for the rel-
evant density matrix element. With this notation, the expres-
sion in Eq. (15) becomes

�N = 1

¯2

∑
a∈g.s.
b∈e.s

P (a)

∞∫
0

dτ
(
C∗(τ )〈b|[e− i

¯
ˆ̂L0τ �̂a

]|θb〉+c.c.
)
.

(17)
To proceed beyond this point additional details on the opera-

tion of μ̂ and ˆ̂L0 are required. Nevertheless, the dependence
on the control field is only through its ACF.

C. General non unitary dynamics

These results can be extended to a more general propaga-

tor ˆ̂U0(tf , ti). The conditions are:

1. The dynamics under weak fields can be described by a
second order perturbation theory,

ρ̂I
(2)(tf ) =

(
− i

¯

)2
t
f∫

t
i

dt2

t2∫
t
i

dt1
ˆ̂U0(tf , t2) ˆ̂V(t2)

× ˆ̂U0(t2, t1) ˆ̂V(t1) ˆ̂U0(t1, ti)ρ̂0. (18)

2. The field-free propagation is homogeneous in time, and
therefore depends only on the time difference,

ˆ̂U0(tb, ta) = ˆ̂U0(tb − ta), (19)

for any ta, tb.
3. The initial density matrix is invariant under the field-free

propagator

ˆ̂U0(t)ρ0 = ρ0. (20)

4. The field-free propagator does not couple the two elec-
tronic surfaces

Tr{ ˆ̂U0(t)P̂eρ̂} = Tr{P̂eρ̂}. (21)

Under these conditions, we can get the ACF-dependent
expression

�N = 1

¯2

∑
a∈g.s.
b∈e.s

P (a)

∞∫
0

dτ
(
C∗(τ )〈b|[ ˆ̂U0(τ )�̂a]|θb〉 + c.c.

)
.

(22)

IV. THE RELATION BETWEEN POPULATION
TRANSFER AND ENERGY ABSORPTION

Spectroscopy is based on using a weak probe to unravel
pure molecular properties. Absorption spectroscopy measures
the energy absorption from the field. Here, we relate this
quantity to the population transfer measured by delayed fluo-
rescence. We show that in a weak field under the L-GKS con-
ditions also the energy absorption is independent of the phase
of the field. In the adiabatic limit, i.e., for a slowly varying en-
velope function, this relation can be deduced directly from the
expression for the population transfer. For the non-adiabatic
cases, we prove an additional theorem.

A. Adiabatic limit

The power absorption is derived from the Heisenberg
equation of motion,

P = d〈E〉
dt

=
〈

dĤ
dt

〉
=
〈

dV̂(t)

dt

〉
=
〈(

0 μ̂ ∂ε
∂t

μ̂ ∂ε∗
∂t

0

)〉
.

(23)
The expectation value of an operator Â is defined as 〈Â〉
= tr(Âρ̂). We separate the density matrix to the populations
on the upper and lower electronic surfaces ρ̂e, ρ̂g , and for co-

herences ρ̂c, ρ̂
†
c,

ρ̂ =
(

ρ̂e ρ̂c

ρ̂
†
c ρ̂g

)
, (24)

leading to the power absorption

P = tr

(
∂ε

∂t
μ̂ρ̂c + ∂ε∗

∂t
μ̂ρ̂

†
c

)
= 2Re

(
∂ε

∂t
tr(μ̂ρ̂c)

)
. (25)
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Total energy absorption is obtained by integrating the
power,

�E(tf ) = 2Re

t
f∫

t
i

∂ε

∂t
tr(μ̂ρ̂c(t)) dt. (26)

Similarly, the total population transfer is given by

�N (tf ) = − 2

¯
Im

t
f∫

t
i

ε(t)tr(μ̂ρ̂c(t)) dt. (27)

The changes in energy and population are related. If we
factorize the field to an envelope �(t) and fast oscillations
with the carrier frequency ωL,

ε(t) = �(t)eiω
L
t , (28)

then we can write

�E(tf ) = 2Re

t
f∫

t
i

(
iωLε(t) + ∂�

∂t
eiω

L
t

)
tr(μ̂ρ̂c(t)) dt.

(29)
In the adiabatic limit, i.e., for a slowly varying envelope

function, i.e.,

∂�/∂t

�
	 ωL, (30)

the second term is negligible. Then we can write13, 14

�E ≈ ¯ω�N. (31)

In such cases we use the expressions derived above for
the population transfer (Eqs. (16), (17), and (22)) to obtain
the phase independence of the energy spectrum.

B. Non-adiabatic treatment

In the nonadiabatic case, we have to evaluate the second
term in Eq. (29) using the second order perturbation theory.

The coherence ρ̂c(t) is evaluated from the first order ex-
pression for the density matrix

ρ̂
(1)
I (t) = − i

¯

t∫
t
i

dt1e
i

ˆ̂L0t1
ˆ̂V(t1)e−i

ˆ̂L0(t1−t
i
)ρ̂0. (32)

Next, we substitute ρ̂
(1)
I (t) in the expression for energy ab-

sorption, Eq. (26), integrate and manipulate as described in
Appendix B. The result is that the energy absorption has a
functional dependence on the cross-correlation function of the
field with its derivative

∞∫
−∞

dtε(t)
∂ε∗

∂t

∣∣∣∣
τ+t

. (33)

However, this expression is also phase-independent. This
can be shown using the functional derivative with respect to
the phase of the field, cf. Appendix A.

V. DISCUSSION

We demonstrated that, in general, the weak-field spec-
troscopy is functionally dependent only on the autocorrelation
function of the field. As a result, phase sensitivity is absent.
This remains true even when the dynamics is generated by the
Markovian L-GKS equation. Moreover, this is also true for
non-Markovian dynamics, generated by the time independent
Hierarchical Equations of Motion approach (HEOM).15–17 In
such dynamics the propagator has the form of Eq. (19).

We note here that the above analysis cannot include the
influence of the field on the environment, since the L-GKS
open system dynamics does not include such a mechanism.

When a weak-field phase-only control is encountered, we
have to examine how this effect scales with the field coupling
strength. According to the above analysis, while the total pop-
ulation transfer is the leading order in the perturbation, i.e.,
second order in the field coupling strength, the phase effect
on the population transfer should be the next order, i.e., fourth
order in the field coupling strength.

In Sec. VI, we examine such an example and show that
the order of the effects are as expected.

VI. ILLUSTRATIVE EXAMPLE: POPULATION
TRANSFER IN A FOUR-LEVELS SYSTEM

A numerical evaluation of L-GKS open system dynam-
ics which obeys the four conditions given in Sec. III C was
performed. The aim was to examine a case of WFPO control,
and check the scaling of the population transfer and phase-
dependent phenomena with the field coupling strength.

A. Simulation details

The system under study is driven by a chirped Gaussian
field, and coupled to an environment with a L-GKS dissipa-
tion. The system is designed such that the final population
transfer is affected by the phase of the external field, namely,
the chirp. The coupling to the environment induces relaxation
which amplifies the chirp effect. The details of the simulations
follow. Figure 1 shows a schematic diagram of the simulated
system.

The system has four energy levels: Two ground energy
levels and two excited ones. The ground levels serve as the
ground electronic surface. The two excited levels serve as the

FIG. 1. A schematic diagram of the simulated system: Ee and Eg are the
energies of the surfaces. ωe and ωg are the vibrational frequencies inside
the surfaces. fkm are the Franck-Condon coefficients. γ is the relaxation
coefficient.
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excited electronic surface. These two levels are coupled to
each other by a Lindblad-type dissipator. Only the external
field couples between the surfaces, and the field-free Hamil-
tonian does not couple between them. The field-free Hamilto-
nian is

Ĥ0 =

⎛
⎜⎜⎜⎜⎜⎝

Ee + ωe 0 0 0

0 Ee 0 0

0 0 Eg + ωg 0

0 0 0 Eg

⎞
⎟⎟⎟⎟⎟⎠ , (34)

where Ee and Eg are the energies of the surfaces, while ωe
and ωg are the vibrational frequencies inside the surfaces.
We used the rotating frame for the actual simulations. There-
fore, the relevant parameter is the detuning, defined by δ ≡ Ee
− Eg − ωL, where ωL is the carrier frequency (see below).

The ground and excited surfaces are coupled with the
field operator

μV̂(t) = μ

⎛
⎜⎜⎜⎜⎜⎝

0 0 f24ε(t) f14ε(t)

0 0 f23ε(t) f13ε(t)

f ∗
24ε

∗(t) f ∗
23ε

∗(t) 0 0

f ∗
14ε

∗(t) f ∗
13ε

∗(t) 0 0

⎞
⎟⎟⎟⎟⎟⎠ ,

(35)
where μ is the field coupling strength, fkm are the Franck-
Condon coefficients, and ε(t) is the external field applied to
the system. We set the Franck-Condon coefficients to mimic
the case of two displaced harmonic oscillators: f14 and f23 are
large, while f24 and f13 are small.

The goal of these simulations is to examine the depen-
dence of final population transfer on phase properties of the
field. The field we use is a chirped Gaussian pulse. We define
the chirp at the frequency domain in such a way that changing
the chirp changes the phase properties of the field but not the
amplitude, as defined in Sec. I, Eq. (1),

ε̃(ω) = 1

π
1
4

√
�ω

exp

(
−1

2

(
ω − ωL

�ω

)2

+ iχ (ω − ωL)2

)
,

(36)
with �ω as the bandwidth, χ as the chirp, and ωL is the carrier
frequency.

Introducing
√

�ω in the pre-exponential factor keeps the
total energy of the pulse unchanged while changing the band-
width, such that ∫ ∞

−∞
|ε̃(ω)|2 dω = 1. (37)

The inverse Fourier transform (FT) of the chirped
pulse is

ε(t) = 1

π
1
4

√
τ0 − 2iχ

τ0

exp

(
−
(

1

2
+ i

χ

τ 2
0

)(
t

τch

)2
)

e−iω
L
t ,

(38)
with τ0 = 1

�ω
as the duration of the unchirped pulse, and τ ch

= ωchτ 0 as the extended pulse duration, caused by the chirp:

ωch =
√

1 + 4χ2

τ 4
0

.

The environment coupling induces a relaxation from the
fourth energy level to the third one. The relaxation is de-
scribed by a L-GKS dissipator, which is induced by an annihi-
lation operator ŝ34 = |3〉〈4|. This operator has all-zero entries,
except one entry, which transfers population from the fourth
level to the third.

This operator induces coupling inside the excited surface,
but not between the surfaces. The dissipator is

ˆ̂LD[ρ̂] = ŝ34ρ̂ ŝ†34 − 1

2
(ŝ†34ŝ34ρ̂ + ρ̂ ŝ†34ŝ34). (39)

1. The dynamics: Equation of motion, initial state, and
control target

The equation of motion is

i¯
∂ρ̂

∂t
= ˆ̂Lρ̂ = [Ĥ0 + μV̂(t), ρ̂] + iλ

ˆ̂LD[ρ̂]. (40)

Initially, the system is at ground state, i.e., the entire pop-
ulation is on the first level.

Two control targets can be defined and examined:� The final population on the excited surface, i.e., the
sum of populations on the third and fourth levels. In
weak fields, we expect it to be the leading order in the
perturbation strength μ. The chirp effect is expected to
be in the next order in the perturbation.� The final population on the second level. The popula-
tion transfer to this level is in essence a second order
process. The structure of the system makes this pop-
ulation sensitive to chirp sign, promoting cases when
higher frequencies precede lower ones (i.e., negative
chirps). In addition, the magnitudes of the Franck-
Condon coefficients (large f14 f23, small f24 f13) cre-
ate a scenario where the relaxation in the excited sur-
face enhances the negative-chirp-induced population
transfer.

The phase-only control effect is examined by perform-
ing pairs of simulations in which the only varied parameter
is the chirp: positive chirp in one simulation and negative in
the other. The difference in the final population on the targets
between two simulations in such pairs is defined as the chirp
effect.

The values of the parameters used in the simulations are
summarized in Table I. The detuning was selected to maxi-
mize the final population transfer.

TABLE I. Simulation parameters.

Parameter Value Unit

ωg 0.5 (time)−1

ωe 0.1 (time)−1

δ 0.2 (time)−1

μ (several) (time)−1

λ (several) (time)−1

f14, f23 0.9 (unitless)
f24, f13 0.1 (unitless)
�ω 1 (time)−1

χ ±80 (time)2
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FIG. 2. Population on the excited surface during simulations in which the
system is driven by positively (blue line with stars) and negatively (green line
with x-marks) chirped fields. The population transfer to this surface is a first
order process, and therefore the difference in the final population, which is
governed by the next order, cannot be seen on this scale.

B. Simulations results

Simulations were performed with the model described in
Eqs. (34), (35), (38), and (40). The phase-only control effect
was examined by comparing similar simulations where the
only difference is the chirp sign: positive or negative. The
difference of the final population transfer between the two
cases is defined as the chirp effect. The results are presented
below.

1. Simulation dynamics

Figure 2 shows an example of the population of the ex-
ited surface during the simulations of the positive and neg-
ative chirp. The population transfer to this surface is a first
order process, and therefore the difference in the final popu-
lation, which is governed by the next order, cannot be seen on
this scale. The population of the second level is presented in
Figure 3. This population is a second order process in essence
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FIG. 3. Population on the second level, during the same simulations as in
Figure 2. Note that the scale in this figure is different. This population is a
second order process in essence, and therefore is controlled by the chirp: Pos-
itive chirp yields a very small population transfer to the second level, while
negative chirp yields population transfer which is two order of magnitudes
larger (although still small).
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FIG. 4. Chirp effect versus the relaxation coefficient γ . The chirp effect is
defined as the difference of the final population transfer between the simula-
tion with positive chirp and the simulation with the negative chirp. X-axis is
log-scale. The chirp effect is enhanced by the relaxation process.

(note the different scale), and therefore is controlled by the
chirp: Positive chirp yields a very small population transfer to
the second level, while negative chirp yields population trans-
fer which is by two orders of magnitudes larger.

2. Relaxation-induced chirp effect

Figure 4 presents the chirp effect as a function of the re-
laxation coupling coefficient γ . The chirp effect is enhanced
by the relaxation process. In the following, we will show that
despite that enhancement, the chirp effect still scales as the
fourth order of the field strength.

3. The scaling of the population transfer
and the chirp effect with the field strength

We examined the scaling of the population transfer and
the chirp effects with the strength of the external field.

Figure 5 shows the results for the target on the ex-
cited surface. As expected, we found that the slope of the
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FIG. 5. The final population transfer (P.T., upper panel) to the upper surface
and the chirp effect (C.E., lower panel) of this P.T. vs. the field strength μ,
on log-log scale. Note that there is a gap in the Y-axis (emphasized by the
labels on the right side in the upper panel), although both lines are on the
same scale. The slope of the P.T. is 2, i.e., the P.T. scales as μ2. The slope of
the C.E. is 4, i.e., the C.E. scales as μ4.
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FIG. 6. The final population transfer (P.T.) to the second level: The lower line
shows the P.T. for positive chirps. The upper line shows the P.T. for negative
chirps, which almost equals the chirp effect (C.E.). Both lines are plotted vs.
the field strength μ, on log-log scale. The slope of the both lines is 4, i.e.,
they scale as μ4.

population transfer is 2, i.e., the population transfer scales as
μ2, while the slope of the chirp effect is 4, i.e., the chirp effect
scales as μ4.

Figure 6 shows the results for the target on the second
level. Essentially, the population transfer to this level is of
the next order, which is in the same order of the chirp ef-
fect. Therefore, we expect to find the same scaling with field
strength for both phenomena. Actually, the population trans-
fer to this level in the case of positive chirps is very small, and
almost vanishes, and therefore the chirp effect and the popu-
lation transfer for negative chirp are almost the same. As ex-
pected, we found that the slope of population transfer for both
chirp signs, as well as the slope of the chirp effect is four, i.e.,
they all scale with field strength as μ4.

VII. CONCLUSIONS

The issue of the weak field phase only control is of fun-
damental importance. Molecular spectroscopy in condensed
phase assumes that the energy absorbed for each frequency
component in the linear regime depends only on the molecu-
lar properties. At normal temperatures the molecule is in its
ground electronic surface. By relating the energy absorbed to
the population transfer we find that the validity of molecu-
lar spectroscopy in condensed phase relies on the impossi-
bility of WFPO. Brumer and co-workers have studied exten-
sively this phenomenon.3, 18, 19 The present study is in line
with these findings. For a molecular system modelled by the
L-GKS Markovian dynamics WFPO is impossible for observ-
ables which are invariant to the field free dynamics.

The method of proof, based on functional derivative (cf.
Appendix A), can be extended to other scenarios.

The numerical model is also consistent with the work of
Konar, Lozovoy, and Dantus20 showing fourth order scaling
of the chirp effect with the driving field strength. Contrary to
their finding that the positive chirp is sensitive to the solvent,21

our numerical model finds strong sensitivity to negative chirp.

Shapiro and Han22 argue that apparent linear response ex-
perimental phenomena are not necessarily weak-field effects.
In the present study, the analysis is based on order by order
perturbation theory and addresses this issue. Experimental or
numerical tests have to be extremely careful in checking the
scaling order of the effect.

Readdressing the theme of the study: Is there a weak field
phase only control in open systems? We obtained a partial
answer. Under Markovian L-GKS dynamics WFPO is im-
possible. This still leaves open the possibility of WFPO in
non-Markovian scenarios. The main assumption that should
be challenged is the tensor product separability of the sys-
tem and bath in L-GKS dynamics. Preliminary numerical ev-
idence from non separable system-bath models may point to
the possibility of WFPO for population transfer with enhance-
ment for positive chirp. More work is required to establish this
possibility.
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APPENDIX A: THE PHASE INDEPENDENCE
OF THE AUTOCORRELATION FUNCTION

The ACF of the field ε(t) is the inverse FT of the spectral
density of the field, J (ω) = |ε̃(ω)|2. In this paper, the popu-
lation transfer to second order is proportional to the Laplace
transform of the ACF (cf. Eq. (16)). Therefore, a careful ex-
amination of the phase properties in this case is required.
First, we derive the phase independence of the ACF. Simi-
larly, the phase independence of the cross-correlation function
of the field with its derivative is obtained. We use the func-
tional derivative of these two correlation functions to prove
the phase independence of the absorption spectrum.

The autocorrelation function is defined as

C(t) =
∞∫

−∞
dτε(τ + t)ε∗(τ ). (A1)

Similarly, the cross-correlation function of the field with
its derivative is defined as

D(t) =
∞∫

−∞
dτ

∂ε

∂t

∣∣∣∣
τ+t

ε∗(τ ). (A2)

We will use the spectral representation of the field

ε(t) =
∞∫

−∞
dωε̃(ω)e−iωt =

∞∫
−∞

dωÃ(ω)eiϕ̃(ω)e−iωt , (A3)

where the real functions Ã(ω) and ϕ̃(ω) are the amplitude
and phase, respectively. The spectral representation of the
field derivative equals the spectral representation of the field,
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multiplied by (−iω),

∂ε(t)

∂t
= ∂

∂t

∞∫
−∞

dωε̃(ω)e−iωt =
∞∫

−∞
dω(−iω)ε̃(ω)e−iωt .

(A4)
The functional derivatives of these correlation functions

with respect to the phase are

δC(t)

δϕ̃(ω)
=

∞∫
−∞

dτ

{
δε(τ + t)

δϕ̃(ω)
ε∗(τ ) + ε(τ + t)

δε∗(τ )

δϕ̃(ω)

}
,

(A5)

δD(t)

δϕ̃(ω)
=

∞∫
−∞

dτ

⎧⎨
⎩

δ
(

∂ε
∂τ

∣∣
τ+t

)
δϕ̃(ω)

ε∗(τ ) + ∂ε

∂τ

∣∣∣∣
τ+t

δε∗(τ )

δϕ̃(ω)

⎫⎬
⎭ .

(A6)
We need the following functional derivatives with respect

to the phase

δε(t)

δϕ̃(ω)
= iÃ(ω)eiϕ̃(ω)e−iωt = iε̃(ω)e−iωt ,

δε∗(t)

δϕ̃(ω)
= −iÃ(ω)e−iϕ̃(ω)eiωt = −iε̃∗(ω)eiωt , (A7)

δ
(

∂ε(t)
∂t

)
δϕ̃(ω)

= i(−iω)Ã(ω)eiϕ̃(ω)e−iωt = i(−iω)ε̃(ω)e−iωt .

Substituting in the functional derivative of the correlation
functions, we get (changing integration variable in the second
line τ̃ = τ + t)

δC(t)

δϕ̃(ω)
=

∞∫
−∞

dτ [iε̃(ω)e−iω(τ+t)ε∗(τ ) − iε(τ + t)ε̃∗(ω)eiωτ ]

= iε̃(ω)e−iωt

⎡
⎣ ∞∫

−∞
dτeiωτ ε(τ )

⎤
⎦

∗

− i

⎡
⎣ ∞∫

−∞
dτ̃ ε(τ̃ )eiω(τ̃−t)

⎤
⎦ ε̃∗(ω)

= iε̃(ω)e−iωt ε̃∗(ω) − iε̃(ω)e−iωt ε̃∗(ω)

= 0, (A8)

and, similarly,

δD(t)

δϕ̃(ω)
=

∞∫
−∞

dτ

[
i(−iω)ε̃(ω)e−iω(τ+t)ε∗(τ )

− i
∂ε

∂t

∣∣∣∣
τ+t

ε̃∗(ω)eiωτ

]

= i(−iω)ε̃(ω)e−iωt

⎡
⎣ ∞∫

−∞
dτeiωτ ε(τ )

⎤
⎦

∗

− i

⎡
⎣ ∞∫

−∞
dτ̃

∂ε

∂t

∣∣∣∣
τ̃

eiω(τ̃−t)

⎤
⎦ ε̃∗(ω)

= i(−iω)ε̃(ω)e−iωt ε̃∗(ω) − i(−iω)ε̃(ω)e−iωt ε̃∗(ω)

= 0. (A9)

APPENDIX B: DETAILED CALCULATION
OF THE POPULATION TRANSFER

We show here the details of the calculations.

1. Unitary dynamics generated by the Hamiltonian

From Eq. (7) we get (the operator V̂ transfers population
between the surfaces)

ˆ̂V(t1)|a〉〈a| =
∑

a∈g.s.
b∈e.s

P (a)(ε(t1)μba|b〉〈a| − ε∗(t1)μab|a〉〈b|).

(B1)

Next, we operate with the propagator e− i
¯

ˆ̂L0(t2−t1). When
the dynamics is unitary, the Lindbladian includes only the
commutator with the Hamiltonian, and the propagation of an
element in the density matrix |c〉〈d| is simply a multiplication
by e−iω

cd
t , where ωcd ≡ ωc − ωd, so we get

∑
a∈g.s.
b∈e.s

P (a)
(
ε(t1)μba|b〉〈a|e−iω

ba
(t2−t1)

− ε∗(t1)μab|a〉〈b|e−iω
ab

(t2−t1)
)
. (B2)

Now, we operate with ˆ̂V(t2), to get (using Eq. (7))

∑
a∈g.s.

b∈e.s

k

P (a)
{
ε(t1)ε∗(t2)μba(μkb|k〉〈a|

−μak|b〉〈k|)e−iω
ba

(t2−t1) + h.c.
}
, (B3)

where h.c. stands for hermitian conjugate.
Now we project on the excited surface (with P̂e), and per-

form the trace. For a general element in the density matrix
|c〉〈d|, we do so by taking the sum of diagonal matrix ele-
ments that belong to the excited surface:

∑
m∈e.s.

〈m|c〉〈d|m〉, so

we get

−
∑

a∈g.s.
b∈e.s

k
m∈e.s.

P (a)
{
ε(t1)ε∗(t2)μbaμak〈m|b〉〈k|m〉

× e−iω
ba

(t2−t1) + c.c.
}
. (B4)
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〈m|b〉 and 〈k|m〉 are δmb and δkm, respectively. When we
sum over k and m we get

−
∑

a∈g.s.
b∈e.s

P (a)
{
ε(t1)ε∗(t2)|μab|2e−iω

ba
(t2−t1) + c.c.

}
. (B5)

Next, we integrate over t1 and t2. Since the pulse has
a finite duration, we can extend the integration limits to
(−∞, ∞)

∑
a∈g.s.
b∈e.s

P (a)

∣∣μab|2
¯2

∞∫
−∞

dt2

t2∫
−∞

dt1
{
ε(t1)ε∗(t2)e−iω

ba
(t2−t1)+c.c.

}
.

(B6)
We change variables in the integral, from t2 to τ = t2

− t1, and we get the integral

∞∫
0

dτ

⎛
⎝ ∞∫

−∞
dt1ε(t1)ε∗(τ + t1)

⎞
⎠ e−iω

ba
τ =

∞∫
0

dτC∗(τ )e−iω
ba

τ ,

(B7)
where C∗(τ ) is the complex conjugate of the ACF of the field
ε(t) (defined in Appendix A). Finally, we have

�N =
∑

a∈g.s.
b∈e.s

P (a)
|μab|2
¯2

⎧⎨
⎩

∞∫
0

dτC∗(τ )e−iω
ba

τ + c.c.

⎫⎬
⎭ .

(B8)
We see that the population transfer does not depend di-

rectly on the field, only through the field’s ACF. This result
is not new.3 It is presented here in order to demonstrate the
perturbative calculation in Liouville space, and to emphasise
the dependence on the ACF.

2. General Lindbladian-generated dynamics

We show here that the population transfer depends on the
field only through the ACF also in QDS description of non
unitary dynamics.

Consider a Lindbladian that can induce dephasing and re-
laxation inside the electronic surfaces, but not between them.
We do not treat here electronic dephasing or electronic relax-

ation. Population transfer is done only by ˆ̂V (the commutator
of V̂).

Here, we use a more formal notation: we do not write ex-
plicitly the matrix elements of the operator μ̂. Instead, for a
state |a〉 (or 〈a|) in the ground surface, we write |θa〉 ≡ μ̂|a〉
(or 〈θa| ≡ 〈a|μ̂, respectively), and it should be understood as
a state in the excited electronic surface. Also, we will use the
notation �̂a ≡ |θa〉〈a| for the relevant density matrix element.
We also do not write explicitly the resulting states of the prop-

agation by ˆ̂L0, and write instead expressions like e−i
ˆ̂L0t�̂a .

Starting with Eq. (15), and the initial state of Eq. (9), we

first operate with ˆ̂V(t1) to get

∑
a∈g.s.

P (a)(ε(t1)|θa〉〈a| − ε∗(t1)|a〉〈θa|). (B9)

Since |a〉 and 〈a| are in the ground surface, and since |θa〉
and 〈θa| are in the excited surface, |θa〉〈a| = �̂a and |a〉〈θa|
= �̂a

† are off-diagonal blocks in the density matrix.

Next, we operate with the propagator e− i
¯

ˆ̂L0(t2−t1) to get

∑
a∈g.s.

P (a)
(
ε(t1)e− i

¯
ˆ̂L0(t2−t1)�̂a − ε∗(t1)e− i

¯
ˆ̂L0(t2−t1)�̂a

†).
(B10)

Again, the two terms here are off diagonal blocks.

When we operate with ˆ̂V(t2) we get four terms. Two of
them belong to the ground surface, and therefore will be omit-
ted in the projection on the excited surface. The other terms
are

∑
a∈g.s.

P (a)
(
ε(t1)ε∗(t2)

[
e− i

¯
ˆ̂L0(t2−t1)�̂a

]
μ̂ + c.c.

)
(B11)

Finally, like the previous calculations, we perform the
trace, extend the integration limits, change one integration
variable and integrate over the other variable, to get the
autocorrelation of the field:

�N = 1

¯2

∑
a∈g.s.
b∈e.s

P (a)

∞∫
0

dτ
(
C∗(τ )〈b|[e− i

¯
ˆ̂L0τ �̂a

]|θb〉+c.c.
)
.

(B12)

We have to obtain more details on the operation of μ̂ and ˆ̂L0
in order to evaluate this expression further, but we see that
also here the dependence on the field is only through its ACF.
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3.3 Discussion

The experiments and simulations mentioned above challenge the premise of spec-

troscopy which asserts the direct link between the molecular spectrum and the

energy absorbed from the field. They indicate that the interaction with the en-

vironment can enable weak-field phase-only control of open quantum systems. The

analysis in the paper shows that such control is impossible under Markovian L-GKS

dynamics. Therefore, the question is still open and the assumptions should be re-

considered. Further directions have to be explored, but will not be investigated in

this thesis.



Chapter 4

Exceptional points in open

quantum systems

4.1 Introduction

The irreversibility of open quantum system dynamics is introduced into the L-GKS

equation by the dissipative term. The eigenvalues of the L-GKS generator with

the dissipator are complex, with a non-positive real part. Therefore, the resulting

evolution operator is not unitary. Instead it is a contraction operator having a norm

smaller than 1. Generally, the dynamics expressed by such an evolution operator

has the analytical form of sum of decaying oscillatory exponentials. For example,

the expectation value of an operator X̂ will have the form:

〈X(t)〉 =
∑

k

dk exp [λkt] . (4.1)

Here λk are the eigenvalues of the generator and dk are the associated amplitudes,

both can be complex. The complex eigenvalues λk can be divided into real and

imaginary parts: λk = −αk + iωk, with αk ≥ 0 ∈ R as the decay rates and ωk ∈ R
as the oscillation frequencies.

Another aspect of the non-hermitian character is that the generator is not always

diagonalizable. The points in the parameter space for which the generator is not

diagonalizable are called exceptional points.

43
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4.2 Preliminaries

4.2.1 Diagonalizable matrices

Suppose we have a vector-matrix differential equation:

~̇Y = M~Y . (4.2)

This is a set of coupled linear differential equations. We would like to decouple this

set into a set of decoupled equations. This is done by diagonalization.

Diagonalizing the matrix M is to find a set of eigenvectors {~vk} and associated

eigenvalues {λk} that have

(M − λkI)~vk = 0. (4.3)

This is done by finding the roots of the characteristic polynomial

P (λ) = det (M − λI) . (4.4)

The roots of the characteristic polynomial are the eigenvalues. For an N×N matrix

we have a characteristic polynomial of order N , which can be decomposed as:

P (λ) =
∏

k

(λ− λk)rk ,
∑

k

rk = N, (4.5)

thus each eigenvalue λk has multiplicity rk, and the sum of all multiplicities is N .

For each eigenvalue λk we can always find a set of rk vectors such that

(M − λkI)rk ~vk,α = 0. (4.6)

However, we would like to find rk eigenvectors, i.e. rk distinct vectors that fulfill

(M − λkI)~vk,α = 0. (4.7)

If for each eigenvalue λk there are rk such independent associated eigenvectors, then

we have a set N independent eigenvectors. This set spans the entire space, and

the matrix M is diagonalizable. We write the matrix M as M = V −1ΛV , with the

non-singular matrix V which is composed from the columns vectors {~vk,α}, and the

diagonal matrix Λ which has the eigenvalues {λk} on its diagonal (each λk appears

rk times). Then we can write Eq. (4.2) in a new basis, namely the basis {~vk,α}, and

write the differential equation for Ỹ ≡ V ~Y :

˙̃Y = ΛỸ . (4.8)
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The resulting set of equations, Eq. (4.8) is a set of uncoupled differential equations.

For each of the components ỹm we have

˙̃ym = λmỹm. (4.9)

Therefore,

ỹm(t) = eλmtỹm(0). (4.10)

This leads to the analytical form of Eq. (4.1).

4.2.2 Non-diagonalizable matrices

However, there are matrices that do not have N independent eigenvectors. This

means that there is (at least) one of the eigenvalues, λnd, with multiplicity rnd > 1,

but has less than rnd eigenvectors associated with it. Therefore Eq. (4.7) does not

have rnd distinct solutions for this eigenvalue. Nevertheless, Eq. (4.6) still holds.

Suppose, for example, that we have an eigenvalue λnd with multiplicity rnd = 2,

with the vector vnd,0 obeying the eigenvector equation, Eq. (4.7):

(M − λndI)~vnd,0 = 0, (4.11)

and that we cannot find another such eigenvector for the eigenvalue λnd. We are

still looking for another vector, vnd,1 that obey Eq. (4.6):

(M − λndI)2 ~vnd,1 = (M − λndI) {(M − λndI)~vnd,1} = 0. (4.12)

Since the only eigenvector associated with λnd is vnd,0, we conclude that the expres-

sion in the curly brackets has to be equal to this eigenvector:

(M − λndI)~vnd,1 = ~vnd,0. (4.13)

This equation is referred as the generalized eigenvalue equation, and ~vnd,1 is denoted

as a generalized eigenvector. The generalized eigenvector cannot be decoupled from

the eigenvector under operation of the matrix M . Instead, we can combine Eqs.

(4.13) and (4.11) into a set of coupled eigenvalue equations, which can be written

as a set of matrix-vector equations:

(
M~vnd,0

M~vnd,0

)
=

(
λnd 1

0 λnd

)(
~vnd,1

~vnd,0

)
. (4.14)

The set of eigenvectors and generalized eigenvectors {~vk,α} spans the entire space.

We write the matrix M as M = V −1JV , where the matrix V is composed from the
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set of columns vectors {~vk,α}. The matrix J is not diagonal. Instead it is a block-

diagonal matrix. Each eigenvalue has a block Jk of size rk × rk. For eigenvalues

with rk distinct eigenvectors, the block Jk is diagonal, with λk on the diagonal. For

eigenvalues without enough eigenvectors, the block has λnd on the diagonal, and 1

on the first upper of diagonal. We write Jnd = λndIrnd
+ Nrnd

, where Irnd
is the

rnd-dimension identity matrix, and Nrnd
is an rnd× rnd matrix with ones on the first

upper off diagonal and zeros elsewhere. Such blocks are denoted Jordan blocks.

When we phrase Eq. (4.2) in the new basis Ỹ ≡ V ~Y , we get the differential

equation ˙̃Y = JỸ instead of Eq. (4.8). In particular, for λnd, we get a set of coupled

differential equations:
˙̃ynd,0 = λndỹnd,0

˙̃ynd,1 = λndỹnd,1 + ỹnd,0,
(4.15)

and the solution is
ỹnd,0(t) = eλndtỹnd,0(0)

ỹnd,1(t) = eλndt (ỹnd,1(0) + tỹnd,0(0)) .
(4.16)

The analytical solution involves a polynomial in t. If we have more than one gener-

alized eigenvector for a specific eigenvalue we will have higher order polynomials in

t.

The polynomial term in the solution can be also deduced from the matrix form:

In matrix-vector notation, the solution of Eq. (4.2) is:

~Y (t) = eMt~Y (0). (4.17)

We use the decomposition M = V −1DV , where for a diagonalizable matrix D = Λ

and for a non-diagonalizable matrix D = J , to express the exponential eMt as

eMt = V −1eDtV. (4.18)

For a diagonalizable matrix the exponential eDt is composed from the exponentials

of the eigenvalues, eλkt, on the diagonal. For a non-diagonalizable matrix we have

the exponential of the block Jnd = λndI +N . This exponential is

eJndt = e(λndI+N)t = eλndteNt. (4.19)

The matrix N is nilpotent and therefore the Taylor series for eNt is finite, resulting

in a polynomial in t.

The analytical form of polynomial times exponential will be present also in other

dynamical features. For example, the expectation value of an operator X̂ will have
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the form:

〈X(t)〉 =
∑

k

rk−1∑

α=0

dk,αt
α exp [λkt] , (4.20)

instead of the form of Eq. (4.1).

4.2.3 Harmonic inversion at the exceptional points

The analytical form of a time signal that emerge from a system of coupled linear

differential equations is generally a sum of decaying exponents (see, for example,

Eq. (4.1)). Experimentally, however, the problem is inverted. The result of an

experiment can be a time signal C(t), 0 ≤ t ≤ T , sampled at some discretized time

points {tn}. The goal is to analyze this time series end extract the underlying model,

which is characterized by the eigenvalues {λk} and the amplitudes {dk}. This task is

achieved by the harmonic inversion method, as described in a previous chapter (cf.

Section 2.3). At exceptional points, the analytical form of the time signal is different

(see, for example, Eq. (4.20)). Therefore, the regular harmonic inversion methods

will fail in extracting the signal parameters. Generally, these methods will extract

the eigenvalues correctly, but the amplitudes will diverge. The divergence of the

amplitudes was proposed as a means to identify the exceptional points [Fuchs 2014].

4.3 Exceptional point of the L-GKS generator

Exceptional points were studied in many areas of physics. Some recent reviews can

be found at [Müller 2008, Uzdin 2012, Moiseyev 2011, Chapter 9]. However, to the

best of our knowledge, the L-GKS equation was not studied in this context. To

initiate such a study, we have to define the parameter space for the driven open

quantum system. When the system is driven by a CW laser, it can be described

in the rotating frame by a time-independent L-GKS generator using the external

field parameters: the detuning between the system and the driving field frequency

∆, and the amplitude of the field ε. The parameter space for the L-GKS is com-

posed from these parameters. We investigated the exceptional points for an L-GKS

generator that is defined in this parameter space. We found a fascinating structure

of exceptional points. Generally, there are continuous lines of exceptional points in

the ∆-ε parameter space. These lines merge into cusps of higher order degeneracy.

Examples can be found in the following research papers.
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4.4 Exceptional points for parameter estimation

in open quantum systems

The special analytical form of the dynamics at the exceptional points leads to a

divergence of the amplitudes. This divergence can be used to identify the exceptional

points. The sharp divergence enables locating the exceptional points accurately.

Another method of locating the exceptional points can employ any function that

includes terms of the kind 1
∆λ

, where ∆λ is the difference between the coalescing

eigenvalues.

The accurate location of the exceptional points can be used for parameter es-

timation: After identifying and locating of the exceptional points, one can invert

the algebraic relations between the eigenvalues and the system parameters to ob-

tain accurate estimation of the system parameters. The accuracy stems from the

enhanced sensitivity of the dynamics near the exceptional points: Small changes

in the parameters lead to different harmonic inversions. Therefore, for parameter

estimation the harmonic inversion at the exceptional points is superior to standard

inversion methods.

We studied the exceptional points in a few examples for driven open quantum

system dynamics and suggested to search for them in the parameter space by varying

the driving laser parameters - the detuning ∆ and the amplitude ε. The accurate

location can be used then for determining the intrinsic system parameters with high

accuracy.

The following two research papers elaborate our work:

• Exceptional points for parameter estimation in open quantum systems: analy-

sis of the Bloch equations. Published at New J. Phys. 17 113036 (2015).

• Parameter estimation in atomic spectroscopy using exceptional points. This

paper was uploaded to arXiv (arXiv :1511.07205) and will be submitted soon.
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4.5 Exceptional points for parameter estimation

in open quantum systems:

analysis of the Bloch equations

Exceptional points for parameter estimation in open quantum systems: analysis of

the Bloch equations

Morag Am-Shallem, Ronnie Kosloff, and Nimrod Moiseyev

Published at New J. Phys. 17 113036 (2015)
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Exceptional points for parameter estimation in open quantum
systems: analysis of the Bloch equations
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Abstract
We suggest to employ the dissipative nature of open quantum systems for the purpose of parameter
estimation: the dynamics of open quantum systems is typically described by a quantumdynamical
semigroup generator .The eigenvalues of  are complex, reflecting unitary as well as dissipative
dynamics. For certain values of parameters defining , non-Hermitian degeneracies emerge, i.e.
exceptional points (EP). The dynamical signature of these EPs corresponds to a unique time evolution.
This unique feature can be employed experimentally to locate the EPs and thereby to determine the
intrinsic systemparameters with a high accuracy. This waywe turn the disadvantage of the dissipation
into an advantage.We demonstrate thismethod in the open systemdynamics of a two-level system
described by the Bloch equation, which has become the paradigmof diverse fields in physics, from
NMR to quantum information and elementary particles.

1. Introduction

Felix Bloch [1]pioneered the dynamical description of open quantum systems.Originally Bloch’s equations
describe the relaxation and dephasing of a nuclear spin in amagnetic field. Soon it became apparent that the
treatment can be extended to a generic two-level-system (TLS), such as the dynamics of laser driven atoms in the
optical regime [2–4]. The openTLS has been used tomodelmany different fields of physics. TheTLS or a q-bit is
at the foundation of quantum information [5–9]. In particle physics the TLS algebra has been employed in
studies of possible deviations fromquantummechanics in the context of neutrino oscillations [10], as well as
quantum entanglement [11–15], associatedwith electron/positron collisions and entangled systems due to
EPR-Bell correlations [16].

The TLS is the base for setting the frequency standard for atomic clocks [17]. As a result accurate
measurement of frequency is an important issue. Quantum-enhancedmeasurements based on interferometry
have been suggested asmeans to beat the shot noise limit [18]. In thesemethods the decoherence rate is the
limiting factor [19]. In some cases quantum error correction can increase the coherence time and the accuracy
[20]. In the present studywewant to suggest an opposite strategy. By employing the non-Hermitian character of
the dynamics, the decoherence can be transformed from a bug to a feature.

2. Exceptional points (EPs) in open quantum systems

The Bloch equation is the simplest example of a quantummaster equation. Bloch rederived the equation from
first principles, employing the assumption ofweak coupling between the system and bath [21, 22]. These studies
have paved theway for a general theory of quantumopen systems.Davies [23] rigorously derived theweak
coupling limit, resulting in a quantummaster equationwhich leads to a completely positive dynamical
semigroup [24]. Based on amathematical construction, Lindblad andGorini, Kossakowski and Sudarshan (L-
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GKS) obtained the general structure of the generator  of a completely positive dynamical semigroup [25, 26].
In theHeisenberg representation the L-GKS generator becomes [27, ch 3]:
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where X̂ is an arbitrary operator. TheHamiltonian Ĥ isHermitian and operators V̂k are defined to operate in
theHilbert space of the system. The [·, ·]+ denotes an anti commutator.

The set of operators { ˆ }X supports aHilbert space construction using the scalar product:

º( ˆ ˆ ) { ˆ ˆ }†
X X X X, tr .1 2 1 2 A crucial simplification to equation (1) is obtainedwhen a set of operator is closed to the
generator .Thenwe can rephrase the dynamics with amatrix-vector notation [28]:

=
 ˙ ( )Y MY 2

where

Y is the vector of basis operators andM is the representation of the generator  in this vector space. The

eigenvalues of thematrixM reflect the non-Hermitian dynamics generated by . In general they are complex
with the steady state eigenvector having an eigenvalue of zero. The solution for this equation is:

=
 

( ) ( )Y t Ye 0 .Mt

WhenM is diagonalizable, we canwriteM=TΛT−1, for a non-singularmatrixT and a diagonalmatrixΛ,
which has the eigenvalues {λi } on the diagonal. Thenwe have e

M t=T eΛ tT−1 , with the diagonalmatrix eΛ t,
which has the exponential of the eigenvalues, le ,ti on its diagonal. The resulting dynamics of expectation values
of operators, as well as other correlation functions, follows a sumof decaying oscillatory exponentials. The
analytical formof such dynamics is:

⎡⎣ ⎤⎦å wá ñ = -( ) ( )X t d texp i , 3
k

k k

where−iωk, denoted as complex frequencies, are the eigenvalues ofM, dk are the associated amplitudes, and
bothωk and dk can be complex. The real part of the complex frequencyωk represents the oscillation rate, while
the imaginary part, w( )Im 0k represents the decaying rate.

For special values of the systemparameters the spectrumof the non-HermitianmatrixM is incomplete. This
is due to the coalescence of several eigenvectors, referred to as a non-Hermitian degeneracy. The difference
betweenHermitian degeneracy and non-Hermitian degeneracy is essential: in theHermitian degeneracy, several
different orthogonal eigenvectors are associatedwith the same eigenvalue. In the case of non-Hermitian
degeneracy several eigenvectors coalesce to a single eigenvector [29, ch 9]. As a result, thematrixM is not
diagonalizable.

The exponential of a non-diagonalizablematrixM can be expressed using its Jordan normal form:M=T J
T−1. Here, J is a Jordan-blocksmatrix which has (at least) one non-diagonal Jordan block; Ji=λiI+N , where I
is the identity andNhas ones on itsfirst upper off-diagonal. The exponential ofM is expressed as eMt=T eJtT−1,
with the block-diagonalmatrix eJt, which is composed from the exponential of the Jordan blocks tei

J . For non-
Hermitian degeneracy of an eigenvalueλi, the exponential of the block Jiwill have the form: = =l +e eJ t It Nti i

le e .t Nti ThematrixN is nilpotent and therefore the Taylor series of eNt isfinite, resulting in a polynomial in the
matrixNt. This gives rise to a polynomial behaviour of the solution, and the dynamics of expectation valueswill
have the analytical formof
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replacing the formof equation (3). Here, w( )
k
rk denotes an eigenvaluewithmultiplicity of rk+1.Note that for

non-degenerate eigenvalues, i.e. rk=0, we have dk,0=dk andωk
0=ωk. The difference in the analytic behaviour

of the dynamics results in non-Lorentzian line shapes, with higher order poles in the complex spectral domain.
The point in the spectrumwhere the eigenvectors coalesce is known as an exceptional point (EP).When two

eigenvalues of themaster equation coalesce into one, a second-order non-Hermitian degeneracy is obtained.We
refer to it as EP2, while a third-order non-Hermitian degeneracy is denoted by EP3.

This study addresses the scenario of the dynamics of a system coupled to a bath. The formalism is a reduced
description of a tensor product of the system and the bath [27, 30]. The coupling to the bath introduces
dissipation and dephasing into the dynamics. The state is represented as a density operator in Liouville space,
and the dynamics is governed by the L-GKS equation. The nonHermitian properties of the dynamical generator
 is caused by tracing out the bath degrees of freedom.We employ theHeisenberg picturewith a complete
operator basis set in Liouville space.

Previous studies of the physics of EPs investigated the scenario of scattering resonances phenomena. In that
different scenario, the nonHermitian properties of the effectiveHamiltonian are caused by the interaction
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between the discrete states via the common continuumof the scattering states [31, 32]. In those studies only
coherent dynamics is considered and the dissipation and dephasing phenomena are absent.

Examples for EPs have been described in optics [33, 34], in atomic physics [35–40], in electron–molecule
collisions [41], superconductors [42], quantumphase transitions in a systemof interacting bosons [43], electric
field oscillations inmicrowave cavities [44], in PT-symmetric waveguides [45], and inmesoscopic
physics [46, 47].

Recently,Wiersig suggested amethod to enhance the sensitivity of detectors using EPs [48]. Belowwe
suggest to employ the EPs for the purpose of parameter estimation.

3. Identifying the EPs and parameter estimation

The analytical formof decaying exponentials, equation (3), is used in harmonic inversionmethods tofind the
frequencies and amplitudes of the time series signal [49–51]. These frequencies and amplitudes can be employed
to estimate the systemparameters. If the sensitivity of the estimated frequencies is increasedwith respect to the
system controls, the accuracy of the parameter estimation is enhanced. Such sensitivity increase can be achieved
using the special character of the dynamics at EPs.

At EPs the analytical form includes also polynomials (equation (4)). Fuchs et al showed that applying the
standard harmonic inversionmethods to a signal generated by equation (4) leads to divergence of the amplitudes
dk. An extended harmonic inversionmethod can fix the problem. The divergence of the amplitudes dk at the
vicinity of EP can be used to locate them in the parameter space very accurately [52]. This is a consequence of the
special non analytic character close to the EP (see in ch 9 in [29]).

Relying on the ability to accurately locate the EPs in the parameter space, we suggest to use the EPs for
parameter estimation. The procedure we suggest follows:

(i) Accurately locate in the parameter space the desired EP by iterating the following steps:

(a) Perform the experiment to get a time series of an observable for example the polarization as a function
of time.

(b) Obtain the characteristic frequencies and amplitudes of the signal using harmonic inversionmethods.

(c) In the parameter space, estimate the direction and distance to the EP and determine new parameters for
the next iteration.

(ii) Invert the relations between the characteristic frequencies and the systemparameters at the EP to obtain the
systemparameters.

The accurate location of the EPs, followed by inverting the relations, will lead to accurate parameter
estimation.

4.Determination of the physical parameters in two level systems

4.1. TheBloch equation
The Bloch equation describes the dynamics of the three components of the nuclear spin, Sx, Sy, and Sz, under the
influence of an externalmagnetic field, or a two-level atom in external electromagnetic field. In the rotating
frame, we canwrite the equations in amatrix-vector notation:
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withT1 andT2 as the dissipation and dephasing relaxation parameters, and the detuning from resonanceΔ and
the amplitude ò as thefield parameters. See details in appendix A.

The Bloch equations can be derived from the L-GKS equation of the two-level system,with the effective
rotating-frameHamiltonian

3
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= D +ˆ ˆ ˜̂H S S ,z x

alongwith relaxation and dephasing terms. see appendix B for details.
Reducing the number of parameters, themaster equation can be incorporated in thematrix:

⎛
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with G = -
T T

3

2

1 1

1 2
as the general relaxation coefficient (see appendix B).

The dynamics is determined by the exponential eMt, which typically describes oscillating decaying signal, see
equation (3). Nevertheless, for specific parameters leading to EP the dynamics ismodified to include
polynomials, see equation (4).

4.2. EPs in the Bloch equation
The EPs are non-Hermitian degeneracies in thematrixM of equation (6). The task is to express the EPs using the
parameters of thismatrix. Explicit derivations are presented in appendix C.Non-Hermitian degeneracies of the
eigenvalues [29], EP2, occurwhen

  G D + D + + G D - D - =( ) ( )16 8 20 0.4 2 2 2 3 2 4 2 2 4

Figure 1 shows amap of EP2 curve as a function of ò andΔ forfixedΓ=0.1. Such figures were obtained in the
study of analytical solutions for the Bloch equation [53–55].

A third order EP, EP3, occurs when D =  G = G1 108 , 8 108 (red asterisks infigure 1). These
triple-degeneracies EP3 occur twice, and have a cusp-like behaviour, emerging from the EP2-curves, identifiable
as a section through an elliptic umbilic catastrophe [56]. This topology is also consistent with an analysis of non
Hermitian degeneracies in a two-parameters family of 3×3matrices [57]. In very strong driving fields the
matrixMwill loose symmetry [58, 59]maintaining the cusps but skewing the topology.

4.3. EP identification andparameter estimation
Wenowdescribe the two steps of themethod for accurate determination the physical parameters. The first step
is to identify the desired EP using a sequence ofmeasured time-dependent signals. The second step is to invert
the relations and determine the systemparameters.

4.3.1. Identifying the second and third order EPs
To identify theEPsweused time series of the polarizationobservable º á ñˆS S ,z z initially at the ground state.We
simulated thedynamicswith varyingfieldparameters (ò,Δ) generating a time series of polarization Sz[n]=Sz (n δ t).
This signals served as the input for theharmonic inversion.

Figure 1.Amap of the non-Hermitian degeneracies of the eigenvalues of thematrixM of equation (6), as a function of ò andΔ, for
fixedΓ=0.1. The lines represent second order exceptional points (EP2). The cusps, where D =  G1 108 , = G8 108 (red
asterisks), are third order exceptional point (EP3). In the area inside the ‘triangle’ , markedwith pale blue, the eigenvalues of thematrix
M are real. The EP2 curve distinguishes between points with real and complex eigenvalues.
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The parametersΔ and òwere tuned close to an EP. Generically we should have

= + +w w w- - -( )S t d d de e e ,z
t t t
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2
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3
i1 2 3

but in the EP2 (rk=1)we get
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and for EP3 (rk=2)
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(See equations (3) and (4).)We located suspected EPs by identifying possible degeneracies of the assigned
frequenciesωk. As stated earlier, applying standard harmonic inversionmethods for the time series generated by
a non-diagonalizablematrix, leads to divergence of the amplitudes dk [52]. This divergence can be used to locate
the EPs accurately. A verification can be obtained by using the extended harmonic inversionmethod.

This procedure was employed to identify an EP2 forfixedΓ=0.1 and ò=0.01, with varyingΔ. The purple
asterisks atfigure 2 displays the absolute value of the difference between the frequencies w w-∣ ∣,2 1 obtained by
the harmonic inversion for each parameter set. The degeneracy point is clearly observed. The diverging
behaviour of the amplitudes is shown in red stars. It is consistent with the degeneracy of the frequencies. The EP2
is located atΔ=1.021×10−3, consistent with the prediction. Using a finermesh of sampling points the EP
can be identifiedwith a resolution exceeding 0.5×10−9.

The EP3was identified by a 2D search performed by varying ò andΔ, forfixedΓ=0.1.We searched for the
degeneracies of the three eigenvalues by employing the 2D function

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

w w w w w w
D G =

- - -
( )

( ) ( ) ( )
( )F , , log

1 1 1
, 7

1 2 2 3 3 1

which should diverges at the EP curve.Numerically, we get high values at this curve, with highest values obtained
at the EP3. The upper panel offigure 3 shows the sharp curve of peaks following the curve of EPs. The highest
point on themerging two ridges is the EP3. The lower panel offigure 3 shows the sumof the absolute values of
the amplitudes, calculated by the standard harmonic inversion. The curve of the EPs is clearly identified.

Refining the search leads to very high resolution, and the EP3 can be identifiedwith a high accuracy,
approaching the theoretical values ofD = G1 108 , = G8 108 .

An efficient algorithm to identify the EP3 is demonstrated based on a two-dimensional search in the
parameter space ofΔ and ò. This procedure enables the experimentalists to identify accurately the laser
parameters for which the EP3 is obtained.We use themaximumof the function equation (7) as the objective
leading to EP3.

Evaluating the function at each desired point in the parameter space include the following steps:

Figure 2. Identifying an EP2 forΓ=0.1 and ò=0.01. The left y-axis (purple asterisks) shows the absolute value of the difference
between the frequencies, w w-∣ ∣,2 1 versus the detuningΔ. The non-Hermitian degeneracy point is locatedwith high resolution. The
right y-axis shows the corresponding amplitude, obtained by the regular harmonic inversionmethod ∣ ∣d1 (red stars), and by the
extendedmethod ∣ ∣d1,0 (blue points). The diverging behaviour of ∣ ∣d1 indicates that the degeneracy is an EP.
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(i) Time series: obtain a time series of the polarization by performing the experiment or the numerical
simulation.

(ii) Frequencies: calculate the frequencies from the time series by harmonic inversion.

(iii) Function evaluation: evaluate the function F(Δ, ò,Γ) from the calculated frequencies.

Standard searchmethods can stagnate due to the high values at the EP2 curve. Another difficulty is the cusp
behaviour of the EP2 curve close to the EP3. To overcome these diffculties we implemented a ‘climbing the
valley’ procedure: staying on the valley of the localminima ensures the search overcomes the stagnation due to
the EP2 curve. The procedure follows:

(i) Preliminary step—initial point:

(a) Locate points inside the triangle-like EP curve (see figure 4). The inner area of the curve is characterized
by real-only eigenvalues.

(b) Perform a 1D search tofind aminimumon a straight line.

(ii) Valley ascend: each iteration ascends up the valley to a point with higher value of the function F. This is done
by finding aminimumon the circular arc that is centred at the current point, enclosed by two radii. The
angles of these radii can be predefined or defined on each iteration.We perform the following steps:

(a) Determining the angular range. Predefined or from the previous iterations.

(b) Determining the radius. The radius is the distance from the current point to nearest point on the EP2
curve that is in the angular range.

(c) Finding the next point. Performing a 1D search on the circular arc that is defined by the angular range
and the radius (see blue arc infigure 4). The point for the next iteration is the point on the arcwith the
minimal value of F (see end of green line in figure 4).

These steps converge to the desired EP3 point. Figure 4 demonstrates the progress in the ‘valley ascend’
methodwith a few iterations.

Figure 3. Identifying the triple exceptional point EP3. The upper panel shows the 2D function D G( )F , , presented in the text. The
highest point corresponds to the triple-EP point EP3. The lower panel shows the sumof the absolute values of the amplitudes, which
were calculated by the regular harmonic inversionmethod.
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TheValley ascendmethod presented above is a genericmethod, and can be used also for searching higher
order degeneracies in other systems. For the Bloch equation case, where the generatingmatrix, equation (6), is a
3×3matrix, the EP3 is the point where the characteristic polynomial

 w w w w w w w= - - -D G ( ) ( )( )( ) ( )P 81 2 3, ,

has roots withmultiplicity of 3. Therefore we can use the special properties of the cubic equation and perform a
regular root search.We define r, s and t as the coefficient of the polynomialPΔ, ò, Γ(ω) defined in equation (8):

w w w w w w w w w- - - = + + +( )( )( ) ( )r s t. 91 2 3
3 2
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and perform a 2D conventional root search. The point in the parameter spacewhere these two functions vanish
is point where the three eigenvalues are degenerate.We have applied thismethod using standardmethod of 2D
root search obtaining high accurate values of the EP3.

4.3.2. Physical parameter estimation from the value at the EP
For the TLS the systemparameters are the frequencyωs associatedwith the energy gap, the general decay rateΓ
and the dipole strengthμ. The external experimentally controlled parameters are the driving frequency ν and the
power amplitude  . The parameters of equation (6) can be relatedwith  m= andΔ=ωs−ν. Onewould
like to estimate the systemparameters from experiments. After locating accurately the EP, we can determine the
parameters by inverting the relations between the eigenvalues and the systemparameters.

To obtain high accuracy, we used the identification the triple-degeneracy point EP3 presented above, so both
parameters—Δ and ò— are located accurately. The accurate location ofΔ and òmakes the parameter
estimation very robust to uncertainties in the location of the EPs. This is a consequence of the special non
analytic character close to the EP3 (see appendixD). Therefore, the systemparametersΓ,ωs andμ can be
determined to a high degree of accuracy at this point. From the eigenvalues of thematrixM in equation (6)we
get w w wG = + +( ).i

2 1 2 3 To obtain ò andΔ one has to invert nonlinear relations (see appendix C). At the EP3,

the inversion becomes: w n= + G1 108 ,s m = G8 108 .

4.3.3. Noise sensitivity
Parameters estimation naturally raises the issue of sensitivity to noisy experimental data. The noise sensitivity
will be determined by themethod of harmonic inversion. If the sampling periods have high accuracy then the
time series can be shown to have an underlyingHamiltonian generator. This is the basis for linearmethods, such

Figure 4.A sketch of the iterations progress in the ‘valley ascend’method.The collors on the background and the black contour lines
represent the function F(Δ, ò,Γ) of equation (7). In each iterationwe plottedwith blue line the circular arc onwhichwe searched for
theminimum. The black asterisks show theseminima, which form the curve, plottedwith a dashed light green line, that ‘climbs’ in the
valley of the objective function.
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as the filter diagonalization (FD) [49, 50]. The noise in thesemethods results in normally distributed underlying
matrices, and themodel displaysmonotonous behaviourwith respect to the noise. This was verified analytically
and bymeans of simulations in [60]. As a result sufficient averagingwill eliminate the noise. Practical
implementations require further analysis with evidence of nonlinear effects of noise. For example,Mandelshtam
et al analysed the noise-sensitivity of the FD in the context ofNMRexperiments [61, 62] and Fourier transform
mass spectrometry [63]. For some othermethods, a noise reduction techniquewas proposed in [51].

5.Discussion

Bloch’s equation has become the template for the dynamics of open quantum systems. Such systems typically
decoherewith a dynamical signature of decaying oscillatorymotion. It is therefore surprising that the existence
of nonHermitian degeneracies has been overlooked. Our finding of an intricatemanifold of double
degeneracies EP2 and triple degeneracies EP3 in the elementary TLS template suggests that any quantum
dynamics described by the L-GKS generator [25, 26]will exhibit amanifold of EPs.

NonHermitian degeneracies of the EP have a subtle influence on the dynamics. The hallmark of EP
dynamics is a polynomial component in the decay leading to non-Lorentzian lineshapes.We suggest an
experimental procedure to identify the EP in Bloch systems, using harmonic inversion of the polarization time
series. The sensitivity of harmonic inversion in the neighbourhood of an EP enables us to accurately locate the
EP, and therefore allows us to determine the systemparameters: the energy gapωs, the dipole transitionmoment
μ, and the decoherence rateΓ.

This study is only the first step in establishing parameter estimation via EPs. A generalization to larger
Liouville spaces is under study for atomic spectroscopy. Under the influence of driving fields and due to
spontaneous emission, atoms and ions can have a structure ofN-level systemwith relaxation. In these systems
we expect non-Hermitian degeneracy of high order. The structure of the EPs in these systems can be used for
estimating the energy differences, the lifetimes, and branching ratios.Work in this direction is in progress.

Many quantum systems are open and their dynamics has dissipative nature, which is describedwell by the
L-GKS equation. Thereforewe expect tofindEPs inmany quantum systems. Under the appropriate
circumstances these EPs can be used for accurate parameter estimation.
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AppendixA. Bloch equations

The Bloch equation describes the dynamics of the three components of the nuclear spin, Sx, Sy, and Sz, under the

influence of an externalmagnetic field


H .The equations as appear in Bloch’s original paper ([1], equation (38))
are
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T1 andT2 are two relaxation parameters (the pure dephasing rate
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is related by
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), γ is the

gyromagnetic ratio, and Sz
0 is the equilibrium value of Szunder the influence of constant externalmagnetic field

Hz=H0. These equations can be recast in amatrix-vector notation:
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For an external field


H with the components w=H H tcos ,x 1 w= -H H tsiny 1 ,Hz=H0, we define the
rotating frame:
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With the notations ò=γH1 andΔ=γH0−ωwe have (see also [4]):
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These equations also describe, in the dipole approximation, a two-level atom in external electromagnetic
field. In this case, the systemparameters are the the unperturbed frequency of the systemωs, and the dipole
strengthμ. The external experimentally controlled parameters are the driving frequency ν and the power
amplitude .The parameters of equation (A.4) are relatedwith  m= andΔ=ωs−ν. In the absence of
dissipation the eigenvalues of thematrix are pure imaginary, and the dynamics is a free precession of the

polarization vector characterized by the Rabi frequency: W = + D .2 2 Whendissipation is present the
eigenvalues of the homogeneous part of equation (A.4) become complex, reflecting a decaying oscillation
dynamics leading asymptotically to a steady state.

Appendix B.Derivation of the Bloch equation from the L-GKS equation

In theHeisenberg representation the L-GKS generator becomes:
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where X̂ is an arbitrary operator. TheHamiltonian Ĥ isHermitian and V̂ is defined to operate in theHilbert
space of the system. The curly brackets denote an anti commutator. The set of operators { ˆ }X supports aHilbert

space construction, with the scalar product defined as: º { }( ˆ ˆ ) ˆ ˆ†
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For two-level system, the effective rotating-frameHamiltonian under a driving fieldwith detuningΔ and
driving frequency ò is:
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TheTLS L-GKS equation for an operator X̂ with relaxation and pure dephasing becomes
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whereκ± are kinetic coefficients, k k w= -+ - ( )k Texp ,B and γ is the pure dephasing rate [2, 64].
To rephrase the equation in amatrix-vector notation,We use the polarization operators and the identity

matrix to form the vector of basis operators: ¢ =
 ( )˜ ˜ ˆ ˆS S S S I, , , .x y z

T
Then equation (B.3) can bewritten as

¢ = ¢ ¢ 
Ṡ M S , with an appropriate 4×4matrixM′.We can reduce the dimensions bywriting an inhomogeneous

equation for the three-component vector =
 ( )˜ ˜ ˆS S S S, , :x y z

T
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g= - -
  ( )˙ ( ) ( )S M I S S , B.4eq

withΓ=κ−+κ+−γ, I as the 3×3 identitymatrix,

Seq that fulfills

g k k- = -+ -


( ) ( ( ) ˆ)I M S I0, 0, T
eq and thematrix:

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟




=

-
G

D

- D -
G

- - G

( )M
2

0

2
0

. B.5

Equation (B.4) can bemergedwith the Bloch’s equation (A.4)where k k= ++ -T

1

1
and =

T

1

2

g k k+ ++ -( ).1

2
The general solution for this equation is:

= - +g-
   ( )( ) ( )S t S S Se e , B.6t Mt

0 eq eq

with =
 

( )S S 0 .0

Themaster equation equation (B.3) is a common form for TLS found in the literature [7, 65, 66].
Equation (B.5)which determines the EP interpolates between two extreme cases. The first is associatedwith
spontaneous emission, thenΓ=κ−. The second is a hot singular bath dominated by pure dephasing,
thenΓ=−γ.

AppendixC. Eigenvalues of thematrixM

The task is tofind the eigenvalues of the generatormatrix (6).
Wefirst define the variables:




= D + - G
=- D + - G ( )

Y

X

12 12

36 18 . C.1

2 2 2

2 2 2

Wealso define:

  

= G +

= G D + D + + G D - D -( )( ) ( ) ( )

W X Y

16 8 20 . C.2

2 2 3

4 2 2 2 3 2 4 2 2 4
1 2

With these definitions the eigenvalues of equation (6) become:

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

=- G + + G -
+ G

=- G + + G +
+ G

=- G + + G +
+ G

p p

p p- -

( )
( )

( )
( )

( )
( )

( )

m W X
Y

W X

m W X
Y

W X

m W X
Y

W X

2

3

1

6

2

3

1

6
e e

2

3

1

6
e e . C.3

1
1 3

1 3

2
i 1 3 i

1 3

3
i 1 3 i

1 3

2
3

1
3

2
3

1
3

For realW (i.e. for G +X Y 02 2 3 ) all eigenvalues are real. ForΓ2X2+Y3<0,W is complex, and two of the
eigenvalues are complex (complex conjugate to each other).

Non-Hermitian degeneracies of the eigenvalues occurwhenW vanishes. In such cases the second and third
eigenvalues are degenerated, leading to EP2. A third order EP, EP3, occurs forX=Y=0. This happenswhen

D =  G = G1 108 , 8 108 .These triple-degeneracies EP3 occur twice, and have a cusp-like behaviour,
emerging from the EP2-curves, identifiable as an elliptic umbilic catastrophe [56]. This topology is also
consistent with the analysis of nonHermitian degeneracies of a two-parameters family of 3×3matrices, done
byMailybaev [57]. In very strong drivingfields thematrixMwill loose symmetry [58, 59]maintaining the cusps
but skewing the topology.

AppendixD.Non analytic character close to the EP3

There is a special non analytic character close to the EP3: when n n EP3 and   EP3 then the three
frequencies obtained by the standard harmonic inversion coalesce, leading to a branch point (see ch 9 in [29]):
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⎡⎣ ⎤⎦ w w a n n b= + - + -=
p ( ) ( ) ( )( ) e D.1k k k1,2,3 1

2 i EP3 EP32
3

1
3

whereαk andβk are parameters. At the EP3, i.e. for n n EP3 and   ,EP3 we get w n¶ ¶  ¥k and
w¶ ¶  ¥,k leading to n¶G ¶  ¥ and ¶G ¶  ¥.
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Abstract. The dynamics of spontaneous emission of an atomic system is studied in

the framework of an open quantum system. The resulting quantum master equation

for the atomic system is non hermitian. The generator L can possess non-hermitian

degeneracies, i.e. exceptional points (EP), for speci�c values of the external laser

driving amplitude and detuning from the atomic lines. We suggest to employ the

special properties of these EPs for accurate parameter estimation. The method is

demonstrated for the atomic spectrum of S → P transitions of 85Rb and 40Ca +.

1. Introduction: Electronic transitions and spontaneous emission in atomic

systems

Atomic spectroscopy is unique in its experimental accuracy, able to achieve a dynamical

range of precision of up to 18 signi�cant digits. High-performance frequency standards

is the technological result of this precision leading to applications such as network

synchronization and GPS [1]. This technology is enabled by atomic clocks [2, 3].

High accuracy has implications in other �elds of physics such as radioastronomy (very-

long-baseline interferometry) [4], tests of general relativity [5], and particle physics [6].

Atomic spectroscopy has been a primary source of fundamental constants [7]. For

example, a small deviation of the Rydberg constant can indicate the radius of the

proton [8].

1.1. Electronic transitions and spontaneous emission

Atomic spectroscopy is the study of electronic transition in atoms. The spectral

lines correspond to Bohr frequencies of the transitions between energy levels of the

atom. Within this viewpoint the spectral theory involves calculating the eigenvalues

of the atomic hermitian Hamiltonian. The observed spectrum is then predicted by
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perturbation theory assuming weak excitation and knowledge of the transition dipole

matrix elements.

The simple picture of atomic spectroscopy is hampered by the notion that atoms

are imbedded in the radiation �eld. The primary in�uence is spontaneous emission

and Lamb shifts [9]. In principle one can employ quantum �eld theory and treat the

radiation �eld and the atom using a Hamiltonian description [10].

Ĥ = Ĥatom + Ĥradiation + Ĥinteraction. (1)

Our aim is to concentrate on the atomic spectra. We therefore employ a reduced

description where we derive e�ective equations of motion for the atomic system by

tracing out the radiation �eld. This is the approach incorporated in open quantum

systems. In this case the reduced dynamics is described by a non-hermitian generator L.
We will show that due to non-hermitian degeneracies there is a profound and unexpected

in�uence on the atomic spectrum.

1.2. The L-GKS equation for spontaneous emission

The phenomena of spontaneous emission (SE) cannot be described by a unitary

description, such as the Schrödinger equation for the wave function, or the counterpart

Liouville-von-Neumann master equation for density matrices. Hamiltonian-based

approaches incorporate only coherent dynamics. Dissipation and dephasing phenomena

are properly described by the quantum master equation [11, 12]. The general structure of

the quantum master equation was introduced by Lindblad [13] and Gorini, Kossakowski

and Sudarshan [14] (L-GKS). Based on a mathematical construction they obtained the

general structure of the generator L of a completely positive dynamical semigroup. The

L-GKS master equation (known also as the Lindblad equation) adds dissipative terms

to the master equation which handles SE:

∂ρ̂

∂t
= Lρ̂ = − i

~

[
Ĥ, ρ̂

]
+
∑

(a,b)

Γa→b

(
Â(a,b) ρ̂ Â

†
(a,b) −

1

2

[
Â
†
(a,b)Â(a,b), ρ̂

]
+

)
, (2)

where the [·, ·] denotes a commutator, and the [·, ·]+ denotes an anti commutator.

The �rst term is the commutator of the Hamiltonian with the density matrix, which

generates the unitary dynamics. The second term is the dissipator, which generates the

spontaneous emission. The sum is over the pairs of levels (a, b): Each of the annihilation

operators

Â(a,b) ≡ Âa→b = |b 〉〈 a| (3)

generate a decay from the upper source level |a〉 to the lower destination level |b〉. The
anti commutator

[
Â
†
(a,b)Â(a,b), ρ̂

]
+
expresses the decrease in population of the excited

state |a〉, while the resulting increase of population of the lower state |b〉 is expressed by

the term Â(a,b) ρ̂ Â
†
(a,b). Note that the anti commutator contains the term

Â
†
(a,b)Â(a,b) = (|a 〉〈 b|) (|b 〉〈 a|) = |a 〉〈 a| ≡ P̂a, (4)
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where P̂a is the projection operator, projecting on the subspace spanned by |a〉.
Therefore, the decrease in population of the excited state is expressed using only the

population on this state, and does not require knowledge of other states.

The decay rate for the pair of levels (b, a), Γa→b, can be obtained by a microscopic

derivation of the quantum optical master equation from the Hamiltonian of Eq. (1)

under the weak coupling limit. The Born-Markov approximation is employed where the

perturbation parameter is the dipole interaction between the atom and the radiation at

temperature T = 0. The rate obtained is equivalent to the golden rule formula [15]:

Γa→b =
4

3

ω3
ab

~c3
|dab|2 (5)

with ωab as the transition frequency, c the speed of light, and dab the transition dipole

matrix element. For states with de�ned angular momentum, the transition dipole matrix

element becomes:

Γa→b =
4

3

ω3
ab

c2
α
|〈Ja ||̂r|| Jb〉|2

2Jb + 1
. (6)

Here, α is the �ne structure constant, and Ja, Jb are the angular momenta of the states

|a〉 and |b〉. 〈Ja ||̂r|| Jb〉 is the reduced dipole matrix element between Ja and Jb.

The total decay rate from a state |a〉 is the sum Γa =
∑

b Γa→b. This decay rate

de�nes the lifetime of the excited state: τa = Γ−1
a .

The spontaneous emission rate is completely determined by the fundamental

physical constants: i.e. magnetic moment of the electron and the nuclei, etc. These

constants determine the values of the energy levels splitting and lifetime. By inversion,

an accurate measurement of the energies and lifetime constitutes an appropriate

determination of universal parameters.

1.3. Population leakage

Typically in atomic systems the excitation and de-excitation transitions are not closed.

Population can leak to other levels of the atomic system. The population is expressed

by the diagonal entries in the density matrix ρ̂, and the total population is Tr{ρ̂}.
The dissipative term in Eq. (2) conserves the total population in the system, i.e.

∂t Tr{ρ̂(t)} = 0. To incorporate population loss we utilize the fact that decrease of

population in an excited state is described by the anti commutator terms, which uses

only the population on this state and does not require knowledge about other states.

Therefore the dissipator L will include additional terms composed only from the anti

commutators. Such terms cause a decrease in the population of the excited state which

are not compensated by an increase of population of other states. For each excited state

|a〉 the additional term will have the form:

L(a)
leakρ̂ = −1

2
Γa,leak

[
P̂a, ρ̂

]
+
. (7)

The total decay rate from the state |a〉 is now Γa = Γa,leak +
∑

b Γa→b. We de�ne

χa = Γleak/Γa as the branching fraction that decays from the excited state |a〉 to states
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out of the primary system. Introducing such leaking terms into the dissipator reduces

the total population, and therefore ∂t Tr{ρ̂(t)} < 0.

The total spontaneous emission part of the L-GKS equation will have the form:

LSEρ̂ =
∑
a

(∑
b

Γa→b

(
Â(a,b) ρ̂ Â

†
(a,b) − 1

2

[
P̂a, ρ̂

]
+

)
− 1

2
Γa,leak

[
P̂a, ρ̂

]
+

)

=
∑
a

∑
b

Γa→b

(
Â(a,b) ρ̂ Â

†
(a,b) − 1

2
Γa

[
P̂a, ρ̂

]
+

)
.

(8)

If the excited state |a〉 decays to a manifold B with NB states |b〉 ∈ B with equal decay

rate, then we have Γa→b = (1−χa)Γa/NB. The spontaneous emission part will have the

form:

LSEρ̂ =
∑

a

Γa

(
(1− χa)
NB

∑

b∈B
Â(a,b) ρ̂ Â

†
(a,b) −

1

2

[
P̂a, ρ̂

]
+

)
. (9)

1.4. Pure dephasing

Pure dephasing is the loss of coherence without change in population. Random

�uctuations of the energy levels will generate pure dephasing. A possible mechanism is

caused by elastic collisions with other atoms in the chamber. An additional mechanism

is caused by noise in the monitoring or driving laser. As a result, the pure dephasing

rate can be controlled, for example by changing the density of the atomic gas, or by

generating �uctuations in the external �eld. We denote the pure dephasing rate by

Γdeph.

Within the L-GKS equation pure dephasing is described by a generator L which

commutes with the Hamiltonian, for example L = Γdeph

[
Ĥ,
[
Ĥ, ·

]]

1.5. The Heisenberg form

An alternative description is to describe the dynamics in an operator base. As a result

the L-GKS equation is employed in the Heisenberg representation [16, 15, 17], the

hermitian conjugate of Eq. (2). The equation of motion for an operator X̂ becomes:

d

dt
X̂ =

∂X̂

∂t
+
i

~

[
Ĥ, X̂

]
+
∑

(a,b)

Γa→b

(
Â
†
(a,b)X̂Â(a,b) −

1

2

[
P̂a, X̂

]
+

)
. (10)

For system with population leakage the equation will have additional anti commutator

terms as in Eqs. (8) and (9).

2. Dynamics of driven open atomic systems at the exceptional points

The dynamics generated by L will be represented by an explicit matrix vector notation.

The density matrix ρ̂, which is an element in Liouville space, is represented as a vector,

while L, which is a linear superoperator operating in this space, is represented by

a matrix. There are a few methods to generate such a representation cf. a recent
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demonstration [17]. In this study we employed the Heisenberg approach for the two-

level systems, and the vec-ing approach for larger systems. The vec-ing approach �attens

the density matrix into a vector, representing the L-GKS generator by an appropriate

matrix. This results in N2 × N2 matrices for the L-GKS generator. We denote the

vector representation of the density matrix ρ̂ as ~ρ, and the matrix representation of L
by L. In this notation, Eq. (2), is expressed by a matrix-vector equation:

~̇ρ = L~ρ (11)

The eigenvalues of the matrix L re�ect the non-hermitian dynamics generated by L. In
general they are complex with the steady state eigenvector having an eigenvalue of zero.

2.1. L-GKS Dynamics and exceptional points

The solution for Eq. (2), given an initial density matrix ρ̂0, and assuming that the

generator L is time-independent, can be formally expressed by:

ρ̂(t) = eLtρ̂0. (12)

In the matrix-vector representation we have:

~ρ(t) = eLt~ρ(0). (13)

The dynamics described by Eq. (13) typically is described by a sum of decaying

oscillatory exponentials. The dynamics of expectation values of operators, as well as

other correlation functions, will have the analytical form (see Appendix A):

〈X(t)〉 =
∑

k

dk exp[−iωkt] , (14)

where −iωk are the eigenvalues of L, dk are the associated amplitudes, and both ωk and

dk can be complex.

The spectrum of the non-hermitian matrix L is a function of the external parameters

of the system. For speci�c values the spectrum becomes incomplete. This is due to the

coalescence of several eigenvectors, denoted as a non-hermitian degeneracy. For such

parameters the matrix L is not diagonalizable. Such points in the parameter space

are known as exceptional points (EP). At the exceptional point the dynamics has a

polynomial character. The temporal value of expectation values of operators has the

form:

〈X(t)〉 =
∑

k

rk∑

α=0

dk,αt
α exp[−iω(rk)

k t] , (15)

which replaces the form of Eq. (14) (see Appendix A).

When two eigenvalues of the master equations coalesce into one, a second-order

non-hermitian degeneracy is obtained. We refer to it as a second order exceptional

point and denote it with EP2. A third-order non-hermitian degeneracy is denoted by

EP3. There are points in the parameter space in which n pairs of eigenvectors coalesce,

each pair into a distinct eigenvector. They will be denoted as EP2n.
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2.2. Identi�cation of EPs using the dynamics

The analytical form of decaying exponentials, Eq. (14), is used in harmonic inversion

methods to �nd the frequencies and amplitudes of the time series signal [18, 19, 20].

Harmonic inversion methods are widely used for analysis of experiments in diverse �elds

such as NMR spectroscopy [21], Fourier transform mass spectrometry [22], and ultrafast

pump-probe molecular spectroscopy [23].

However, at exceptional points the analytical form is di�erent: Fuchs et al. showed

that applying standard harmonic inversion methods, which were designed for Eq. (14),

to a signal generated by Eq. (15), leads to divergence of the amplitudes dk [24]. We

used the Padé approximant harmonic inversion algorithm presented in Refs. [20, 24].

The divergence of the amplitudes dk in the vicinity of exceptional points is employed to

accurately locate them in the parameter space [24, 25].

2.3. Parameter estimation using EPs

The ability to accurately locate the EPs in the parameter space is used for parameter

estimation. The procedure is as follows:

(i) Accurately locate in the parameter space the desired exceptional point by iterating

the following steps:

(a) Perform an experiment to obtain a time series of a physical observable.

(b) Obtain the characteristic frequencies and amplitudes of the signal.

(c) In the parameter space, estimate the direction and distance to the EP and

determine new parameters for the next iteration.

(ii) At the EP, invert the relations between the characteristic frequencies and the system

parameters to obtain the system parameters.

The accurate location of the exceptional points, followed by inverting the relations,

will lead to an accurate parameter estimation. This procedure was used to estimate

the parameters of the Bloch system from iterations of time series [25]. This parameter

estimation is robust to uncertainties in the location of the EPs. The noise sensitivity is

a�ected by the harmonic inversion. See a short discussion regarding noise in harmonic

inversion methods in Appendix C.

3. E�ective two-level systems and Bloch-like EPs

3.1. Closed two-level systems

Under the in�uence of polarized driving �elds, some atomic transitions behave as

a closed two-level system. An example is the transition between the hyper�ne

states
∣∣52S1/2, F = 3,mF = 3

〉
and

∣∣52P3/2, F = 4,mF = 4
〉
of the 85Rb atom, with

σ+ polarization. The selection rules impose that all the transitions - stimulated and

spontaneous - occur only between these states. The system parameters are: System
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frequency of ωs=384.229241689 THz (assuming no Zeeman splitting), decay rate of

Γ=38.117×106s−1, and dipole moment of µ=2.98931 ea0 [26]. We de�ne the detuning

between the system frequency ωs and the electromagnetic �eld carrier frequency ωs as

∆ = ωs−ωL. The resonance Rabi frequency is ΩR = −µE0/~, where E0 is the amplitude

of the electromagnetic �eld.

We employ the Heisenberg representation to describe the dynamics. We de�ne |s〉
as the lower state, and |p〉 as the upper state. The dynamics are described by the set of

operators:

X̂ ≡ |s〉 〈p|+ |p〉 〈s|
Ŷ ≡ |s〉 〈p| − |p〉 〈s|
Ẑ ≡ |p〉 〈p| − |s〉 〈s|
Î ≡ |p〉 〈p|+ |s〉 〈s|

. (16)

We form a four-vector from these operators. We write the Heisenberg equations,

Eq. (10), for the operators in this vector, and get a di�erential equation with a 4 × 4

matrix [17]. The conservation of population is expressed by d
dt
Î = 0. Therefore we can

omit the equation for the operator Î, and add an inhomogeneous term instead. This

results in the Bloch equations [25]. To �nd the exceptional points we need only the

homogeneous part of the equation, which is incorporated in the matrix:

M =



−Γ

2
∆ 0

−∆ −Γ
2

ΩR

0 −ΩR Γ


 . (17)

The EPs of this matrix compose a deltoid-like curve. The curve is demonstrated

in Figure 1 (the χ = 0 curve. The other curves in this Figure refer to systems

with population leakage and will be described below). The cusps of this EP -curve

are identi�ed as EP3. The accurate location of the EP3 can be used to estimate the

parameters of such systems, as described on Section 2.3 above and in a previous study

[25].

3.2. Two-level systems with population leakage

The Bloch equation can be extended to include SE that leaks into states that are external

to the Hamiltonian, resulting in population loss, see Section 1.3 above. Here are two

examples for such systems:

• Rubidium atom. Consider the TLS composed by the two hyper�ne states∣∣52S1/2, F = 3,mF = 2
〉
and

∣∣52P3/2, F = 4,mF = 3
〉
of the 85Rb atom [26], with

σ+ polarization. The selection rules impose stimulated transitions between these

states, but the excited state,
∣∣52P3/2, F = 4,mF = 3

〉
, decays spontaneously also

to other states in the system. Under σ+ polarization there are no transitions from

these other states back to the TLS. Therefore we can treat this system as a TLS

with population loss.
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• Calcium ion. Consider the TLS composed by the two states
∣∣42S1/2,mJ = −1/2

〉

and
∣∣42P1/2,mJ = 1/2

〉
of the 40Ca+ ion, with σ+ polarization (Cf. Section 4.2 and

Figure 2 below). Again, there are stimulated transitions between these states, but

the excited states decay also to
∣∣32D3/2

〉
states (≈ 6.5% of the decay rate) and to

the state
∣∣42S1/2,mJ = 1/2

〉
(50% of the remaining decay rate). The population on

these states does not revert to the TLS [27].

The Heisenberg equation in this case is (cf. Eq. (9) with NB = 1 and Eq. (10) ):

d

dt
Ô =

i

~

[
Ĥ, Ô

]
+ Γ

(
(1− χ)Ŝ+ÔŜ− −

1

2

[
Ŝ+Ŝ−, Ô

]
+

)
. (18)

Here Γ is the total decay rate of the excited state. It is the sum of the decay rate into

the lower level |s〉 as in Eq. (10) above, and of the decay rate out of the system as in

Eq. (7). χ is the branching fraction that decays to states out of the primary system.

Ŝ+ ≡ |p 〉〈 s| and Ŝ− ≡ |s 〉〈 p| are the raising and lowering operators. We write the

equations for the four operators of Eq. (16). In this case d
dt
Î 6= 0 and we cannot omit

the equation for this operator. The resulting set of equations is:

d

dt




X̂

Ŷ

Ẑ

Î


 =




−1
2
Γ ∆ 0 0

−∆ −1
2
Γ ΩR 0

0 −ΩR −
(
1− χ

2

)
Γ −

(
1− χ

2

)
Γ

0 0 −χ
2
Γ −χ

2
Γ







X̂

Ŷ

Ẑ

Î


 . (19)

The rate of population decay out of the system is χΓ, and therefore the lifetime of the

population is τ/χ, which is larger than the lifetime without leakage.

When we look at the exceptional points of this matrix, we �nd that the shape

of EP -curves is determined by the loss parameter χ. Figure 1 shows EP -curves for

di�erent values of χ. The total decay rate Γ can be calculated from the eigenvalues of

the matrix in Eq. (19): the sum of the eigenvalues is always 2Γ. The branching fraction

χ of a given system can be found by �tting the resulting EP -curve to the appropriate

branching fraction.

4. EPs in the H line of the Calcium ion

4.1. The 40Ca+ ion

The 40Ca is the most abundant Calcium isotope. The total spin of the 40Ca nucleus

vanishes. The ground state of the 40Ca+ ion, includes 18 electrons in closed shells, and

the remaining single electron occupying the lower orbital of the 4th shell. Therefore
40Ca+ ion is isoelectronic to alkali metals. However, since the total spin of the nucleus

vanishes, there is no hyper�ne structure.

The structure of the energy levels of the 40Ca+ ion have been found to be suitable

for many applications. In particular, 40Ca+ has been used in the �eld of quantum

computing and quantum information [28, 29, 30, 31, 32, 33], for atomic clocks and the

frequency standard [34, 35, 3, 2, 1, 36, 37] and recently as a single-atom heat engine
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Figure 1. A map of the Bloch-like EP -curves of the matrix in Eq. (19), which

describes the dynamics of a two-level system with spontaneous emission, when some

of the excited population decays out of the system, with χ as the branching fraction.

Figure in scaled coordinates could correspond to any leaking TLS such as Rb or Ca+.

The curves are two-fold non-hermitian degeneracy (EP2 ). The curves merge into cusps

which are identi�ed as EP3. The map of the EP -curves can be used for estimation

of the system parameters: the system frequency, the decay rate, and the branching

fraction.

[38]. The spectrum of 40Ca+ has been also employed in the quest for drifts of the �ne

structure constant over a time span of many billion years [39, 40].

4.2. The H transition of the 40Ca+ system

At the ground electronic state the electron occupies the orbital 4s, with an orbital

angular momentum l = 0. The total angular momentum including the electron spin

becomes j = 1
2
. The spectroscopic notation for the ion at this state is 42S1/2. At the

�rst excited electronic state, the electron occupies the orbital 4p, with an orbital angular

momentum l = 1. This state has a �ne structure splitting due to spin-orbit coupling

either j = 1
2
(denoted as 42P1/2), or j = 3

2
(denoted as 42P3/2).

The transition from 42S1/2 to 42P1/2 is known as the H line. The transition from

42S1/2 to 42P3/2 is known as the K line. These terms stem from the study of the solar

spectrum. In the following we concentrate on the H line, i.e. the 42S1/2 ⇔ 42P1/2

transition. The frequency of this transition was measured to be 755222766.2(1.7)MHz

[39]. The 42P1/2 has a lifetime of τ ≈ 7ns, and it spontaneously decays back to the

42S1/2 state, as well as to the 32D3/2 state. The branching between these two decays

is ΓP→S ≈ 0.935 × Γtotal. We treat the decay into the 32D3/2 state as leakage out of
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the system, with χ = 1 − 0.935 = 0.065. Each of the states 42S1/2 and 42P1/2 is two-

fold degenerated, with sub-levels of mj = ±1
2
. When an external magnetic �eld is

applied, the Zeeman e�ect removes degeneracies. The magnetic-�eld-dependent shift in

the transition frequency is ±19kHz/µT for the ∆m = ±1 transitions (i.e., the transitions

that is induced by circularly polarized electromagnetic �elds) [39]. This shift is the sum

of two contributions: The decrease of energy of the lower sub-level of the S1/2 (≈75%)

and the increase of the upper sub-level of the P1/2 (≈25%). The ratio is determined by

the appropriate Landé factors. For a linearly polarized electromagnetic �eld, ∆m = 0

transitions are induced. Therefore, we expect to obtain only half of the above shift,

i.e. ±9.5kHz/µT. However, in weak magnetic �elds this shift is obscured by the natural

linewidth in the standard frequency-domain spectroscopy [39, for example]. A scheme

of the relevant energy levels is presented in Fig. 2.

𝜎+

42P1/2

42S1/2

𝑚𝐽 = −1/2

𝑚𝐽 = −1/2

𝑚𝐽 = +1/2

𝑚𝐽 = +1/2

𝜎− 𝜋
32D3/2

  4

  2

  1

  3

Figure 2. A scheme of the relevant energy levels in 40Ca+. The 2S1/2 and 2P1/2

orbitals have total angular momentum of j = 1
2 . They are split by magnetic �eld

two sub-levels of mj ± 1
2 . External electromagnetic �elds with σ+ and σ− circular

polarizations induce ∆m = +1 and ∆m = −1 transitions, respectively. Linearly

polarized electromagnetic �elds (π polarization) induce ∆m = 0 transitions. The

excited population at the 2P1/2 state spontaneously decays to the 2S1/2 and 2D3/2

states. Energy levels are not to scale.

4.3. The system model

The energy levels structure and the spontaneous emission of the 40Ca+ ion system allow

the use of EPs in the task of parameter estimation. The reduced system Hamiltonian

includes of 4 levels (see Figure 2 for a sketch of these levels). The 42S1/2 sub levels

are denoted as |1〉 and |2〉, and the 42P1/2 sub levels are denoted as |3〉 and |4〉. The

rotating wave Hamiltonian, under the in�uence of an oscillating electromagnetic �eld
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of detuning ∆ and amplitude ΩR, and under a constant magnetic �eld which induces

a split of ω21 between the two S1/2 sub-levels, and a split of ω43 between the two P1/2

sub-levels, is:

Ĥ0 = ~




1
2
(ω43 −∆) 0 ΩR 0

0 1
2
(−ω43 −∆) 0 ΩR

ΩR 0 1
2
(ω21 + ∆) 0

0 ΩR 0 1
2
(−ω21 + ∆)


 . (20)

The spontaneous emission is incorporated into the dynamics by the dissipative part of

the L-GKS equation, as described in Section 1.2 above. We used the operators

Âp→s ≡ |s 〉〈 p| , (21)

where |s〉 denotes the states of the two lower levels - |1〉 and |2〉, and |p〉 denotes the
states of the upper levels - |3〉 and |4〉. This results in four terms in the dissipator,

where each of the P1/2 sub-levels decays to each of the S1/2 sub-levels, with rate of

ΓPi→Sk
= 1

2
Γ(P→S)total = 1−χ

2
Γtotal. Another two terms describe the decay from the P1/2

sub-levels to the D3/2 state, using only the anti-commutator terms as shown in Eq. (7),

with the decay rate of ΓP→D = χΓtotal. These dynamical terms are incorporated in L
leading to the dynamical equation for the 4× 4 density matrix ρ̂:

∂

∂t
ρ̂ = − i

~

[
Ĥ0, ρ̂

]
+
∑

p∈P1/2

Γtotal


(1− χ)

2

∑

s∈S1/2

Â(p,s) ρ̂ Â
†
(p,s) −

1

2

[
P̂p, ρ̂

]
+


 . (22)

4.4. Locations of the EPs and parameter estimation

Experimentally, the �rst step is to obtain a time series from the driven system. As an

example, we mimic a possible experiment by simulating the time series of the emission

signal by solving Eq. (22). The initial condition is obtained by �rst setting the laser

detuning and amplitude to obtain steady state. To overcome the population leakage,

the population from D3/2 is repumped to P1/2 using an auxiliary laser. After a steady

state is reached, the auxiliary laser is turned o�, obtaining ρ̂(0). The decay signal is now

collected from ρ̂(t) for a particular observable in an ordered time grid. The left panel

of Figure 3 shows an example for such time signals. The time series is the input for the

harmonic inversion, which extracts the frequencies and amplitudes of the time signal.

The frequencies are determined by the system parameters, while the initial state ρ̂(0)

determines the amplitudes. The right panel of Figure 3 shows the obtained frequencies

in the complex plane. The time interval in this �gure is 100ns, re�ecting the population

decay life time τpopulation = τSE/χ ≈ 108ns. To map the EP at the parameter space,

this procedure is repeated for other values of the laser detuning and amplitude.

For any such parameter set de�ning L, the sum of the 16 eigenvalues of L can be

shown to be:
16∑
k=1

ωk = 8Γtotal. A similar relationship was obtained for the two-level

system, where the sum of the 4 eigenvalues is 2Γ.
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Figure 3. Left panel: An example of two emission time signals of Ca+, obtained by

simulating the dynamics of the populations and the coherences. The initial state is the

steady state with re-pumping lasers switched on. The transient dynamics is initiated

by turning the pumping laser o�. The time interval in this �gure, 100ns, re�ects the

population decay life time τpopulation ≈ 108ns. Right panel: The locations in the

complex plane of the complex frequencies that were obtained from these signals using

harmonic inversion (HI). The actual eigenvalues of the generator L are marked with

asterisks. Di�erent subsets of the generator eigenvalues were obtained for di�erent

signals. The frequencies of the population signal are marked by circles, while the

frequencies of the coherence signal are marked by diamonds.

To calculate the expected locations of the exceptional points in the parameter space

of the amplitude and detuning, we used the MFRD and the eigenvalues condition number

methods (see Appendix B and Refs. [41, 42]). The map of EP -curves is shown in Figure

4 for the 40Ca+ ion, with Zeeman splitting of 200MHz. Note the gaps in the Y-axis.

The resulting EP -curves of the 4-level system are more involved than the 2-level case.

Close to each of the resonances between the upper and lower levels, there is an EP -

curve which is similar to the deltoid EP -curve we got for the Bloch system [25]. The

exact frequency of the resonances can be found by locating pairs of EPs with detunings

above and below the resonance, while maintaining a �xed amplitude. The shape of the

curves can be �tted to estimate the branching ratio.

These resonance frequencies can be veri�ed by locating the distinct EP on the right

of the Bloch-like curves. These two isolated points are classi�ed as EP2 4, i.e coalescence

of four pairs of eigenvectors with four distinct eigenvalues. Each of these points is located

with detuning ∆ at the same frequency as the resonance, and amplitude of ΩR = 1
4
Γtotal.

These points can be used also to extract the total decay rate Γ.

Between the two Bloch-like EP -curves, in the 42S1/2 ⇔ 42P1/2 transition frequency,

there is a curve of degeneracy points. However, we could not determine whether

these degeneracies are exceptional points. Anyway, locating these degeneracies can

be employed for determining the transition frequency.

To summarize, the suggested procedure for parameter estimation which include

four transition frequencies, laser driving power, spontaneous emission rate and leakage.
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Figure 4. A map of the EP -curves of 40Ca+ ion, with Zeeman splitting of 200MHz,

under linearly polarized driving �eld. Each of the Bloch-like curves (compare to the

Bloch curves at Figure 1) is found on a resonance between a pair of sub-levels, one

from 42S1/2 and one from 42P1/2. Note the gaps in the Y-axis of the di�erent curves.

To the right of each of the Bloch-like EP -curves, there is a point of EP2 4 (marked

with asterisks), in which 4 pairs of eigenvectors coalesce into 4 distinct eigenvectors.

The detuning at these points is the splitting of the relevant resonance. The amplitude

is ΩR = 1
4Γtotal.

Between the two Bloch-like EP -curves, at the detuning ∆ = 0, which is the H-line

transition frequency, there is a degeneracy-curve of the L-GKS generator. It is not

decisive whether this curve is an EP -curve.

(i) The sum of the 16 frequencies obtained by the harmonic inversion of the time signal

can be used to estimate the total spontaneous emission rate:
16∑
k=1

ωk = 8Γtotal.

(ii) The locations of the Bloch-like curves are used for the estimation of the frequencies

of the resonances between the Zeeman sub-levels.

(iii) The shapes of the Bloch-like curves are used for the estimation of the branching

ratio (In particular the EP3 points).

(iv) The locations of the EP2 4 points are used to verify the resonances frequencies and

the decay rate.

(v) The location of the degeneracy curve between the Bloch-like curve is used to

estimate the H line transition frequency.

Repeating this procedure for various magnitudes of the external magnetic �eld can
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be used for tracing the Zeeman and Paschen-Back e�ects.

For small external magnetic �eld, the Bloch-like curves approach each other and

interfere. The shape of these curves is then skewed. This is demonstrated in Figure 5,

which shows the map of EP -curves for the 40Ca+ ion, with Zeeman splitting of 30MHz.

However, the resonances frequencies can be estimated using the locations of the EPs at

small amplitudes, and veri�ed by the location of the isolated EP2 4 points. In addition

to those EP -curves and points, we observed other two isolated EP2 2, at larger detuning

and slightly larger amplitude. We did not �nd exact analytical expressions for these

points.
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Figure 5. A map of the EP -curves of 40Ca+ ion, with Zeeman splitting of 30MHz.

The general structure is similar to the case of 200MHz splitting (Figure 4) but the

Bloch-like curves get closer and interfere. The interference leads to skewing of these

curves. The EP2 2 still can be located and employed for parameter estimation. Another

two isolated EP2 2 can be seen at the right corners.

4.5. Dependency of the EPs on other dephasing rates

Most of the sources for pure dephasing of laser-driven atomic spectroscopy are well

controlled experimentally, for example varying the density of the ion gas or the medium

gas, or the instrument noise in the laser amplitude and frequency. Care must be taken

when analyzing EP -curves in atomic spectra to get the relaxation rate Γ, since the rate

depends on the various relaxation and dephasing rates in the system. For example, in

the Bloch equations, if the spontaneous emission rate is ΓSE and pure dephasing rate

ΓPD, then the relaxation rate that appears in the matrix of Eq. (17) is: Γ = ΓSE −ΓPD
[25].
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Generally, every noise source that can be added to the L-GKS equation, is

re�ected by the complex eigenvalues of the generator L. These eigenvalues are complex

frequencies of the time signal. Therefore the noise source can be traced by the harmonic

inversion. The noise will result in changes in the EP -curves map. The experimental

noise will in�uence only the harmonic inversion. See Appendix C for a short discussion

regarding noise in harmonic inversion methods.

As an example, the in�uence of noise in the amplitude of the driving laser was

analyzed. Such a noise is modeled in the L-GKS equation by a double commutator with

the laser amplitude operator V̂deph, which commutes with ΩR amplitude part of the

Hamiltonian:

V̂deph =

√
1

2




0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0


 . (23)

The dissipation generated by the double commutator with this operator is not pure

dephasing since it also generates relaxation.

We calculated the EP -map in the parameter space for dissipation rate of Γdeph =

0.01ns−1 with Zeeman splitting of 200MHz. The upper Bloch-like EP -curve of the

results is presented in Figure 6, along with the associated two EP2 2. For comparison, the

upper curve of the noiseless case (presented in Figure 4) is also shown. Two prominent

di�erences can be found. The �rst is that the two branches do not merge at a small

amplitude. Instead they are split symmetrically around the resonance. The splitting

magnitude is equal to the depahsing rate Γdeph. The second di�erence is the splitting of

the EP2 4 into two distinct EP2 2s. This splitting is not symmetric, therefore we cannot

deduce the system parameters from the locations of these EP2 2s.
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Figure 6. Blue line: The upper Bloch-like EP -curve for dissipation rate of Γdeph =

0.01ns−1 and Zeeman splitting of 200MHz, along with the associated two EP2 2 (blue

asterisks). The orange dashed line and 'x' are the EP -curve and the EP2 4 obtained

for the noiseless case (Γdeph = 0ns−1), shown on Figure 4 above. For the case of

Γdeph = 0.01ns−1, the two branches do not merge at a small amplitude. Instead, they

are split symmetrically around the resonance. The splitting magnitude is equal to the

depahsing rate Γdeph. In addition, the added dephasing splits the EP2
4 of the noiseless

case into two distinct EP2 2s .
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5. Discussion

The irreversible character of the L-GKS equation is well known and indicated by the

semi-group character of the evolution operator [43, 44, 15, 45]. The generator of the

dynamics L is therefore non hermitian. This means that non-hermitian degeneracies

EP play an important role in open quantum systems.

So far, EP were studied in the coalescence of two resonances. The resonances were

metastable states associated with predissociation or autoionization phenomena and with

leaking modes in waveguides [46, 47]. A theoretical quest for multiple EPs [48], or for

high order EPs in dissipative physical systems is pursued [49, 50, 51, 52], speci�cally in

the spectra of atoms in external �elds [53].

The �rst study of EP in the context of the L-GKS equation, was for the simple two-

level-system described by the Bloch equations [25]. In the present study, we generalize

to open two-level system where population can leak out. Then we extend to a four-

level system where the splitting can be controlled by a magnetic �eld. We found a rich

and fascinating structure of EP 's and EP -curves, including higher-order EPs. Such

phenomena is expected for many other open quantum systems described by the L-GKS

equation.

The methods developed pave the way for a generic framework of employing EPs for

parameter estimation of atomic systems. The dynamics near the EPs have enhanced

sensitivity due to their analytic properties: Small changes in the parameters lead

to di�erent harmonic inversion. Therefore, for parameter estimation, the harmonic

inversion at the EPs is superior to standard inversion methods.

The �rst stage is to predict the EP map of the system: The state of an atom driven

by a CW laser can be described in the rotating frame by a time-independent L-GKS

equation. The parameter space for such a L-GKS generator contains the �eld amplitude

and the detuning frequency. Such a parameter space can be scanned using the MFRD

method to �nd approximate locations of degeneracies of the generator. The location

and character of these degeneracies are then examined using the condition number of

the eigenvalues, to identify and locate the EPs. The second stage is to search for the

predicted EPs experimentally: The time signals obtained from the experiments are

analyzed using harmonic inversion. The resulting frequencies and amplitudes are then

used to �nd the degeneracies and exceptional points. Finally, we estimate the system

parameters by comparing the predicted and the experimental EPs.

An interesting di�erent system for an EPs search can be two molecular electronic

surfaces, with vibrational relaxation. A simple model for such a system can include only

four levels [54], or even three - one level from the ground state and two vibrational levels

from the excited state. Such systems can have multiple steady states, and therefore can

possess richer dynamics.
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Appendix A. Dynamical signature of the EPs

The solution for the L-GKS equation in the matrix-vector representation, Eq. (11), is:

~ρ(t) = eLt~ρ(0). (A.1)

When L is diagonalizable, we can write L = TΛT−1, for a non-singular matrix T

and a diagonal matrix Λ, which has the eigenvalues {λi} on the diagonal. Then we have

eMt = TeΛtT−1. (A.2)

The matrix eΛt is a diagonal matrix, which has the exponential of the eigenvalues,

exp[λit], on its diagonal. The resulting dynamics of expectation values of operators, as

well as other correlation functions, follows a sum of decaying oscillatory exponentials.

The analytical form of such dynamics is:

〈X(t)〉 =
∑

k

dk exp[−iωkt] , (A.3)

where −iωk are the eigenvalues of L, dk are the associated amplitudes, and both ωk and

dk can be complex.

For special values of the system parameters the spectrum of the non-hermitian

matrix L is incomplete. This is due to the coalescence of several eigenvectors, referred

to as a non-hermitian degeneracy. The di�erence between hermitian degeneracy and

non-hermitian degeneracy is essential: In the hermitian degeneracy, several di�erent

orthogonal eigenvectors are associated with the same eigenvalue. In the case of non-

hermitian degeneracy several orthogonal eigenvectors coalesce to a single eigenvector

[47]. As a result, the matrix L is not diagonalizable, and the exponential eLt cannot be

expressed using the eigenvalue decomposition.

The exponential of a non-diagonalizable matrix L can be expressed using its Jordan

normal form: L = TJT−1. Here, J is a Jordan-blocks matrix which has (at least) one

non-diagonal Jordan block; Ji = λiI +N , where I is the identity and N is has ones on

its �rst upper o�-diagonal. The exponential of L is expressed as

eLt = TeJtT−1. (A.4)

The exponential of the block Ji in e
Jt will have the form:

eJit = eλiIt+Nt = eλiteNt. (A.5)
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The matrix N is nilpotent and therefore the Taylor series of eNt is �nite, resulting in a

polynomial in the matrix Nt. This gives rise to a polynomial behaviour of the solution,

and the dynamics of expectation values of operators will have the analytical form of

〈X(t)〉 =
∑

k

rk∑

α=0

dk,αt
α exp[−iω(rk)

k t] , (A.6)

instead of the form of Eq. (A.3). Here, ω
(rk)
k denotes a frequency with multiplicity of

rk + 1. Note that for non-degenerate frequencies, i.e. rk = 0, we have dk,0 = dk and

ω
(0)
k = ωk. The di�erence in the analytic behaviour of the dynamics results in non-

Lorentzian line shapes, with higher order poles in the complex spectral domain. The

point in the spectrum where the eigenvectors coalesce is known as an exceptional point

(EP ).

Appendix B. Searching for EPs at the parameter space

Given a parameters-dependent matrix, the task is to �nd the exceptional points, i.e., to

calculate the parameters set for which the matrix is not diagonalizable.

Appendix B.1. Condition number of an eigenvalue

The diagonalization of matrices in the vicinity of a defective matrix is extremely sensitive

to perturbations. The sensitivity of the diagonalization can be characterized by the

condition numbers of its eigenvalues. Therefore the divergence of the condition number

of an eigenvalue can be used to �nd exceptional points. The condition number of an

eigenvalue λ of a matrix A with y and x as the corresponding (normalized) left and

right eigenvectors, respectively, is de�ned by:

κ(λ,A) =
1

yHx
, (B.1)

where yH is the hermitian transpose of y [55, 56, 42]. At exceptional points the left and

right eigenvectors are perpendicular, and the scalar product yHx vanishes, leading to

divergence of the eigenvalue condition number. The condition number of the eigenvalues

is implemented in the Matlab function CONDEIG.

Appendix B.2. Newton methods

There are a few methods that use the special properties of the exceptional points in

order to �nd them iteratively:

• Mailybaev developed a Newton method of �nding multiple eigenvalues with one

Jordan block and corresponding generalized eigenvectors for matrices dependent

on parameters. The method computes the nearest value of a parameter vector

with a matrix having a multiple eigenvalue of given multiplicity [57]. This method

worked well for us in some cases, but failed to �nd points in which two di�erent

eigenvalues had double multiplicity.
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• Akinola and coworkers used an implicit determinant method to obtain a numerical

technique for the calculation of a two-dimensional Jordan block in a parameter-

dependent matrix [58].

Appendix B.3. The MFRD method for �nding a double eigenvalue of a

parameter-dependent matrix

Jarlebring and coworkers suggested a method that for a given two n × n matrices, A

and B, computes all pairs (λ,µ) such that λ is a double eigenvalue of A+ µB [41]. The

method they suggest is the method of �xed relative distance (MFRD). It is based on

the assumption that in the vicinity of the double eigenvalue (i.e., for close enough µ)

there are two close eigenvalues λ and (1 + ε)λ. In order to �nd such λ and µ we have to

solve the following coupled eigenvalue equations:

(A+ µB)u = λu (B.2)

(A+ µB) v = λ (1 + ε) v, (B.3)

where I is the n× n identity matrix. This kind of problem is called �the two-parameter

eigenvalue problem�. The most common way to solve and analyze two-parameter

eigenvalue problems is by means of three so-called matrix determinants

∆0 = − I ⊗B + (1 + ε)B ⊗ I (B.4)

∆1 = − A⊗B +B ⊗ A (B.5)

∆2 = I ⊗ A− (1 + ε)A⊗ I. (B.6)

These are n2 × n2 matrices. After constructing these matrices, we solve the following

generalized eigenvalues problems:

λ∆0z = ∆1z (B.7)

µ∆0z = ∆2z, (B.8)

to get the approximation for µ and λ and a tensor product z = u⊗ v.
The value of ε has to be small, in order to re�ect the double eigenvalue, but not

too small in order to maintain stability. As a rule of thumb, a good choice is

ε ∼ ε
1/3
mach, (B.9)

where εmach is the machine precision.

To summarize, the steps of the method follows. Given two n × n matrices A and

B:

(i) Choose appropriate ε (see Eq. (B.9)). For εmach = 2.2 × 10−16 (Matlab), we have

ε
1/3
mach ≈ 6× 10−6

(ii) Construct the matrix determinants of Eq. (B.6).

(iii) Solve the generalized eigenvalues Eq. (B.8) problem to get the approximation for

µ and λ.
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By construction, This method yields only an approximation to the pairs (λ,µ). But this

approximation can be an initial guess for an iterative method or an exact one to get an

exact pair (λ,µ).

Appendix C. Noise sensitivity of the harmonic inversion

Parameters estimation naturally raises the issue of sensitivity to noisy experimental

data. The noise sensitivity will be determined by the method of harmonic inversion. If

the sampling periods have high accuracy then the time series can be shown to have an

underlying Hamiltonian generator. This is the basis for linear methods, such as the �lter

diagonalization (FD) [18, 19]. The noise in these methods results in normally distributed

underlying matrices, and the model displays monotonous behaviour with respect to the

noise. This was veri�ed analytically and by means of simulations In Ref. [59]. As a

result su�cient averaging will eliminate the noise. Practical implementations require

further analysis with evidence of nonlinear e�ects of noise. For example, Mandelshtam

et. al. analysed the noise-sensitivity of the FD in the context of NMR experiments

[21, 60] and Fourier transform mass spectrometry [22]. For some other methods, a noise

reduction technique was proposed in Ref. [20].
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4.7 Discussion

Exceptional points have gained growing interest in recent years [Müller 2008,

Moiseyev 2011]. In particular, the search for multiple EPs [Ryu 2012], or for high

order EPs in dissipative physical systems [Heiss 2008, Demange 2012, Heiss 2015a,

Heiss 2015b]. However, most previous studies of the EP phenomenon have been

based on non hermitian Hamiltonians caused by the interaction of the discrete states

via the common continuum of scattering states. Such Hamiltonian-based approaches

incorporate only coherent dynamics, while the dissipation and dephasing phenomena

are absent.

The study of exceptional points in this thesis utilizes this concept to a new field:

Markovian open quantum systems. The L-GKS formalism is a reduced description

of a system and bath scenario, and the non hermitian properties of the dynamical

generator are caused by tracing out the bath degrees of freedom. The dissipation

and dephasing phenomena are properly described by this formalism. The excep-

tional points here are non-hermitian degeneracies of the L-GKS quantum dynamical

semigroup generator. They represent dynamical properties of the system, where few

decay modes of the system coalesce. The studies reported here initiate a new per-

spective on the dynamics of open quantum systems which invites further research.



Chapter 5

Conclusions and outlook

The studies presented in this thesis investigated the dynamics of driven Marko-

vian open quantum systems. The main objective of the research was to examine

the impact of the surrounding environment on the interaction of quantum systems

with external driving fields. A subsequent question is the limits of validity of the

Markovian assumptions.

We studied the weak-laser-driven population transfer between electronic surfaces

in molecules. Such a scenario frequently takes place in spectroscopy. The framework

for this study was the weak-field phase-only (WFPO) control of quantum systems.

For an objective which commutes with the free Hamiltonian, WFPO control of an

isolated system is impossible [Brumer 1989, Spanner 2010]. A series of experiments

and simulations questioned this premise, and suggested that WFPO control can be

achieved by the environment of the system [Prokhorenko 2005, Prokhorenko 2006,

van der Walle 2009, Prokhorenko 2011, Katz 2011].

We formulated the question of WFPO control of an open quantum system

within the L-GKS framework. We showed that under an additional certain set

of assumptions, the scaling with the field strength of phase-dependent phenom-

ena is not altered. This set of assumption (Eq. (18)-(20) in the research paper

[Am-Shallem 2014]) can be used to analyze the dynamics of other systems, which

have different dissipators, or even systems that are not described by the L-GKS

framework. In particular, we extended these results to systems with a field-free

propagator which depends only on the time difference (time-homogeneous field-free

propagation, see Eq. (19) of the research paper). Such time-homogeneity is a char-

acter of dynamics which is generated by a linear differential equation (as oppose

to an integro-differential equation) with time-independent field-free part. Therefore

these results can be extended to a broad set of systems, including a larger set of

non-Markovian systems, generated by the time independent Hierarchical Equations

of Motion approach [Meier 1999, Ishizaki 2005, Jin 2008], in which the propagator

87
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has a similar form.

The evidences for WFPO control still need a theory. We pointed out that the

WFPO control can originate from non-Markovian dynamics. The non-Markovian

character can be manifested by non-separability of the system+environment struc-

ture. It can also arise by memory effects. However, extra care must be taken when

attributing the WFPO control to non-Markovian effects, since the set of assumption

we used in our study comprises more than only Markovian dynamics.

An additional direction for such a theory is to examine the influence of the

external fields on the environment. The analysis of the WFPO control that we

carried out cannot include the influence of the field on the environment, since the

L-GKS open system dynamics does not include such a mechanism. Nevertheless,

a non-direct influence can be presented, through the system dynamics. A careful

derivation of the master equation can lead to field-induced dissipation [Levy 2014,

for example]. We have indications that the field-induced dissipation can lead to

WFPO control. We performed numerical simulations of a simple model driven by

a pulse of a chirped Gaussian external field. In addition to the standard hermitian

coupling between field and the system, we added a small non-hermitian coupling

term. We assigned different phases to different pulses by altering the chirp rate.

Comparing the final population transfer among several values of the chirp of the

field, we found a prominent dependence on the chirp rate.

In the non-Markovian formalism the influence of the external fields on the envi-

ronment can be described explicitly. If the environment can be controlled or mea-

sured, the space available for the system can be expanded. Therefore there could be

more ways to drive an initial given state to a target state. This can lead to enhanced

controllability [Wu 2007, Lloyd 2001]. In particular, WFPO control might emerge

from the impact of the fields on the environment.

Lastly, these observations may challenge the time-dependent perturbation the-

ory we used. The common time-dependent perturbation theory relies on the time

reversibility of the evolution. The contraction of the available space in Markovian

dynamics [Altafini 2004] leads to non-reversibility on long times. In addition, in the

vicinity of exceptional points there is a subtle difference in the dynamics which can

lead to time-irreversibility. Moreover, the non-analytical properties of the eigenval-

ues in the vicinity of exceptional points suggests that the standard time-dependent

perturbation theory has to be revised to handle such cases.

The irreversibility of Markovian dynamics is reflected by the contracting non

unitary evolution propagator. The eigenvectors of non unitary operators are not

orthogonal. The emergence of exceptional points in the dynamics of open quantum

systems is the extreme manifestation of non orthogonality. The subtle difference
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of the dynamics at exceptional points is therefore an indication for the essential

different character of the dynamics.

We investigated the exceptional points of the L-GKS generator in the parameter

space of laser amplitude and detuning. We suggested to estimate the system pa-

rameters by employing the ability to locate accurately the exceptional points. The

method can be employed for precision spectroscopy of atoms and molecules which

is related to the measurement of the fundamental constants. High accuracy has

implications also in other fields of physics, such as radioastronomy, tests of general

relativity, and particle physics. We believe that this method can be developed and

incorporated as a standard tool for precise measurements.

Other types of systems can be accounted for in this context. For example, the

vibrational relaxation inside molecular electronic surfaces can be described by the

L-GKS equation with dissipative terms for relaxation, excitation and dephasing.

Another example is a series of laser-coupled quantum dots where each quantum dot

is relaxed due to the interaction with the external environment. The exceptional

points in such systems can indicate circumstances where the time reversal symmetry

is broken. The breaking of time-reversal symmetry makes the dynamics essentially

different and new effects and phenomena can arise. An example discussed above is

that the time dependent perturbation theory may have a different analytical form

in the vicinity of an exceptional point. This kind of research is still being explored.

Exceptional points can emerge also in non-Markovian dynamics. On such dy-

namics the non unitary evolution propagator is not limited to contractions, reflecting

the ability of the information to flow back and forth between the system and the en-

vironment. The change of purity of the system is not monotonic and it can increase

and decrease alternately. The richer possibilities of the dynamics suggest that the

concept of exceptional points in non-Markovian systems does appeal as a further

research objective.
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[Kraus 1983] Karl Kraus, A. Böhm, J. D. Dollard and W. H. Wootters, editors.

States, effects, and operations fundamental notions of quantum theory, vol-

ume 190. Springer Berlin Heidelberg, Berlin, Heidelberg, 1983. (Cited on

page 12.)

[Levy 2012] Amikam Levy, Robert Alicki and Ronnie Kosloff. Quantum refrigera-

tors and the third law of thermodynamics. Phys. Rev. E, vol. 85, page 061126,

Jun 2012. (Cited on page 14.)

[Levy 2014] Amikam Levy and Ronnie Kosloff. The local approach to quantum trans-

port may violate the second law of thermodynamics. EPL (Europhysics Let-

ters), vol. 107, no. 2, page 20004, 2014. (Cited on page 88.)

[Lindblad 1976] Goran Lindblad. On the generators of quantum dynamical semi-

groups. Communications in Mathematical Physics, vol. 48, no. 2, pages

119–130, 1976. (Cited on page 14.)

[Lloyd 2001] Seth Lloyd and Lorenza Viola. Engineering quantum dynamics. Physi-

cal Review A, vol. 65, no. 1, page 010101, December 2001. (Cited on page 88.)

[Machnes 2014] Shai Machnes and Martin B. Penio. Surprising Interactions of

Markovian noise and Coherent Driving. arXiv:1408.3056v1, 2014. (Cited

on page 19.)

[Mandelshtam 2001] Vladimir A Mandelshtam. FDM: the filter diagonalization

method for data processing in NMR experiments. Progress in Nuclear Mag-

netic Resonance Spectroscopy, vol. 38, no. 2, pages 159–196, 2001. (Cited on

page 24.)

[Martini 2014] Beau R. Martini, Konstantin Aizikov and Vladimir A. Mandelshtam.

The filter diagonalization method and its assessment for Fourier transform



Bibliography 95

mass spectrometry. International Journal of Mass Spectrometry, vol. 373,

no. 0, pages 1 – 14, 2014. (Cited on page 25.)

[Meier 1999] Christoph Meier and David J. Tannor. Non-Markovian evolution of

the density operator in the presence of strong laser fields. The Journal of

Chemical Physics, vol. 111, no. 8, pages 3365–3376, 1999. (Cited on page 87.)

[Moiseyev 2011] Nimrod Moiseyev. Non-hermitian quantum mechanics. Cambridge

University Press, 2011. (Cited on pages 47, 86.)

[Moler 2003] Cleve Moler and Charles Van Loan. Nineteen Dubious Ways to Com-

pute the Exponential of a Matrix, Twenty-Five Years Later. SIAM Review,

vol. 45, no. 1, pages 3–49, 2003. (Cited on page 20.)

[Müller 2008] Markus Müller and Ingrid Rotter. Exceptional points in open quantum

systems. Journal of Physics A: Mathematical and Theoretical, vol. 41, no. 24,

page 244018, 2008. (Cited on pages 47, 86.)

[Nielsen 2011] Michael A. Nielsen and Isaac L. Chuang. Quantum computation

and quantum information: 10th anniversary edition. Cambridge University

Press, New York, NY, USA, 10th édition, 2011. (Cited on page 3.)
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נדרש  ייחודיות בדינמיקה של מערכות קוונטיות פתוחותהנקודות ה בנושאשלנו  המחקרעל מנת לתאר את 

תכונה זו משקפת את האופי הם מרוכבים.  L-GKSרקע מתמטי: הערכים העצמיים של היוצר של משוואת 

ערכים מסוימים של הפרמטרים המגדירים יוצר זה, מתקבלים ניוונים לא  הדיסיפטיבי של הדינמיקה. עבור

(. בנקודות אלה המטריצה המייצגת את exceptional pointsהרמיטיים, הידועים בכינוי נקודות ייחודיות )

ניתן לזהות את היוצר אינה לכסינה. בדינמיקה הנוצרת במקרה זה מעורבת התנהגות פונקציונלית של פולינום. 

הרמונית. האופי הייחודי יכול לשמש  העל ידי שימוש בשיטות של אינוורסי הדינמיקההייחודי של  האופי

באופן מדויק  להעריךהנקודות הייחודיות באופן מדויק. הצענו להשתמש בתכונה זו על מנת  של איתורלכאמצעי 

 את הפרמטרים הפנימיים של המערכת.

האמפליטודה והתדירות של השדה החיצוני ניתנים לשליטה. פרמטרים אלה מגדירים את מרחב הפרמטרים 

. מצאנו זהחקרנו את הנקודות הייחודיות של היוצר המוגדר במרחב פרמטרים . L-GKSשל היוצר של משוואת 

תמזגות לנקודות חדות שבאופן טיפוסי הנקודות הייחודיות במרחב זה יוצרות עקומות רציפות. עקומות אלה מ

בהן יש ניוון מסדר יותר גבוה. חקרנו את ההשלכות של נקודות אלה על הדינמיקה של משוואות בלוך ושל פליטה 

 ספונטנית של אטומים תחת השפעת לייזר.

, ומשמשת כהמחשה לדינמיקה קוונטית L-GKSמשוואת בלוך היא הדוגמא הפשוטה ביותר למשוואת 

ופיסיקת החלקיקים. ציה קוונטית ממתהודה מגנטית גרעינית לאינפור –מים בפיסיקה דיסיפטיבית בהרבה תחו

למרות זאת, הנקודות הייחודיות של משוואה זו לא נחקרו. חישבנו את העקומות של הנקודות הייחודיות 

התדירות העצמית, מומנט הדיפול  –הפרמטרים של המערכת  הערכה מדויקתלבמערכת זו, והצענו פרוצדורה 

 .שיכוךוקבוע ה

על מנת לתאר באופן מהימן את הפליטה הספונטנית של אטומים  L-GKSניתן להשתמש במשוואת 

, ולכן יש הפרמטרים של מערכות אטומיות כאלה נקבעים על ידי הקבועים הפיסיקליים היסודייםמעוררים. 

של  דיוקפאזה המלווה את הפליטה הספונטנית מגביל את העניין בהערכה מדויקת של הפרמטרים. איבוד ה

הופכת  –שיטת הערכת הפרמטרים באמצעות הנקודות הייחודיות  -נו טכניקות מדידה מקובלות. השיטה הצע

 Sהדגמנו את השיטה הזו בספקטרום האטומי של המעברים בין רמות את החיסרון של הדיסיפציה ליתרון. 

 .Ca40+וביון  bR85באטום  Pלרמות 



 

 תקציר
לסביבה חיצונית. הדינמיקה של המערכת מושפעת מערכות קוונטיות פתוחות מאופיינות על ידי הצימוד 

 של תיאור מצומצם בשיטה. אנחנו משתמשים איבוד פאזהו שיכוךמהצימוד. באופן טיפוסי מתרחשים תהליכי 

כדי לתאר את המערכת העיקרית באופן מפורש ואת הסביבה באופן עקיף, דרך ההשפעה שלה על המערכת. 

התיאור המצומצם של מערכות קוונטיות פתוחות מרקוביות מתאר את הדינמיקה על ידי משוואת המאסטר של 

L-GKS.הידועה גם בשם משוואת לינדבלד , 

כות קוונטיות עם שדות חיצונים מאלצים ממלאת תפקיד מרכזי בהרבה תחומים האינטראקציה של מער

בה השדה החיצוני משמש כדי לבחון את  –בפיסיקה וכימיה. שתי דוגמאות כלליות הן ספקטרוסקופיה 

 למצב הרצוי.שמשתמשת בשדה חיצוני על מנת להביא את המערכת  –המערכת, ובקרה קוהרנטית 

ההשפעה של הסביבה על הדינמיקה של מערכות תחת אילוץ של שדות חיצוניים.  בעבודת גמר זו חקרנו את

 התמקדנו בשתי תופעות:

 ה( קינוםscaling של ) שדה חלש. שלבתכונות הפאזה רק  המשתמשתבקרה של מערכות מרקוביות 

 הנקודות ה( ייחודיותexceptional points) .בדינמיקה של מערכות קוונטיות פתוחות 

 

עולה  בתכונות הפאזה של שדה חלש המשתמשת רקינום של בקרה של מערכות מרקוביות הקהמחקר בנושא 

, ומהווה דוגמה בולטת לתרחיש בו יכולה להופיע השפעה של מתוך התחום של ספקטרוסקופיה מולקולרית

מולקולה, אנרגית השדה הנבלעת  מגיב עםשדה קרינה חלש  כאשרהסביבה של הדינמיקה של מערכת מאולצת. 

שיר בין איבוד הקרינה יבמולקולה משמשת לבחינת רמות האנרגיה של המולקולה. הנחת היסוד היא שיש קשר 

על ידי תורת ההפרעות התלויה בזמן של מערכות  מאושררתשל השדה לבין הספקטרום של המולקולה. הנחה זו 

סופי של שדה המאלץ אינן משפיעות על המצב השל המבודדות. תורת ההפרעות מראה שתכונות הפאזה 

 המערכת.

במערכות פתוחות מתקבלת תמונה שונה. לכן מתעורר סדרה של ניסויים וסימולציות מעלות את ההשערה ש

הצורך לנתח את ההשפעה של תכונות הפאזה של שדות מאלצים חלשים תוך שימוש בפורמליזם של מערכות 

-Lחיש של מעבר אוכלוסיה במערכות פתוחות המתוארות על ידי משוואת פתוחות. לשם כך, בחנו את התר

GKSו שמעבר נ. השתמשנו בתורת ההפרעות מסדר שני של משוואה זו כדי לנתח את הדינמיקה. הרא

אינה מושפעת מתכונות הפאזה ש ,של השדה הקורלצי-האוטוהאוכלוסיה תלוי בשדה החיצוני רק דרך פונקציית 

המוביל של ההפרעה, הדינמיקה לא יכולה לתאר תלות של מעבר האוכלוסיה בתכונות  לכן, בסדרשל השדה. 

 הפאזה של שדה חלש. כתוצאה מכך יש להסביר את הניסויים בפורמליזם חלופי.

הדגמנו את התוצאות על ידי סימולציה של מעבר אוכלוסיה כתוצאה משדה חלש. השתמשנו בשדה חיצוני 

תכונות ש , שמבטא את זה שלכל רכיב ספקטרלי יש פאזה שונה, כךסיאן עם צ'ירפבעל צורה פונקציונלית של גאו

הראנו שמעבר האוכלוסיה הוא מתכונתי לסדר המוביל של ההפרעה,  הפאזה של השדה מתבטאות בקצב הצ'ירפ.

, שמבטאת במקרה זה כלומר ריבוע של חוזק השדה החיצוני. לעומת זאת, השפעת הצ'ירפ על מעבר האוכלוסיה

 מופיעה רק בסדר הבא של ההפרעה. תכונות הפאזה, תת השפעא



  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 עבודה זו נעשתה בהדרכתו של

 פרופסור רוני קוזלוב



  



 

 

 מערכות של הדינמיקה על הסביבה תהשפע

 פתוחות מאולצות קוונטיות

 
 
 
 
 
 
 
 

 חיבור לשם קבלת תואר דוקטור לפילוסופיה
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