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INTROIDUCTION

Our current understanding of molecular dynamics uses quantum mech-
anics as the basic underlying theory to elucidate thc processes involved.
Establishing numerical schemes to solve the quantum equations of motion
is crucial for understanding realistic molecular encounters. The intro-
duction of pseudo-spectral methods has been an important step in this
direction. These methods allow an extremely accurate representation of
the action of an operator, usually the Hamiltonian, on a wavefunction:
q~ = fI~p. A solution for the quantum molecular dynamics can be obtained
by recursively applying the elementary mapping step. This recursive appli-
cation of the elementary step, termed the propagator, is the subject of this
review.

The na~:ural application of a propagator is in a time-dependent descrip-
tion of quantum molecular dynamics, where the propagator U(z) maps
the waw~function at time t, ~p(t) to the wavefunction at time
t + ~: 0(t+ ~) = ~(z)0(t). The decomposition into a recursive application
of the elementary step is performed by a polynomial expansion of the
propagator. The introduction of the Chebychev polynomial expansion (l)
first created a propagation scheme that could match the accuracy of the
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146 KOSCOF~

pseudo-spectral elementary mapping step, thus creating a well-balanced
scheme that enables highly accurate molecular dynamical calculations.

The rapid implementation of time-dependent quantum mechanical
methods into molecular dynamics has been behind these developments.
Just a decade ago, time-dependent quantum mechanical methods were an
esoteric field shadowed by more effective time-independent approaches.
Early work by McCullough & Wyatt (2, 2a) used a direct finite differencing
scheme to solve the H + H2 reactive scattering problem. Now, time-depen-
dent methods have advanced to play a major role in elucidating quantum
molecular dynamics, as can be seen in two recent collections of papers (3,
4). In fact, the exponential growth of time-dependent quantum calculations
makes it impossible to cover the wlaole field in a colaerent faslaion. The
attempt in this review is to present only one aspect of it, the role of the
propagation step.

Although the propagation step was initially designed to advance the
quantum wavepacket in time, recent progress has eliminated the dis-
tinction between time-dependent and time-independent applications of
propagators. For example, a propagator-based method has been devel-
oped for reactive scattering (5-10). The method is used to obtain eigen-
values, eigenfunctions (11, 12, 12a) absorption, and Raman spectra (13-15).

The polynomial expansion of the propagator can be viewed as an expan-
sion in the Krylov vectors defined by ~b, = I~I"~, where I~I is the Hamil-
tonian of the system. The most well-known Krylov method is the Lanczos
algorithm (16), introduced into molecular dynamics by Moro & Fried
(17), KOppel et al (18), and Nauts & Wyatt (19, 19a). Park & Light 
have applied the method to propagation in time (21). Since then, other
Krylov-based evolution propagators have been developed (22-24). These
developments have raised the issue of the relation between the Krylov-
based methods and the Chebychev polynomial expansion (13). Recently,
an alternative polynomial expansion based on Newton’s interpolation
formulas has been developed for propagating the Liouville von Neumann
equation (25, 26). These developments make it extremely confusing for 
casual researcher to follow the different approaches and applications;
therefore, a unifying principle has to be identified that can clarify the field.
This review presents an overall perspective on the different types and roles
propagators play in molecular dynamics.

THE ELEMENTARY MAPPING STEP

The starting point of a quantum molecular dynamics study is an effective
scheme to represent the wavefunctions. Within this scheme, the basic
mapping operation generated by an operator 6 has to be defined:
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PROPAGATION METHODS 147

~ = 6~. 2.1.
In the pseudo-spectral approach the vectors ~ and q~ are represented on a
multidimensional grid. The values of the functions at these grid points are
used to generate a global functional base by matching the approximate
solution to the true solution on a set of grid points:

N--I

g~(xj) = ~ a,,g,(xj), 2.2.
n= 0

where xj are tlhe grid points and 9,,(x) constitute the global functional base.
The pseudo-spectral scheme is based on a set of orthogonal expansion
functions g,(x) (27), which allow a direct inversion for the coefficients a,,:

N--I

a, = ~ ~(xj)g,*,(x~). 2.3.
j=0

This means tlhat the expansion coefficients a, are the discrete functional
transform of the function ~. Within the framework of the pseudo-spectral
approach, the action of the operator 6 (i.e. the mapping generated by the
operator, ~b = 6~) is handled effectively. Local operators in coordinate
space, such as the potential, are calculated on the grid points while nonlocal
operators, such as the kinetic energy operator, are calculated in the func-
tional space (27). They are then recast into the same grid points. The
discretization scheme determines the domain of values of the operator I~.
For Hermitian operators, the domain is defined by the set of eigenvalues
of 6. For non-Hermitian operators, the domain is defined by the range of
all possible scalar products:

The use of pseudo-spectral methods is more than a technical improve-
ment on algorithms. An elementary statement can be made that quantum
mechanics is a nonlocal theory. This characteristic has to be reflected in
the methods used to describe the quantum world. The foundation of the
pseud0-spectral methods is, therefore, a global functional base (28); the
nonlocal character of the representation is built into the formulation. The
basic attributes of quantum mechanics, such as commutation relations
between conjugate operators, are preserved in the pseudo-spectral descrip-
tion (29). Pseudo-spectral methods (28, 30-32) have exponential 
vergence characteristics with respect to the number of grid points or basis
functions. A recent book (33) covers the basic developments of pseudo-
spectral methods in the field of molecular dynamics.

TIME PROPAGATION AND OTHER PROPAGATORS

To model the’, evolution of a physical system, the vector describing the
state of the system has to be followed through time. In quantum mechanics
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148 KOSLOFF

the evolution operator l~(t’, t) maps the state vector at time t to a new
vector at time t’. The evolution operator is constructed in compliance with
the forces that induce the dynamics, which are homogeneous, symmetric
and continuous in time. These requirements imply a group property to the
evolution operator with the form

O(t’, t) = ~(t’-t) 3.1.

The operator I2I is a continuous generator of the evolution, and to fulfill
the symmetry requirement, I2I has to be Hermitian. Aside from this require-
ment, the operator I2I is unrestricted. The operator I21 is customarily identi-
fied with the Hamiltonian of the system, which means that its expectation
value becomes the energy. From this analysis, one concludes that the stage
on which the dynamical events are observed is the time-energy phase space.
Time is interpreted as a parameter, not an operator, of a continuous
dynamical group that describes the evolution operator. From this descrip-
tion, time and energy are apparently not on the same footing. In the
position-momentum phase space, on the other hand, a complete symmetry
exists between position and momentum. The difference in the descriptions
is manifested in the boundary conditions. For the position-momentum
space the boundary values of phase space are imposed. In the time-energy
phase space only an initial boundary condition in time is imposed. The
common element of both phase space descriptions is the use of global
functional descriptions of the complete space. This nonlocal type of
description assurcs the compliance with the uncertainty principles central
to quantum mechanics.

The group property, which is in the foundation of the time-evolution
operator I], can be exploited by subdividing the time interval into
segments:

(_J(t + s) = (J(t)(5(s), 3.2.

where each segment has an individual evolution operator. By repeating
the segmentation process, the individual evolution operator becomes a
function of a very short time interval. Knowing the limit lim,~0 fJ(t) = 
one can linearize fJ(t) for short time intervals. This is the base of a family
of propagation techniques based on a short time expansion. Once a short
time propagator is developed, the global evolution operator can be
reassembled. Similar techniques allow the evolution operator to be
developed for problems with explicit time dependence.

As a generic example, consider the time-dependent Schr0dinger
equation
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i~ ~(t)
at = I:I~b(t),

3.3.

subject to the initial condition ~b(0). When the r.h.s, of the Schr0dinger
equation is examined, it can be identified as the elementary mapping of
the vector q>, generated by the Hamiltonian I2I. The discrete mapping
techniques, which were discussed in the previous section, should solve the
evolution of the system. For a stationary Hamiltonian, the solution of the
time-dependent SchrOdinger equation becomes

O(t) = e-(i/h)~t ~(0). 3.4.

This is the integral version of the time-dependent Schr6dinger equation
and is identical to Equation 3.3. Again comparing the r.h.s, of this integral
form of the SchrOdinger equation, a solution to the evolution operator is
possible if a mapping procedure can be found that calculates the mapping
caused by an exponential function of the Hamiltonian operator. The main
topic of this review, the propagator, is thus a study of effective methods
to calculate the mapping imposed on vectors in Hilbert space generated
by a functiou of an operator. The resulting generalizations will utilize the
same basic ~echniques developed for time evolution for solving other
problems.

FUNCTION OF AN OPERATOR

The elementary mapping step is the basis for generating the mapping of a
functionfof the operator O:

4) = f(6)~’. 4.1.

Using the eigenfunction equation Ou,, = 2,u,, where 2n is the nth eigen-
value of O, the nth projection operator is defined f~,, = ]u,,)(u,,]. Using the
property of the projection operators, f~nl~m : 6nmf~n, the spectral decompo-
sition of the function of the operator in equation (4.1) can be written 

f((~) : Z f(2,,)f~,,. 4.2.
n

This is a key step because now the problem of evaluating a function of an
operator has been transformed to the evaluation of a function of a scalar.
Power expansion and spectral decomposition are the two basic methods
of evaluating a function of an operator. However, the formula must
perform the mapping of ~b caused by the projection operators (b,, 
These operators are closely analogous to the Lagrange interpolation
polynomials.
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150 KOSl~OVV

Because of the importance of these steps, a detailed description follows.
First, consider the operator

(~, = (O-2li), 4.3.

where ~ is the identity operator. This operator has the opposite effect of
the projection operator, because it eliminates the component belonging to
the eigenvector l from 4/. This is now the basic building block. By suc-
cessively applying these operators, one can eliminate all eigenvectors
except the nth one from the vector ~. Assuming, for simplicity, that I~
has nondegenerate eigenvalues, a polynomial representation of the nth
projection operator results:

where ~ is a no~alization term that becomes

X(2n--Xn+~)...(2n--2~)(2 n A0). 4.5.

Inserting Equation 4.4 into Equation 4.2 constitutes a Lagrange inter-
polation procedure for evaluating the function of the operator. The poly-
nomials can be evaluated recursively by successive application of the basic
mapping of the operator in Equation 4.3. The functional evaluation is at
the interpolation points, which match the eigenvalues of O. This exact
reconstruction of Equation 4.2 results from the following property of
interpolation polynomials:

~+ ~(x,) ~ f(x~). 4.6.

Numerically, the Lagrange interpolation procedure has disadvantages
because N different polynomials have to be evaluated and because numeri-
cal instability occurs.

Newtonian Interpolation Polynomials

The problems can be overcome by the use of a Newtonian formulation of
the interpolation polynomial,

f(~) ~ a0 + ~l (~- x0) + a~(~- x~)(z- 
+a3(z--xz)(z--x~)(Z--Xo)+ 4.7.

where remainder coefficients a~ are determined by imposing the inter-
polation condition, thus leading to
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ao -- f[xo] = f(xo)

and

f(xl) --f(xo)
al =f[x0, ")~’1] -- 4.8.

X1 --X0

The rest of the coefficients are calculated by the recursive formula

k--i

f(x~,)--ao- ~ a,(x~-xo)...
/=1

a~ = f[xo, Xl,..., x~] = 4.9.(x~-x0)... (Xk--Xk-,)

The coefficients a~ are called the divided difference coefficients, and a
common symbol for them is a~ =f[xo, x~ ..... x~] (e.g. 34). By using the
results of Equation 4.1, rewriting Equation 4.7, and replacing z with O,
the function of the operatorfbecomes

f((~) = a0i + a, (0 - x0~) + a2(O - x~i)(O 

N--I n--I N--I n--I

+ .... Z a,]-/l~+= Z ,,,]~(l~--x~]), 4.10.
n=0 j=O n=0 j=0

where xn = 2n, and where the expansion coefficients a,, are calculated by
Equations 4.8 and 4.9. This formulation leads to a recursive algorithm
based on the elementary mapping. It also allows the construction of the
operation of a function on an initial vector ¢ once an algorithm for
the mapping ,operation Off exists. This recursive algorithm eliminates
intermediate s~iorage because, unlike Equation 4.2, the need for the eigen-
functions is eliminated.

To summarize, the reformulation from Equation 4.1 to Equation 4.10
results in a finite recursive polynomial expansion of the function f(O)
based on the elementary mapping operation 0~. The main advantage of
the formulation in Equation 4.10 is that it separates the expansion into a
sum of recursive polynomials in O, which is true for any functionf. Only
the expansion .coefficients an depend on the function f through Equations
4.8 and 4.9. However, the algorithm is also based on the solution of the
more difficult problem of finding the set of eigenvalues of the operator O.
Because basic cliagonalization procedures scale as O(N3), where N is the
size of the veclor ~, this approach is prohibitively expensive for realistic
problems.

Equation 4.110 solves the problem of the functional operation f(O)~
only formally because eventually it requires the diagonalization of the
operator ~ in order to find the interpolation points. The next sections are
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152 KOSLOFF

devoted to exploring the possibilities of using approximate interpolation
points that will free the method from the diagonalization step. To study
this possibility, one has to estimate the error introduced by relaxing the
restriction that the interpolation points are equal to the eigenvalues. The
advantage of the Newtonian formulation of the interpolation polynomial
is that it allows a successive addition of new interpolating points. This
feature will be used to obtain an estimation of the error.

Error Analysis

Consider a polynomial with N interpolation points. The error at a par-
ticular point ~ is found by adding ~ as a new interpolation point leading
to an N+ 1 interpolation polynomial. Then the error at the point ~ of the
Nth polynomial is equal to the added term:

N--1

error (¢) fi x1, x:,..., xn ,..., XN, ~]l-- [ (4- - a)) 4.11.
j-0

By analogy, the error in the functional operation f((~) is obtained 
replacing ¢ with

error = f[zl,x2, . . . ,x ...... XN, O] ~_O~ Qj . 4.12.

The strategy of locating the interpolation points is based on minimizing
the error in Equation 4.12. The error term consists of a product of two
terms: the divided difference term and the product term. The divided
difference term depends on the function f(z), and the appearance of the
operator 6 is a setback to the original problem of approximating a func-
tion of an operator. The product term depends only on the interpolation
points; therefore, instead of minimizing Equation 4.12, one can minimize
the term

.t~mi n = Min l~j 4.13.
j=0

with respect to all interpolation points XO,...,XN-1. If the number of
points is larger or equal to the number ofeigenstates of O, the minimization
is equivalent to diagonalizing I~ and choosing the interpolation points to
be the eigenvalues. This equivalence to diagonalization, which should have
been avoided, represents a drawback. Nevertheless, an important lesson
can be learned from the formulation: choosing the interpolation points in
regions where the eigenvalues of ~ reside will effectively improve the
convergence of the polynomial approximation.
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This finding is the unifying principle behind all the propagation
methods. The: various methods differ only in their strategy of minimizing
the error in Equation 4.13. Two approaches to this problem have been
developed depending on the method of calculating the norm in Equation
4.13. The uniform approach attempts to minimize the error with respect to
all vectors in the Hilbert space of the problem (see below). The nonuniform
approach tries to minimize the error with respect to a particular vector 0,
usually chosen to be the initial vector 0(t = 0) (see below).

UNIFORM APPROXIMATION APPROACH

As concluded in the previous section, a detailed knowledge of the positions
of the eigenvalues of ~ completely determines the interpolation poly-
nomial. Because this detailed description is usually prohibitively expensive,
a strategy for ,choosing the interpolation points has to be developed based
on only a partial knowledge of the location of the eigenvalues. The number
of interpolation points, or the order of the polynomial, can be reduced to
considerably less than the number of eigenvalues of ~.

Consider the situation when the operator ~ is hermitian. As a result of
this condition., all eigenvalues are located on the real axis, and the upper
and lower bounds for the eigenvalues 2n can be found for any pseudo-
spectral representation of the elementary mapping step. The strategy is
then to use this partial knowledge to construct a uniform approximation
of the functionfon the interval on the real axis defined by the upper and
lower bounds of the eigenvalues. For the Hamiltonian operator, this will
be the energy axis. The original problem of approximating the operation
of a function of an operator has been transformed to the problem of
finding the best uniform approximation of a scalar function f(z) on a
closed interval ~min ~ Z ~ ~max"

This is a classical problem in numerical analysis: finding a polynomial
approximation so that the maximum error is minimum on this interval.
The most general interpolation polynomial obeys the relation

N+ 1 Zf [¢( )1
f(z) ~. @N(Z)~- ~_ ~ ( Z -- XO) (Z-- X I )( Z-- X2) ....

l).,
5.1,

where x, are sampling points and {, which is a function of z, is also
included in the interval. To minimize the error regardless of its position in
the interval, one can choose the sampling points xn so that the product on
the r.h.s, of Equation 5.1,

E(z) = II (Z- Xo)(Z- X~)(z- . . . II , 5.2.
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is minimum for arbitrary z in the interval. This product is a monomic
polynomial of degree N+ 1. The minimax criteria can now be traced to a
condition on Equation 5.2 that the maximum amplitude of E(z) in the
interval is minimum. The Chebychev polynomial has uniform amplitude
in the interval and therefore it obtains its maximum value N times with
the value 1/2N-I. All other polynomials of the same degree become non-
uniform and therefore have larger maximum amplitudes. As a result they
are inferior to the Chebychev polynomial in reducing the error term E(z).

The conclusion, therefore, is that minimizing the error is equivalent to
choosing the sampling points as the zeros of the N+ 1 Chebychev poly-
nomial. One can then proceed directly by using the Newtonian formulation
of the interpolation polynomial.

Newtonian Polynomial Algorithm
The analytic function f (z) is calculated at a set of support points {zk,f~},
wheref~ = f(zk). The interpolation polynomial is used to approximate the
function f(z):

N

f(z) ~ @u(z) =-- ~ a,~,(z), 5.3.
n=0

where ~,,(z) are the Newtonian polynomials of degree n defined by:

~,(z) ~ ~ (z-z~) 5.4.
j=0

and ~0(z) = 1. The coefficient a, is the nth divided difference coefficient
(35) defined 

ao=.L, a~- 5.5.
Z 1 ~Z0

and, in general for n > 1,

.L-- ~.- ~(z.) 5.6.a. = ~,,(z.)

Because the operator ~ is hermitian, the support points z~ are chosen on
the real axis. For a Chebychev-based interpolation scheme, the points z~
are chosen as the zeros of the N+ 1 Chebychev polynomial, z~ = 2 cos 0~,
which defines points on the interval [-2, 2]. This choice of support interval
ensures stability of the divided difference coefficients. The specific choice
of interval has to be reflected in the spectrum of the operator which should
go through a linear transformation to the [- 2, 2] interval. This is done by
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estimating the domain of eigenvalues of 0, ’~nin, /~max- Then the linear
transformed operator becomes

4 2max__/~min 2, 5.7.

and the operator ~ is used to generate the interpolation polynomials.
The normalization of the operator is compensated by calculating the
function f(z’) in the divided difference coe~cients at the points

f[(kmax -- ~min )(Z + 2)/4 + 2mini.
With this choice the recursion relation becomes

~, = (6~--~0)~o,
and

~+~ = (Os-z~)~. 5.8.
The final result is obtained by accumulating the sum

N--1

6 = ~ a~. 5.9.

The sum is truncated when the residuum a~ I~ ~ II is smaller than a pre-
specified tolerance. In order to stabilize high order polynomial expansions,
the naive choice of sampling points, 0~ = n(2k+ 1)/(N+ 1), is unstable;
therefore, a staggering strategy has to be employed. This leads to the
choice

where n = 0, l ..... N- 1, and the parameter n~t~g determines the amount
of staggering. Maximum staggering is obtained by choosing n~t~g = N/2.
This point is quite amazing because Newton’s interpolation polynomials
are invariant to a permutation of points. On the other hand, numerically
reordering the points completely changes the stability characteristics of
the algorithm.

As an illustration, the evolution operator is considered, with O = ~
and f(z) = e-izt. The number of terms in Equation 5.9 is determined by
the volume of the time-energy phase space, N > AEt/2h, beyond which
the evolution operator displays exponential convergence with respect to
N. A simple monotonic ordering of points allowed a maximum order of
N ~ 30 before instabilities occurred. Simple two-point staggering increases
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the maximum order to N ~ 150. A full staggering of points allows a stable
propagation of polynomial orders larger than N = I00,000. This algorithm
is a typical case of mathematically equivalent algorithms with different
numerical implementations. There are two reasons for the instability in
the Newtonian interpolations: first, the divided difference coefficients can
become very large if the adjacent points are close, and second, the vectors
q~, can overflow the numerical representation. The reordering and stag-
gering are therefore crucial to the application of the method.

Changing the function f only requires recalculating the divided differ-
ence coefficients and resummation of the result. This change also means
that intermediate results are obtainable without much extra numerical
effort. Typical functions includef(z) = -~. These will l ead to apropa-
gator that will relax an initial vector 0 to the ground state (Y Yamashita
& R Kosloff, unpublished data), orf(z) -( -’-~2~, which wil l lea d to a
propagator that relaxes to a stationary vector with the closest eigenvalue
to e (37) (see below). This derivation can be considered a pseudo-spectral
scheme in the time-energy phase space, similar to the discrete variable
representation (DVR) expansion method of Lill et al (32), which is 
for position-momentum phase space.

Uniform Approximation for Non-Herrnitian Operators

Propagators generated from non-Hermitian operators are becoming an
important part of the arsenal of methods in molecular dynamics. For
example, absorbing potentials (38-44) are commonly used to absorb all
outgoing flux with negligible back reflection. The absorbing potentials
push the eigenvalues of the Hamiltonian into the complex negative plane.
A closely related method to the use of complex absorbing potentials is the
method of complex rotation (45, 45a,b), which also results in a complex
valued Hamiltonian operator.

Extending the ideas of the previous section, the first step is to identi~
the region in the complex plane where the eigenvalues of the operator O
can be located. The most simple setup is to assume that all eigenvalues
are located within a circle of radius p in the complex plane. A uniform
polynomial approximation of the region within the circle can be obtained
by placing the interpolation points on the circumference of the disc. For
the sake of symmetry, these points have to be uniformly distributed on
the circle

z, = Z + pe- 2r~4(N/2)- I It,/N, 5.11.

where Z is the center of the circle. Except for the different choice of
sampling points, the algorithm is identical to the Hermitian case of Equa-
tions 5.3-5.9.

www.annualreviews.org/aronline
Annual Reviews

http://www.annualreviews.org/aronline


PROPAGATION METHODS 157

In many cases, the circle used to confine the eigcnvalues of O leaves a
large empty ;area with no eigenvalues. An extreme example is the hermitian
operator considered above where the eigenvalues are located on the real
axis. A solution to this problem is to confine the eigenvalues of ~ by a
polygon. The interpolation points are located on this polygon and are
found by identifying a conformal mapping from the polygon to the disc
(46). The sampling points are found on the circumference of the disc 
symmetry considerations, i.e. Equation 5.11. Then, the inverse transform
determines the position of the points on the polygon. Once the points
are determined, the algorithm proceeds as described above.

A typical example of the use of the nonuniform propagating method is
for the Liouville von Neumann equation (25),

~t - c~p, 5.12.

where fi is the density operator and 2, is the Liouville super-operator.
For an open dissipative system, 2’ has complex eigenvalues. 2, can be
decomposed into ~ = ~+2,D where 2,~ = i[~I, ], which is a super-
operator with purely imaginary eigenvalues. ~¢’D represents the dissipative
part representing the approach to thermal equilibrium (47). The solution
to the Liouville von Neumann equation,

~ = e~’~00, 5.13.

suggests the function f(z) = e:~. The initial vector ~k becomes the density
operator P0- The eigenvalue range on the imaginary axis is determined by
2,u:2AE while the range on the real axis is always negative represented
by ~q~a. The eigenvalue representing equilibrium is located on the real axis.
Applications of the method can be found in Ref. 48.

A more involved application is to solve the reactive scattering problem
with a modified Lippmann-Schwinger equation (49) with absorbing
boundary conditions (50)

I q~C(E)) = ~A"C(E)i~(~I)I~(E)), 5.14.

where ~(~1) is a coordinate dependent operator, and

(~ = (~ + ie- ~) 5.15.

The Fourier integral transforms the equation to the form

~(E) = (ih) - ~ ~ i(E+ i~-H)t/~. 5.16.
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The long time exponential is represented as a product of short time
exponentials:

G(E) = (ih)- 1 [eiE~xt/he -- i(~l --i~)At/h]n dtei&/he- i(~l- ig)t/h, 5.17.
n=0

This equation was the starting point for Auerbach & Leforestier (7) to use
a polynomial expansion,

~(E) ~ (ih)-~ ck(E, At)~((-I-- ig) ~ b~,(E, At)~k,(l:I-- ig),
n=0 k’=0

5.18.

where e~(E, t) = emt/hak(t) and bk = ~’o drei&/ha~(z) and ~ are the recursive
polynomials of Equation 5.4. The coefficients ak were determined by using
Equations 4.8 and 4.9 withf = eizt. The sampling points, which arc located
on a half circle in the complex plane (see Figure 1), were

tcos0~, 0k ~ [0, ~]
z~ = te~°~,

0k ~ [re, 2re]"
5.19.

The method has been applied to the 3-D reactive scattering of D + Hz (8).

0.5

O

-1.5
-I.5 -I 0 I 1.5

Re[z]

Figure 1 Contour map of interpolation accuracy for the function e~’ for t = 20, using the

Newtonian interpolation function with the 64 points defined by Equation 5,19.
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The distinction between uniform and nonuniform approximation is in the
strategy by which the interpolation error is minimized in Equations 4.12
and 4.13. In the nonuniform approximation, the initial vector 0(0) plays
a major role in minimizing the error. The Krylov vectors qS, = O"O(0) can
be considered the primitive base for the mapping of the interpolation
polynomial. As will become clear in this section, many closely related
Krylov space algorithms are based on this idea.

As was discussed in an earlier section, choosing the eigenvalues as
interpolation points is an exact representation. This naturally leads to the
idea that the use of approximate eigenvalues in a truncated space will
create an effective algorithm. One such method is to use the Krylov vectors
~bn up to order N as the base for a truncated representation of 0 leading
to the generalized eigenvalue equation

O:~ = ,¢g~, 6.1.

where (O),m = Q,b, 10l~,bm) = (~b, lq~+,), and (g),,, = (q~,,10m) is 
lap matrix. Once the eigenvalues 2~ are calculated, they are used as inter-
polation points, and the algorithm proceeds as before. Because the order
of the truncated space is much smaller than the order of the representation
of (~, the numerical effort in solving Equation 6.1 is negligible.

Another approach is to minimize the norm of the error vector (ZIZ)
defined by

:~ = R(O)O = f[xo, X l,..., XN, O] (O -- XN~)(O -- N_ 1i) ... (O

6.2.

where the nfinimization is with respect to the sampling points x0, x~,...,
xN. For the general case, evaluating the mapping of the operator f[xo,
x~ ...... ru, O] is extremely difficult because the divided difference
coefficients are rational fractions and not polynomials. To overcome this
difficulty, one can minimize only the norm of the vector produced by the
RHS of Equation 6.2:

~ = l~(z)~ = (O--XNi) (O--XN_ li)... (O--X0i)~, 6.3.

with respect to the N sampling points. To simplify the minimization prob-
lem, Equation 6.3 can be rewritten as a power expansion:

N+ I N+ 1

g = ~(z)9~--- Z deO~0 = ~ de,be, 6.4.
k=0 k~0

where the minimization procedure is now transformed to the d~ coefficients.
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Notice that tiN+ l = 1 because the polynomial in Equation 6.3 in monomic.
The norm of 2 with respect to the d~ coefficients is a quadratic expression:

N N

(ZIZ) --- ~ ~ didj(~i]@)+c°nst. 6.5.
~=0 j=O

The minimalization of the Residuum 6.5 leads to the linear expression for
the d~ vector,

~,d -- b, 6.6.

where the overlap matrix ~ is defined as

S~j = (qS~] q~j), 6.7.

and the b vector becomes

bi = -- (~)il ~)N+I 6.8.

because the polynomial (Equation 6.3) is monomic, du+ ~ = 1. Once the
coefficients d~ are known, solving for the roots of/~(z) gives the desired
optimal interpolation points. A twist on this procedure is obtained if the
primitive Krylov base is orthonormalized by a Gram-Schmidt procedure,
e.g. ~l = ~bl and ~2 = (~2--((~21~1)~1 ¯ The result is a diagonal overlap
matrix g. Then, minimizing the residuum in this functional base .g(z)q~ 
~¢__+0~ e~ leads to e, = 0 for k ~< N+ 1 and eN+ ~ = 1. The interpretation
of this is that the minimum residuum vector is orthogonal to all other
vectors in the Krylov space. As a consequence, the use of an orthonormal
Krylov subspace automatically minimizes the interpolation error. This
means that an alternative procedure for obtaining the interpolation points
is to find the eigenvalues of the Hamiltonian in the truncated orthogonal
Krylov space. This can be done simultaneously during the creation of the
Krylov space by using the procedure

~0 = ~ 6.9.

and

~o = ~o~o+flo~, 6.10.

and generally

0¢. = fl.-,¢.-, +~,,~.+fl.Z.+l, 6.11.

where ~. = (ff.[Ol~,,) and fl,,_~ = (ff.-i I(~l~.). This procedure, which 
due to Lanczos (16), leads to a tridiagonal truncated representation of the
operator (~. The eigenvalues of this truncated space can now be used as
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interpolation points in Equation 5.9. The solution of the characteristic
equation and the location of the zeros of the polynomial /~(z) for the
minimum residuum case coincide. The three methods are mathematically
equivalent but are algorithmically different. They suffer from the drawback
that the recursion is done twice, once for the Krylov space and once for
the Newtonian interpolation. But considering that the interpolation points
do not have to be changed for every time-step, the additional work is not
large. The first algorithm (Equation 6.1) is the most stable numerically.

Instead of minimizing the residuum vector Z in Equation 6.2, a slight
alteration leads to minimizing ~ which is the optimal choice for the func-
tionf(z) l/ z:

1 ^ ^ 1 ^ ^ 1 ^

The algorithm that minimizes ~ is slightly better than the one that min-
imizes Z (22).

An alternative approach that saves the need to calculate the Newtonian
recursion is to use the Krylov vectors directly:

n=0

where the expansion coefficients are those described in Ref. (22). By using
the orthogonal Krylov vectors ~, (20, 21), the function becomes

and the expansion coefficients become

where Z are the matrices that diagonalize ~ in the Krylov subspace of ~
and 2 are the eigenvalues in this subspace. The common exponential
function in the propagator has been replaced with sine and cosine func-
tions, thereby splitting the propagation into real and imaginary com-
ponents (51).

The Krylov-type expansion can be applied with non-Hermitian oper-
ators. One method is to find approximate eigenvalues in a truncated Krylov
space and then use the Newtonian interpolation method (A Bartana 
R Kosloff, unpublished data). As an alternative, the short iterative Arnoldi
method has been developed by Pollard & Friesner (53). It explicitly
addresses the fact that ~ is non-Hermitian and therefore has left and right
eigenfunctions as the recursion is carried out.
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To summarize, there has been a proliferation of Krylov space-based
methods. In practice, the optimal order N of these polynomial expansions
is practically N ~ 5- 12, which is the reason for the generic term SIL, for
a short iterative Lanczos method. The maximum order is limited to about
N = 30 because of numerical instabilities. The source of this instability is
the orthogonalization step. This means that the common use of these
algorithms is quite different from the uniform approximations; they are
usually used for short time propagators.

SPECTRAL REPRESENTATION OF THE UNIFORM
APPROXIMATION

Throughout this review, the time-energy phase space has been treated by
a global functional approach. This means that an algorithm for the func-
tion of an operator can be based on a functional expansion. The functional
expansion approach seeded the original development of the Chebychev
method (1). Because the basic mapping allows only polynomial expan-
sions, an algorithm must be based on one of the known orthogonal poly-
nomials. The Chebychev polynomials are the only ones studied in detail,
although other polynomial expansions have also been tried out (10). Com-
pared to representation in the position-momentum phase space, the func-
tional expansion is considered a spectral approximation, and the point
representation is a pseudo-spectral method. Later in this section, we will
demonstrate that the two approaches are equivalent.

Basic Chebychev Expansion Algorithm

The following is a description of the algorithm. The usual definition of the
Chebychev polynomials is on the interval -1 to 1; therefore, a linear
transformation is applied to the argument z:

Zt
2" -- ~min

= 2 ~ma~ ~mi n 1.

7.1.

An expansion by Chebychev polynomials explicitly becomes

N

f(z) ~ ~ b,T,(z’) 7.2.
n=0

for the function f(z), where T, is the Chebychev polynomial of degree n,
and b, are expansion coefficients defined by

b, 2-3, f~ f(z’)~) -- "~ j_ 1 ~//i ~t. ~ ¯ 7.3.
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Returning now to the problem of approximating ~b = f(O)O, the approxi-
mation is obtained by replacing the argument z’ with the operator O. This
is done in the following steps:

1. Calculating the expansion coefficients b, using Equation 7.3,
2. Applying a linear transformation to the operator O:

Ot ~--- ~,. O--/~min~ __~. 7.4.

3. Using the recursion relation of the Chebychev polynomials to calculate
~., where

~, = {}’ff, 7.5.

and

~.+~ =: 20’~.-- ~n-1- 7.6.

Again, the calculation of the recursion is based on the ability to perform
the discrete mapping caused by the operator O. Two basic operations
are used for the recursion: multiplication {mapping) by an operator on
a vector and an addition of another vector.

4. Accumulating the result while calculating the recursion relation by
multiplying b. by ~. and adding to the previous result:

N

5. Truncating the calculation when the desired accuracy has been
obtained.

It should be :noted that the Chebychev recursion relation, which consumes
most of the numerical effort, is independent of the functionfto be approxi-
mated. This means that many different functions f can be approximated
simultaneously by repeating steps 2, 4, and 5. The uniform nature of the
approximation means the error is independent of the choice of the initial
vector ~.

Generic Examples of the Chebychev Expansion Method

Considering the time-dependent Schr0dinger equation, ih(OO/~t) 
and its focal solution ~(t) e-(i/~)fit~(O), the functionf(z) tobe approxi-
mated is e-~=. Following the steps of the algorithm, the range of energy
AE = Emax-- E~n represented by ~ is estimated. The shift operation causes
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a phase shift in the final wavefunction that can be readjusted by multiplying
~b by the phase factor

@( t) = e(i/h)(AE/2 + Em~.)t. 7.8.

The expansion coefficients b, are calculated from Equation 7.3 to obtain

/AE. t\

and

,, /AE. t\b,, = 2i J.~--)di) n ~ 7.10.

where J, are Bessel functions. The argument of the Bessel function,
AE" t/2h, is related to the volume of the time-energy phase space that is
contained in the problem. The number of terms N needed to converge the
expansion is determined by this volume. This is because of an asymptotic
property of the Bessel function: When the order n becomes larger than the
argument, the Bessel function, J,, decreases exponentially fast (see Figure
2). The Chebychev vectors ~bn are functions of the normalized Hamiltonian
and the initial wavefunction ~b. Therefore intermediate results can be
obtained by calculating another set of coefficients b, and repeating the
resummation step. Figure 2 shows the relation between the number of
terms needed to achieve convergence and the propagated time interval.
The linear relationship is clearly seen going up to very high orders of the
polynomial. To check the limit of the expansion, a propagation for a
time interval of 400 cycles of an oscillator has been tried. The resulting
polynomial expansion was of the order of N = 120,000. The norm energy
and overlap with the initial state all achieved an accuracy of 14 digits. This
behavior is typical of the uniform convergence of the method where all
error indications are of the same order of magnitude.

Figure 3 shows the efficiency ratio defined as the time-energy phase
space volume divided by the number of terms in the expansion needed to

Figure2 Amplitude of the expansion coefficients of a Chebychev polynomial expansion for
the functions e-i:’ (solid line), -z’ (broken line), and 1/z--~o (dashed line) as afunction ofthe
order n. AEt/2h is chosen to be 40, and the point is indicated by the right arrow, Beyond this
point, the expansion coefficients of the real-time propagator decay exponentially. The point
(AEt/2h)~/2 is indicated by the left arrow showing the point where the imaginary time
propagation decays exponentially. Figure 2b shows the same picture where the coefficients
arc displayed in a logarithmic scale. The exponential convergence of the propagators is
clearly shown in comparison to the absence of convergence of the coefficients of the Resolvent.
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Figure 3 The efficiency ratio of the propagator defined as AEt/2Nh, where N is the number
of expansion terms plotted as a function of time. The three lines correspond to 12 digits of
accuracy, 8 digits of accuracy, and 4 digits of accuracy. As time progresses the three lines
reach their asymptotic value of 1. For short time, the efficiency deterioratcs reaching 50%
for a time of 0.1 periods (40 terms).

obtain convergence: r/= (AE" t/2h)/N as a function of time. The efficiency
approaches one for long time propagations. For short time intervals, the
efficiency decreases, which~ means that the overhead of points needed
to obtain a prespecified ~ibcuracy increases. This is the reason that the
Chebychev propagation method is recommended for very long propa-
gation times. As the error is uniformly distributed and can be reduced to
the precision determined by the computer, the Chebychev scheme is a
fast, accurate, and stable method for propagating the time-dependent
SchrOdinger equation. The method is not unitary by definition and because
of the uniform nature of the error distribution deviation from unitarity,
which becomes extremely small, can be used as a check of accuracy. A
vast number of applications in molecular dynamics stress this point (21).
A useful twist in the Chebychev-based propagator is to replace the
exponential function e~z~ with coszt and sinzt (51). This method allows 
separation of the propagation into the real and imaginary parts of the
wavefunction, for example,

N/2
COS (~-Iut)~t~(t) = ~ (-- 1)"b~.dp~./R, 7.11.

n=O
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where ~b~/R al:e obtained by running the Chebychev recurrence (Equation
7.6) only on the real part of if(0). If the initial wave/unction is real, this
method can save half the numerical effort by changing from complex to a
real representation of the wavefunction.

For comparison, the evolution operator can also be obtained by a
Legendre expansion (10). The expansion coefficients become

n /rch A hb~ = (2n÷l)(--1) X/2~J~+~/2( Et/ ), 7.12.

with the property that when N+ 1/2 > AEt/h, the coefficients also decay
exponentially. The vectors ~bn can be calculated by the Legendre recursion
relation, qS0=V, I//1=01// and (]~n+l
(n + 1), and tlhe result is accumulated as in Equation 7.7.

Eigenvalues and Eigenfunctions by Propagation
A small change in the functionf leads to an effective method for obtaining
the ground state and several low lying excited states. Considering the
propagation of a vector ~,:

th = e-~, 7.13.

when z ~ ~, q5 approaches the ground state exponentially fast. A proof
for this is obtained by expanding ~, in the eigenstates of IZI,

e-ft~ = ~’.e-e,,~u,, 7.14.
n

which converges to the ground state at a rate of e-(e,-e0)’. By choosing
f(z) = -z, t he previous algorithm can be modified by performing analytic
continuation of the expansion coefficients to obtain

bo = Io(e)" 7.15.

and

b, =- 2I,(~)" 7.16.

where ~ = AE’r/2 and In are modified Bessel functions, and
N = e+(~/zae+em’o)*. These expansion coefficients converge exponentially
because the modified Bessel functions In decay exponentially when
n > (AE’z/2) l/2. By comparison, this convergence is faster than the
coefficients b~, of Equation 7.10. It should be noticed that Equation 7.13
becomes the ..solution to the diffusion or heat equation when the Hamil-
tonian operal;or is replaced by the appropriate diffusion operator (54).
This means that the same algorithm can be used to solve these equations.
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The scaling of the numerical effort as the square root of time has physical
significance in the diffusion equation, for which the higher eigenvalues lose
their significance as time progresses until at equilibrium only the lowest
eigenvalue is of importance. Consider, for example, obtaining the ground
state of the Harmonic oscillator from a coherent initial state, which means
that the projections on the ground state and first excited state are approxi-
mately equal. The convergence is exponential with the relaxation constant
approximately as predicted from Equation 7.14, for an harmonic oscillator
of frequency 1. Considering that the numerical effort scales as (v)~/2 the
numerical convergence is faster than exponential. The method can be
modified to obtain excited eigenvalues and eigenfunctions by projecting
out the lower eigenfunctions from the vector 4~,, = 13q~n_ ~.

If one is interested in obtaining highly excited states a strategy aiming
directly at them is advantageous. Neuhauser (12) has developed such 
strategy based on a two-step approach. First with an initial guess con-
taining the target energy range, a number of wavepackets are filtered out.
This is done by propagating with a filter function:

f(z) = dte~---~’g(t),
At

7.17.

where g(t) is a filter function chosen as a sum of decaying exponentials.
This propagation filters out a wavefunction that has an energy in the range
E. The procedure is repeated to generate wavefunctions covering an energy
range ZXE. After this step is completed, the generated wavefunctions are
used as a base to represent a truncated Hilbert space spanning the energy
range. Then the eigenfunctions are obtained by diagonalizing the Hamil-
tonian operator in this truncated basis (Equation 6.1). Variations of the
above method come to mind such as using the filtered wavefunction as an
initial vector for a Krylov space expansion.

Adiabatic switching is a different route to obtain eigenfunctions. One
would start from a reference operator I~I0 whose eigenfunctions are known
and then adiabatically turn on a perturbation 9 leading to the final oper-
ator, I2I = IZI0 + 2(tnna~)9. By propagating the initial eigenfunction with 
time-dependent operator, ICI(t)= I210+2(t)9, the final eigenfunction
should result, provided 2(t) is a slowly varying function of time. The
method requires a high quality propagator for time-dependent operators
(see below). A study by Kohen & Tannor (55) has shown disappointing
results because the convergence was very slow. The problem is an intrinsic
property of the adiabatic theorem because the use of an extremely high-
quality propagator did not improve the results. A similar method has been
applied to obtain resonances of an atom in a high electromagnetic field
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when the power was turned on adiabatically. The degeneracy of the res-
onances with the continuum was eliminated by the complex rotation
method (56). A method to obtain eigenvalues through the spectral density
has recently been developed by Zhu et al (57). This development is closely
related to the next subsection.

Resolvent Function

Another important example is the Resolvent operation,

i 1
t, tE) - 2~ E fi 7.18.

Applications include scattering or the calculation of Raman or absorption
spectra. The expansion coefficients can be obtained either directly or by a
Fourier transform of the expansion coefficients of Equation 7.10 by using
the identity of the Fourier transform pair:

I2t J,,(x).~, ~ rc (l-z2)’/2 forlzl < 1¯ n 7.19.

0 forlzl > 1

The coefficients become

2 1 4Tn(c0b0 - bn - 7.20.

where c~ = E-I~/AE, with F~ = l7(E~,~ +Em~n). The coefficients b,, do not
converge when n ~ ~ and, therefore, the sum in Equation 7.7 has to
converge due to the properties of ~,. An alternative expression to Equation
7.20 has been obtained by Hoang et al (9, 9a), which leads 

b,,(E) (2-~,,o)= 7.21.

As an illustration, the power absorbed from a continuous wave (CW) laser
becomes (61)

~(~o) : cob d~ei(~°+°’o)’(Oole (i/h)fL~rlOo), 7.22.

where 00 = fi4,e(0), fi is the transition dipole operator, I21ex is the excited
state Hamiltonian, and B= IEol2/4h. The absorption cross section
becomes proportional to
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7.23.

Applying Equations 7.20 and 7.23, the spectrum becomes

N

n=0
7.24.

where Cn are the Chebychev vectors obtained from Equation 7.6 with the
excited state Hamiltonian and initial wavefunction $(0). Figure 2 com-
pares the expansion coefficients of the three examples. Equation 7.23
converges, provided that the overlap of the Chebychev vectors with 0(0)
decays fast enough as is typical of a photodissociation spectrum. Com-
paring the polynomial expansions for the evolution operator and the
Resolvent operator, the convergence of the evolution operator is generally
found to be faster. The mathematical reason is the singularity in the
Resolvent function compared to the analytic properties of the function
f (z) = iz’.

Correlation Functions

The one time correlation function (ff(0)l¢(t)) and its Fourier transform
~ dte-i~t(¢(O) l¢(t)) can be calculated by the standard Chebychev methods
(Equation 7.24) because only one wavefunction has to be propagated (13,
14). A two-time correlation function constructed from a product of two
distinct wave packets is more difficult. This type of integral is extremely
useful for many applications such as flux calculations in scattering (58)
and reactive scattering problems. The integral of interest is given by the
following equation:

I(t, R) = )¢*(t-- ~, R)tP(r, 7.25.

where both q~(t) and g(t) are time-dependent wave functions:

tP(.0 = e-(i/h)ftrW(O)

and

X(r) e-(i/~)fir)~(O).

Equation 7.25 then becomes

itI(t, R) = [e-(i/h)ft(t-r)~(O, R)]*e-(i/~)fi~W(O, 
do

7.26.

7.27.
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The two wavepackets using the truncated Chebyehev expansion of the
evolution operator (39) become

~ /AEz\

and

7.28.

The symbols ~bn(R) and On(R) denote the functions obtained from the
Chebychev recursion initiated by tt’ and ~. With this expansion, the time
integral (Equation 7.27) becomes

t AE(t -- z) AEv * 7.29.

A property of the Bessel functions enables replacement of the correlation
integral by an infinite series (35):

f~Jn(x-y)J,,(y)dy = (- -1 )kJn+m+2k+l(X).
k=0

7.30.

Rearranging terms and using Equation 7.30, enables the time-integral
(Equation 7.25) to be represented by the following expression:

I( l, R) = ’,~__, An+m( l)Om( R)* ). 7.31.

The coefficients An+m(t) are defined as

A,+m(t) = (2 - 6,0) (2 -- I~mO ) ~l~(t) /k=~ 0 ( -- 1 )kJn+m l_ 2kH-1 t 

7.32.

For a given value of t, the Bessel series {J,,(AE" t/2h)},~aet/~h exhibits
exponentially rapid decay to zero as n is increased. Therefore, both sums in
Equations 7.31 and 7.32 display exceedingly stable numerical convergence.
The correlation function (W(t)lZ(t)) can be obtained in a similar 
cedure by first propagating one of the wavefunctions to a final time when
no overlap exists and then repeating the above procedure.
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Comparison of Spectral and Pseudo-Spectral Chebychev
Methods
At this point it is appropriate to compare the Chebychev expansion of
Equation 7.7 to the Newtonian interpolation formula of Equation 4.10.
The connection can be worked out from Equation 7.3 by replacing the
analytic integration with a Gauss-Chebychev quadrature of order N:

g, ~ - ~ f(z,)T,,(x,). 7.33.
7~ l=0

The quadrature points xt are the zeros of the Chebychev polynomial of
degree N+ 1. On inserting Equation 7.33 into the Chebychev expansion
(Equation 7.7), one finds that the Chebychev expansion becomes a poly-
nomial interpolation formula equivalent to Equation 5.9, where the quad-
rature points are identical to the interpolation points:

N--I 2 N--1 N~I

n=0 ~ n=0 l=0

u-~ 2
~ ~ f(x,)~ T~(x,)T~(x~) =f(x~). 7.34.

/=0

The last equation is due to changing the order of summation and the
Christoffel-Darboux formula (35). Another specific proof for the Cheby-
chev polynomials is based on the substitution
cos nO. From Equation 7.34, one can conclude that the Chebychev expan-
sion of Equation 7.33 is equivalent to a polynomial interpolation when
the sampling ~oints are the zeros of the N+ 1 Chebychev polynomial and
the expansion coe~cients are calculated by using the Gauss-Chebychev
quadrature scheme of order N. The sampling points become the quad-
rature points of the numerical integration. This result means that for
applications where high-order polynomial expansions are used, the New-
tonian pseudo-spectral and the spectral method are equivalent. The advan-
tage of the Newtonian method is that it is more flexible in choosing
functions and interpolation points.

PROPAGATORS FOR EXPLICITLY TIME-
DEPENDENT OPERATORS

In many physical applications, the generating operator is explicitly time
dependent. As an example, consider an atom or a molecule in a high-
intensity laser field (59-61). The Hamiltonian of the system can be con-
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sidered as containing a time-dependent part that specifically depends on
the gauge chosen. Another use of an explicitly time-dependent operation
is in the application of the interaction representation (24, 62). A more
complicated case is in the time-dependent Hartree approach or time-
dependent s.elf-consistent field (TDSCF) methods (63, 63a) because 
resulting coupled equations are nonlinear as well as time dependent. The
common solution for propagation in these explicitly time-dependent prob-
lems is to use very small time steps such that within each step the Hamil-
tonian I:I(t) is almost stationary. Then one can use one of the short time
propagation methods described above. A more precise approach can be
obtained by considering the Magnus (64-66) expansion of the evolution
operator:

(5(t, O) -( i/h) ’dt’fi(t’)- 1~ ’ d r’ dr" [IZI (t’), lq(t ")] + ..,~o 2h2 8,1,

Considering the common application in which the potential is time depen-
dent, the error in using a stationary Hamiltonian can be estimated by
the second term in the Magnus series, thus leading to error ~ (Ol[9(t),
O2]ll~t)At2. This means that these methods are first order with respect to
the time-ordering error (22). Therefore, it is almost always advantageous
to propagate with a partially time-ordered operator defined by (22)

= dt’fi(t’) dt" dt" [I~I(t’), I2I(t")]. 8.2.

Even for nonlinear problems where the estimation of Equation 8.2 is not
explicit, it is advantageous to use the second-order correction by employing
a predictor-corrector approach to estimate the commutator. In a Krylov
propagation method developed explicitly for the interaction represen-
tation, the commutator can be calculated within the Krylov base (62). The
short time methods lend themselves naturally to the use of variable time
steps (23) whose size is adjusted to the commutator error.

In contrast to the local in-time approach, a global method has been
developed to use very high order polynomial expansions (67, 68). This 
done by embedding the Hilbert space of the system in a larger Hilbert space
that contains an extra t’ coordinate. The relation between the embedded
wavefunction and the usual one subject to an initial state W(x, 0) is defined
as

W(x, t) = f~_~o tit" 6(t’-- t)O(x, t’, 8,3,
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where t’ acts like an additional coordinate in the generalized Hilbert
space (69) and ~(x, t’, t) is the solution of the time-dependent Schr6dinger
equation represented by the (t, t’) formalism,

ih~@(x, t’, t) =- ~(x, t’)~(x, t’, 8.4.

The .~. (x, t’) operator is defined for a general time dependent Hamiltonian
by,

~(x, t’) = (-I(x, t’)-ih~. 8.5.

Pilfer & Levine (70) used the time-ordering operator to give a proof 
Equation 8.3; an alternative simple proof was derived by Peskin & Moiseyev
(67). As Peskin & Moiseyev (67) demonstrated, the fact that ~(x, t’) 
time (i.e. t) independent implies that the time-dependent solution of Equa-
tion 8.4 is given by

qb(x, t’, t) = ~(x, t’, t)W(x, to),

where

~(x, t’, t) = -(i/h)~ug(x, t’)t. 8.6.

Equation 8.6 can be solved by a high-order polynomial propagator with
the Newtonian or spectral method by employing the Hamiltonian (Equa-
tion 8.5) to generate the elementary mapping (68). The derivative in t’ 
be calculated with the Fourier method. The method is able to propagate
explicitly driven systems by very high-order polynomials for extremely
long times. As expected, exponential convergence was obtained. The draw-
back of the method is the extra degree of freedom added to solve the
problem of time ordering. This extra effort is more than compensated by
the added accuracy and efficiency.

DISCUSSION

The step taken in this review to separate the methods from the application
has its drawbacks because the applications usually drive the development.
An important addition to the propagation methods is the ability to solve
nonhomogeneous equations (6). The method has been developed for time-
dependent reactive scattering in which projection operators are used to
separate the asymptotic part from the interaction region. Consider the
nonhomogeneous equation
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9.1.

It can be solved by transforming to the homogeneous form,

0
9.2.

where I~Ig is the generator of the Z motion. In this form, the polynomial
expansions discussed above are applicable.

This review has overlooked an important family of nonpolynomial
propagators, the split operator family. This family splits the exponential
function o1[" an operator into products of the exponentials of non-com-
muting operators: e°,+°z ~ e~’O’e"°2...e°’uO’efluO2, where ~ and /~ are
determined to match the Magnus or Dyson expansion up to a particular
order. The method has been introduced into molecular dynamics by Feit
et al (71) who have developed a second-order version. Higher order ver-
sions have ’.since been developed (72-74, 74a). Because of the limited scope
of this review a full analysis has not been carried out, but considering
high-order versions and their ability to overcome the time ordering
problem (73), these methods do deserve attention. Variants of the split
operator method have been developed, for example, the modified Cayley
method, which is based on the expansions e~°~ ,,~ [1-~01] -~ and
e~°’ ~ [1 +a~O~] (75). Other propagation methods have been used, for
example, the Crank-Nicolson method (2, 2a, 23) or the symplectic method
(76). The c:ommon feature of these methods is a low-order, short-time
approximation of the evolution operator.

An overview of the developments of propagator methods leads to the
conclusion that high-order polynomial approximations are usually
superior. Consider the evolution operator as an example. Subdividing it
into short segments and using short-time, low-order expansions leads to
methods that are bound to accumulate errors. If the method is unitary,
the errors accumulate in the phase of the wavefunction, thus masking the
quantum interference effects. Global propagators with proper stability
considerati,3ns can, on the other hand, exhibit exponential convergence,
thus eliminating the accumulation of errors. At this point in the develop-
ment, the uniform approach has been found to be superior. The reason is
ttaat the nonuniform approaches have stability problems that severely
limit the o:¢der of the expansion. Nonuniform approaches would seem
advantagec, us for problems in which the spectral range of the operator 0
is very large and the initial vector ~, is supported by only a very limited
part of this range. The superiority of the uniform methods is not true for
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all types of propagators. The Lanczos RRGM method (19) is able 
calculate effectively correlation functions such as the survival probability
(~(0)l~(t)> (77-79). In this case, the RRGM method is able to use 
high-order expansion of the order N ~ 2000, thus confirming the finding
that when high-order expansions are used they lead to effective
methods.

Finally, comparing the spectral and pseudo-spectral uniform propa-
gators, they share the same high quality. The advantage of the pseudo-
spectral method is that it is more adaptive to changing the functionfand
the sampling points.

Conclusions

The purpose of this review is to cover an important aspect of quantum
molecular dynamics, i.e. the propagation methods. In many applications,
important insight has been obtained with unoptimal propagators for
the task. But facing the challenge of molecular encounters in their full
multidimensional glory, the representation schemes and the propagation
methods have to be well optimized. One may ask: What are the trends
that lead to optimized methods? In the field of representation, there is a
definite movement to global L2 schemes. Spectral and pseudo-spectral
representation schemes with their exponential convergence are replacing
cruder semilocal representation schemes. Judging from the work covered
in this review, a similar tendency seems to be emerging for propagation
methods. Global methods with high-order polynomial expansions are
superior, in accuracy and efficiency, to low-order short-time propagators.
It seems that the nonlocal characteristic of quantum mechanics has to be
reflected in the approximation schemes and that global functional
representations are required for both the position-momentum phase space
and the time-energy phase space.
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