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Abstract. Scveral novel aspects ol seatlering resonanees are studied. An expres-
siom, walid for a finite box, relating the continoum phase shift with the enerey shifi
and unperturbed level separation is proposed and applied to obtain the resonance
parameters. The ellect ol the resonance on propagating a wavepackel in imaginary
time is studied, [s observed that the resonance strongly aflects the comulants of the
energy disiribution, In paricalar, 8 local minimum of the frst derivative of the
enerey with respect to time {propartional o the second cumuolanty serves 1o estimate
the resonance energy and wavefuncion, Onoe the estimate is known, the antocorre-
lation function is used 1o evaluate the resonance width, Alternatively, 1 new ifemiive
approach is developed that is capable of selectively vielding an arbitrary band of
energy vigenvalues and cipenfunctions on a grid. This method is applicd to give those
enerey Jevels that are of interest for the discrete computation of the resonant phase
shifl, i.e,, those close 10 resenance. Exact (analvtical) and approximate resalts are in
good agreement for a particular separable petential model in one dimension, These

methods can be extended to realistic potentials in higher dimensions.

1. INTRODUCTION

Resonance phenoimena arist in many arcas of chem-
istry and physics. Their characterization is not, how-
ever, unigquely given, As a caveal to Howland’s Razor!
Mo satistactory definition of a resonance can depend
only on the structure of a single operator on an ahstract
Hilbert space,” we would like to add “nor on a single
numerical calculation.™ In this article, we wish 1o
emphasize some new aspects of scallering resonances,
namely the capahility of determining resonance para-
meters through a box discretization of the phase shifi
and through a time-dependent framework.

Time-dependent quantum-mechanical methods have
emerged as one of the major tools for describing and
simulating molecular dynamics.” When implementing
the time-dependent approach upon a grid; a box nor-
malization is usually implied. This can severcly restrict
the general applicability of grid methods for probing
the continuous spectrum and the embedded resonance
states. In particular, it is not obvious how typically
continwum quantities like resonance energies and life-
times can be obiained nor how they will be aflecied by a
finile box normalization. The ability to bridge the pap
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between diserete and continuous representalions is a
challenge,

The transition from the discrele to the continuwous
spectrum has been repeatedly studied for both i
intrinsic concepiual interest and its applications in
quantum and statistical mechanics.® A major focas is
an understanding of the relation between continuum
quantitics and those of the corresponding discrete spec-
trum, Some aspects of this relation have already been
explored in connection with scatlering resonances.”
Iere an alternative view is given,

Ome of the main and older resuits,™
ALE)

i =5

niE) = s

{1.1}
equales the continuum phase shift at a given enerey 1o
the ratio of two discrete spectral quantitics, the per-
turbed level shifl, A, and the free level separation, 4.
This relation was first derived for partial waves with
local and spherically symmetric potentials and in the
limit of an infinite normalization box. (It has been
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proven. however, to be valid in more general cases. ™)
Clearly though, an infinite box cannaol be implemented
upon a grid, In order 1o relax this limitation, we have
seneralized Eq. (1.1). The new expression (see Eq.
{2, 13) below) is valid under less restrictive conditions
(for the particular madel potential used here, the box is
large enough so thatl terms exponentially decreasing
with the lenpth of the box can be neglected), enabling us
i abiain the value of the continuum phase shifl al the
cnergies of the perturbed discrete box levels, This infor-
mation can then be used to calculate resonant coergies
and lifetimes by comparison with paramelrized expres-
sions for the phase shift near resonanec.

In this approach, the position of the pertarbed enerpy
levels 15 a necessary input. While there are several
numerical procedures for determiming the energy levels,
the dynamical prid methods are a natural choice as the
fite Box size is explicitly incorporated. Here a relaxa-
tion method is chosen,® sinee it directly provides hoth
the cigenvalue spectrum and the corresponding wave-
functions. Hence. a direcl comparison with the exacl
conlinuum stationary scattering states can be made to
determine whether the discrete “resonant™ eigenfunc-
tions keep the main feature of the continuum resonant
states, namely their spatial localization in the interac-
tion region, Morcover, by direcuing attention to the
encrey and i1s moments during relaxation, we shall be
able 1o give another independent estimale for the reso-
nance cnergy and an approximate form for the wave-
function. This approximate wavefunclion can then be
propagated in real tme, employing a complex optical
potential” to obtain its autocorrelation function and,
therehy, also another independent estimate lor the
resonance width,

As an initial probe of our generalization of Eq. {1.1)
and of the viability of discrete time-dependent methods
in characterizing resonance states, a model separable
potential, for which analvtical results are known, ™ will
be used,

The article 15 orgamized as follows: Section 2 de-
seribes the model and generalizes Eq. (1.1}, Section 3
provides a review of the relaxation methods, Section 4
compares exact with approximate results, and Section 5
cancludes with a discussion.

2. THF SEPARABLE POTENTIAL
A model separable potential, V= | 2) Fix |, will be
used 1o compare exact with approximate results. For a
particular choice of ¥ 2

a il
#lxh h-‘ eapl —a Lx ) (2.1
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plra L I
el LzJ al+ pt’
all the guantities of interesl, resonance enerpies, lfe-
times, phase shifis, ete., are known analytically.” Note
the normalization, (¥ |):} =1, In the basis set diagona-
lizing the S matrix, there are two eigenstates of the
Hamiltonian for any given positive energy /. One of
them is the antisymmetric combinalion of plane waves:

1

o (2.2)

[explipxfh) - expl — fpxdh)]L
These functions arc also eigenstates of Hy and do not
experience the potential. The corresponding S matrix
elements are equal to oneg, and the phase shift vanishes.
In the svmmetric subspace, malrx clements for the S

matrix and the phase shift # are given by’

o 0K (2.3)
X+ ¥
# = — arccol{ X/ ¥) (2.4)
where we have used the dimensionless variables:
=[PP = 1)+ 2u(PP+3)] Y=40 (235)

with = pla and v= Fymia’. The reflectance co-
efhcient,®

},-'1

— 2.6
x4y’ (2.8)

has in general two peaks, one being at zero coergy (sce
Rell 5 for details). Only the other peak can be asso-
ciated with a resonance in the sense that one hnds,
hesides the maximum of &, a sharp increase of the
phase shift, a pole of the 8 matrix, and an excess density
in the potential region, The resonance peak 1s located at
P=p—14+ v+ 40 forvz 16

In the discrete, hinite box version of the model, where
periodic boundary conditions are imposed at £ L2,
the allowed momenta are given by

B [l
A

X T =10, L L e

(2.7

One should distinguish between the two normahized
possibilities for the y wavefunclion in the potential. 1f
the coordinate representation is chosen, then

Bolx)= EJ”E Ny expl —a|x |/h), (2.8)

while tor the momentum representation



4(13#1J o,
L at-+ pt

alpy= { (2.9)

which indeed correspond to different potentials. (They
do not exactly form a discrete Fourter transform pair.)
However, the differences vanish exponentially with [,
Here the latter representation s chosen as it admits a
simpler ireatment,

The cipenvalues dare the solutions of the eguation

iz, LYy = 171, whene

|
2z L) =4x | = |x:.}-

2.10
z— [ ) )

Afler evaluating this malirix element, the eigenvalue
condition takes the form® (# is considered positive in
the following):

I — PP = | y

- [ : E '}+ P et i = 3y
PiPE4 1] sin®(afi2) §

+ 4 an{!—WE‘J] No=1, (2.11)
where 1L is assumed that positive eigenvalues are to he
determined, Meglecting terms which decrease exponen-
tially with {, the above equation reduces 1o

2V

F{PT’ = I}.'*;HP P 2eol(PYD]) =1, (2.12)

and setting = P49, where P 65 the value of the
momentum satisfying the periodic boundary condition
corresponding to the unperturbed level, Bg, (2.7) we
obtain from the last equation and from Eq, (2.4}

niey = — '.I'—Ir - (2.13)
2

This is our fundamental vesult. 1 relates the continuum
phase shift with the shift between the momenta of the
free and the perturbed states. Equation (1.1} can be
recovered by assuming that ¢ 15 small with respect to P°
(this is even the case at low energics when the hox is
sufficiently large). Then P can be writlen as

i

T
Pnﬂ"

ol a0y

(2.14)

which, when substituted into cot(FH2), vields Eg. (1.1,
A heing the energy level shift and & the free level
separation
2 I
5_h

; 215
mi. ( )

Maote that strictly speaking 4 is the true energy level only
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when [ods very large, since the exacl expression is
By = LR EE) + (P 2m L3 The difference between
Eq. (1.1} and Eq. (2.13) was of course unimportant in
the original derivation of Eq. (1.1} for partial wave
scattering™ since the limit £ — = was formally taken.
However, for our intended application at a finite 1., Eq,
{2.13) is clearly superior {the extension 1o partial waves
and local potentials can be done according to Ref. 5a),
sinee it involves fewer approximations.

For the practical use of Eqg. {2.13) at finite [/, the
cigenvalues have to be found independently. For this
particular model, Eq. {2.11) provides a graphical solu-
tion, the eigenvalues being given by the intersection of
B fh I with vy = 1. The slope at these points also
indicates the overlap between the potential and the
cigenstates (large overlaps occur at the resonance
CRETEIES )

APz, LY :
_{_..._tig;__;__}'.] oV @16

In the graphical solution, we thus have two indicators of
the resonance energy. One is a rapid change in the
dillerence between the free and the perturbed levels

Crelative 1o the free level separation, and the ather the

slope of the function (2,5 (se¢ Fig. 1). But for a general
potential scattering problem, such a graphical solution
need not exist, and an eflicient method for determining
the eigenvalues must be employed.

X THE RELAXATION METHODS
Conventionally, cipenvalues and eigenfunctions are
ohtained by expanding the state ol the svstem in a larpge
basis set and subscquently diagonalizing the Hamilto-
nian matrix in this set, a procedure limited only by the
sive of the basis sel expansion.” Introduction of the
Fourier transform of the long-lime propagated autocor-
relation function of 1he initial state, with the prop-
agated wavelunction™

. e
FE) = [ exp(iELh ) P(0) | ()t

=¥ |2, 1"8(E — E,),

(3.1)

demaonstrated the utility of grid methods for oblaining
the spectrum of cigenvalues, The correspanding eigen-
functions can be recovered by a numerical Fourier
transtorm of the propagated wavelunclion at the calcu-
lated energy eigenvalues, An alternative procedure
hased vpon a direet relazation method on oa grid
{a propagation in imaginary time) has proved to be very
efficient.® As this procedure and several variants are
employed here, they will be briefly described.
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Fig. l. The function represented is piven by v — Q8 for
[{ZFal =L p=1for gy =1, and p=—1 for {1 = — 1
for the case Fy=m =a = |. The |3 energies in the interval
= =4 satisfving GG, = | are eigenvalues ol the Schrod-
inger couation (the first four starting ftom the right actually
seem (o coalesce into two), Two types of eigenvalues can be
distinguished. From the onigin (which is not an cigenvalue of
H), the even eigenvalues are also solutions of the anperturbed
Hamiltonian, Their separation, &, is the [ee level separalion,
The evel shift, A, is piven by the separation belween g given
free level and the next neighbor cigenvalue on the tight (the
lewel shifis are represented by solid lines at ¥ = 1) Note the
clear decrease of the guantily 454 al resopance {see also
Fig. 2a).

Denoting the eigenvectors of 11 by &,, an initial
estimate for the wavelunction can formally be con-
sidered to be expanded in this set

() = X aufhy; (3.2)

where normalization of 'I* determines the expansion
cocflicients, a, — (@, | (0}, The time evolution of W
is then given by

Wity =expl — i TLAR MDY
(3.3)

= ¥ oa,expl — iE 1,

n

Consider now an imaginary lime propagation where
T={f'h.

ity =X a,expl — £,1)d,. (3.4)

Sinee normalization is lost during this relaxation,

(¥ | W) = T |a, | expl — 2E,7), (3.5)

the normalized wavefunction is given by
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and Wit will hencetorth denote this normalized form,
In addition. energy 1s not strictly conserved:

(E(T) = (Wi | 8| e

E [y |','.|"'.I,| expl — E'F".'.'T:I

= y : 3.7
5 la | expl— 2E,1) &)

From Eg. (3.4) one finds that the contribution from
each eigenfunction relaxes to zero at 4 rate proportional
to its cigenvalue, Since the ground state relaxes most
slowly, its contribution to the expansion persists
bevoend the time when the higher eigenvalue terms have
elfectively decaved. Once found, the ground state is
projected out of the MHilbert space. This procedure is
repeated until the desired wavefunclions are obtained.

One cannol fail 1o remark on the formal similarity
between Eg. (3.7) and a canonically averaged cncrgy,
with the denominator of Eq. (3.7) assuming the role of a
partition function, the |a, 2, degencracy factors, and 27
identified with g(1/6T), In fact, consistency can be
shown by *working oul” the thermodynamic connec-
tion." For instance, from the dependence of the aver-
ape cnergy upon 7 (see Eq. (3.8) below), one finds that
8% 18 adeereasing function of £, a result completely in
aceord with the decay of the higher eigenvalue terms
over the ground state during the relaxation process.

We shall variously adapt this relaxation method.
Firstly, so that it i3 capable of giving an estimate of the
continuum resonance energy and a wavepacket strongly
overlapping with the resonant states, without the need
to sequentially determine the wavelunctions of the
intermediate states. Monitoring the autocorrelation
function of this wavepacket allows a determination of
its lifetime, A second modification emplovs the reso-
nanee energy estimate in an algorithm that will con-
verge 1o the box eipenvalues (and cigenfunciions) of
interest,

One of the dominant atiributes of a resonance is a
localization of its wavefunction in the potential region.
In addition to this localization of the exact resonance
state {which here 15 undersiood as the continuum cigen-
state at the resonance energy), nearby continuum eigen-
states are also perturbed by the potential so their wave-
functions, too, have enhanced localizations in the
interaction region and contribute to the resonance
width. Then, if an initial state were chosen which



overlapped significantly with the localized cipenstates,
its formal expansion (Eq. (3.2)) would have dominant
contributions [rom this “widih.” Hence, one would
anticipate that the relaxation behavior of this initial
state would reflect the existence of the resonance,

The foundation for these ideas may be more con-
cretely examined by returning to Eg. (3.7) and ascer-
taining the behavior of the relaxed cnergy as a function
of T, The first derivative,

i)
a1

=—XN{E—{Eyy=—2al, (3.8)
is simply a factor of the variance of the energy (the
second energy cumulant) and a measure of the disper-
sion in energy values, where the relaxation time-depen-
dent probability for the ath level 15 given by

lay, Pexpl—2E,1)
T la, Penpl — 2E,1)

Fl
w

(3.9}

If the above probality distribution were a Gaussian in
£, then itz width would be o However, 1L 1% in-
appropriate in general to make such a Gaussian approx-
imation. Our distribulion is over a weightled sct (via the
expansion cocfficients) of eigenstates and, though it
may be peaked at the resonance coergy for suitably
chosen initial states and values of 1. this is not an a
prion fact. But additional information on the distribu-
tion 15 available from the second tme derivative:
&£y

— = 4{{‘{:"

Ay d
o (Y.

(3.10)
The quantity in brackets (the third cumulant) charac-
terizes the degree of asymmelry (or skewness) of the
distribution where a positive value indicates a positive
asymmetric tail and a negalive value the converse, If
the resonances are well separated and the initial energy
is above the first resonance, the initial distribution will
be skewed 1o higher energies. As the relaxation pro-
gresses, the exponential factor in Eg. (3.9} will com-
pensale this asvmmetry until] the second derivative
vanishes, close 10 the resonance energy.

As to be expected, the fourth moment of the lime-
dependent distribution 15 related to the third partial
derivative:

aiEy
ar?

= —8[{(E —(EN" —3at].  (311)
Here the terms i brackets are commuonly referred to as
the kurtosis of the distribution {the fourlth cumulant)
with positive values indicating a peaked distribution
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and negative values a flat one. The above expressions
can casily be derived from the derivative of the mo-
ments,

"}

S ((EY

E EJI :
ot (EIE"))

(3.12)
and are perhaps even more familiar if recognized as
being cumulants'® of the energy distribution,

An initial slate that overlaps well with the potential
region and has an initial energy above the resonance
value can be propagated in imaginary time until the
point where its underlying distribution becomes sym-
metrical (Eq, (3.8) displaying a local maximum and Eq,
{3.10) vanishing) and is peaked about the resonance
energy (Bg. (3.1 1) negative). Al this point, the real time
behavior af this relaxed wavefunction, ¥ {0), is moni-
tored. The time dependence of the wavefunction is
determined by propagating in time via a Chebychev
polynomial expansion of the evolution operator'™ using
a complex optical potential® The imaginary potential
provides an absorbing boundary, therchy allowing
simulation of evolution in the continuum rather than in
the periodic boundary conditions of the box. From
its autocorrelation function, the lifetime ©, may be
deduced: "

B | WA P=expl — tr). (313

Alternatively, or even in addition to the lifetime, the
imaginary time behavior of (0] can be monitored.
Since an initial estimate is quickly forthcoming for the
resonant energy in the modified relaxation procedure,
an algorithm that will determine just those energy levels
which are relevant for the resonance of interest is highly
desirable. Once the estimate = is known, a new imagi-
nary ume propagation is proposced,

Wir)=exp[ — t{H — )" .00

=Za,exp| — tlE, —2)"lg,,  (3.14)

H
where m is an even integer, which converges to the
cigenstate whose eipenvalue lies closest to z. Additional
levels to be used in Eq. (2.13) can be calculated by
equating # to nearby unperturbed energies. We have
already achieved the desired convergence for cases
where mr = 2.

Since this is a new propapgation, a brief description of
its implementation is warranted. The method is based
upon propagating the time-dependent Schrodinger
equation by a polynomial expansion of the evolution
operator U = exp( — iO¢/h) where the real lime propa-
gation is converted inlo an imaginary one, T = ji/h, We
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have adapted the normal relaxation method (O = Iy
by directly expanding the new propagator, (Fl — 2)*, in
a series of real Chebychey polvnomials, As these poly-
nomials are orthogonal on [~ 1, 1], the domain of
gigenvalues of the propagaior must be renormalized
and shifted;

o — i) - Az
AE?

-
nmrm =

{3.15)

In order lo assure compliance with the interval,
the domain is “overestimated” by sciling AR? =
(K e+ Vol + 2%, with £, and V¥, being the maxi-
mum kinelic and potential energy, réspectively, repre-
sented upon the grid. Then, the evolution of the wave-
function can be approximated as

i
Wie)meapl — AE2UD) Y a (AET 12T — P12 A0,

w0

(3.16)

where T, is the real Chebyehey polynomial and a,, is an
expansion coeflicient.

Information on the distribution and the contri-
butions from the underlving states may thus be found
in the time dependence of the relaxed energy and,
in particular, the resonance energy and widih can be
estimated as shown in the examples provided in
Section 4.3,

4, RESULTS

4.1, The "Discretized” Phase Shift
I this subsection, we shall concentrate on the appli-
cation of Eq. (2.13) to obtain the phase shift and the

resonance parameters. Three cases have been chosen by
varving the parameters delining the interaction, and
cach has been studied for two different hox sizes. Even
far the smallest box studied, the values of the exact and
the approximate phase shift are in excellent agreement,
as depicted in Fig. 2. The degree of accuracy obtained is
perhaps surprising when comparing the potentials of
Fig. 3 with the box sizes,

The resonance parameters, given m Table | (sub-
seripls 3 Lo 5), have been caleulated by fitting the points
at the phase shift jump to the Breit-Wigner expression
for the phase shift (£, Iy two points, one above and
one below o = — /2 for [ = 12.8; K, T the same for

=150, F;, To four points taken from the two box
sizes):

# - arclan { (4.1

.f'}' = H_f.:_ 3

The largest deviation [rom the exact values (£, is the
enerey al the resonance maximum of B and 1) 15 the
width, at half height, of the peak of £, £, and T2 are
the real and imaginary parts of the resonance pole)
corresponds 10 the case v= 1. This 15 not due 10 a
failure in reproducing the phase shift, but to the fact
that the Breit-Wigner parametrization is nol accurale
in 1his case. The reason 15 the existence of other poles of
the § matrix that cannot be neglected here {a detailed
analysis of this phenomenon has been given clse-
where’), For p=1, the two peaks of the reflectance
coefiicient are highly coupled. and thus the halfwidth of
the resonance peak cannot be properly delined (17,/2).
The comparison can, however, be made with the
imaginary part of the resonant pole (/2]

Table 1. Besonanee Enereies and Halfwidihs Caleulated for v = [, v =4, and 2= 8

p=1

(Fa=m =l 0 =10.5)

=¥
(Fy=8m—=a—1)

ped

L.0g2 B30%
(104 (.1 %96
L.Og7 406
00595 01988
065 380
00664 L2167
1.075 8392
00599 01895
10T 8406
{0644 2141
1.079, 1.028, 0.973 050, — —
0.064% 24

Parameter (Fo=m=a=1]
E LILR
ik —
£y 1196
T2 0.2702
£, 1.070
Tyf2 0.3134
E, 1.026
Iy 03134
E 1.059
T2 0.3036
Ey 0,992 0.9%6, 1.086
L2 -
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Fig. 2. The exacl phase shift {in units of 7) vs cnergy, shown
as a continuons line, for the cases Fy=m =a =1 (a), F,=
w1, =05 (b, and V=8, m =g =1 (¢} The solid
diamonds indicate the values obtained from Eq. (2,13} for
{ = 128, and the squares the values for f = 254,

Another point of interest is the comparison between
the continuum resonance eigenstates and the box eigen-
states close to the resonant energy (Fig. 3). Clearly, none
of the hox states reproduces the finer details of the
continuum, but they still remain localized, and the
main featurcs can be distinguished by a proper linear
comhination.
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4.2, The "Discretized” Eigencalues and Waeelimctions

The positions of the perturbed energy levels were
determined by the unmodificd imaginary time relaxa-
tion procedure described in Seclion 3. Examples of the
relaxed wavelunctions for the three cases examined are
shown in Fig, 3 for the smaller box size. In addition Lo
the box “resonant™ state, Le., the one with the larger
overtap with the potential, the two adjacent cigenstates
are also given. In all cases, the box “resonant™ state
averlaps well with the exact continuum stationary scai-
tering state, The case of = ¥ (Fig. Je) evidences a box
size whose “resonant™ eigenfunction greatly overlaps its
continuum counterpart, with an overlap of 0,957, and
i almost coincident with 1L From Fige 2, we see that
this case has a phase shift lying closest {the solid
diamonds denote the smaller box size) to the resonance
value of — w2,
4.3, fmaginary and Real Time Propagations for

Resomance Widihs

Wadifving the relaxation procedure so that all of the
inlervening cigenstates need not be computed enables
us 1o quickly obtain an estimate for the resonance
energy as well as information on the nearby perturbed
conlinuum states attributing to the “resonance width.”
By monitoring the cumulants of the eonergy distribulion
as 4 function of 1 (dertvable from Eqgs. (3.8}, (3. 10), and
(3,110 of an initial state which overlaps with the po-
tential, a Craossian for example, the distribuiion is
pniguely manifested. In the normal method for deter-
mining eigenvalues and eigenfunctions, relaxation pro-
ceeds until the ground state is obtained. The comulan
{variance) in Eqg. (3.8) then mercly exhibils a sum of
exponential decays until the derivative vanishes, at
which point the eigenfunction corresponding to the
ground state is the only term lefl in Eq. (3.6). Without
prodecting out all of the lower eigenstates and choosing
a scmilocalized initial state like a Gaussian, the relaxa-
tion behavior is quite different. Figure 4 exhibits this
behavior for initial states whose energies are 10% and
253% above the resonant value, For the time period
cramined, Fig. 4 shows that the initial distribution at
zero time, though peaked, has the greatest asymmelry
and a large variance. Al the point of a local minimum in
the variance, the distribution has evolved until it 15 st
peaked but now symmetrical. Further evolution of the
distribution continues until a local maximum in the
variance is obtained. Al this pointlhe energy-depen-
dent probability distribution attains its most flattened
state. The major differences between Fig, 4a and 4b are
that the initial distribution has a larger positive tail and
dispersion at 25% excess energy while at 10% the great-
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Fig. 3. Potential, box eipenfunctions, and continuem stationary scattering state for [ = [2.8. Solid lincs: light = potential,
heavy = stationary state; dashed line: eigenfunction below box resonance; dash-dotied line: hox resonance eigenfunction; dotled
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for clarity,
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est averall dispersion and flatness to the distribution is
found (at 1.3 a.u.), These qualitalive statements can be
directly translated into a precise meaning since the
prabability distribution can be caleulated from the
known box cigenstates and the overlap of the initial
wavepacket with each of these states via Egq. (3.0).
Figore 5 shows the distributions [or the initial state,
dispersion minimum, and dispersion maximum corre-
sponding to Fig, 4, The conclusions from Fig, 4 are
exacily borne oul in Fig. 5, especially with respect to the
tails of the distribution and when a symmetrical state is
achieved.

The ability 1o use in fact, rather than just formally as
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Fig, 4. Energy cumulants for v=4 as a Munction of relaxa-
tom  time  Solid  curve:  variance  (second  cumulant),
Eg. {380 — 2); dashed curve: skewness (third cumulant),
Eg. (30008, dotted curve: kurtosis {fourth comudant),
Eq. (301 — 32} a. Initial cnergy 10% above resonant value,
b Initial energy 25% abowve resonant value with dotted line
cumulant reduced by an additional facior of 2, At the points
where the dashed line passes through zero {light solid ling), the
distribation is separated into regions characterized by having a
positive fail, a negative tail, and then again a positive tail,
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zero delineates a peaked distribution from a fla one,
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Fig. 5. Probability distribution as a function of energy for
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tion for the inital state at ¢ =0; dashed line: distribution
when varianoe ¢xhibits a local minimuom; and dotted line:
distribution when variance attaing a local maximum. Initial
cnergy 1% (a) and 25% (b) above resonant value. Note mare
prominent high energy tail in Fig, 5band the greater degres of
himodality in the dolled distribution of Fig. $a.

presumed in Eq. (3.2), an expansion in box eipenstates
with a known probability distribution allows us to show
that the relaxation method can converge a wavepacket
Lo a superpesition dominated by the continuum reso-
nant state and nearby perturbed siates (this is true, as
elaborated upon in the Discussion, since the resonance
imposes a dynamics dominated by local properties in
space}, without the need to project out the lower states.
The low cnergy tails in Fig. 5 show that these states
comprise a negligible contribution, This being the case,
the converged state should be amenable to a determi-
nation of its lifetime and therefore provide another
estimate for the resonance width. Figure 6 portrays the
autocorrelation function of Eq. (3.13) for the three
cases considered here. For the cases v = 4 (Fig. 6a) and
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=4 (Fig. 6c), a pure exponential decay with a single
sinusoidal modulation 15 observed; Lwo slates are
strongly interfering and “beating” with each other."’ As
the case of ¢=§ pave a width approximately 2{0%
higher than the snalytic values, the autocorrelation
function was also obtained lor the box resonant state.
Within the precision of our numerical analysis, the
width was identical to that of the relaxed wavepacket,
As discussed in Section 4.1, the case of v = | (Fig. 6a)is
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Fig. 6. Autocorrclation function (log of the squared overlap)
asa function of time for the cascs v =1 (a), =4 (b}, and p=§
{c). Mote that the latter two cases clearly exhibit a single
sinugoidal modulation due w interference with the resonance
stabe, In Fig, 6o, however, the modulation is large (ihe seoond
recurrcnee is hardly visible) and evidences coupling of the
resonance state with a long=lived minor component.
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richer in structure due 1o the close prosimity of more
than one pole of the 5 matrix. lts avtocorrelation
function evidences a modufation upon a long-lved
component. In Figo 6, the beginning of the second
recurrance is observed on the far end of its autocorrela-
tion function.

The vesults of the varicus time propagations em-
ploved are summarized o Table 1. &, represents the
estimate for the resonance energy obfained via the
madified relaxation procedure for initial states that are
[, 25%, and 50% above the resonant energy, These
values are taken at the local minimum of the energy
variance (Eq. (3.8)) The halfwidths, Ty6, are from the
time dependence of the autocerrelation function of an
initial state taken at the varance minimum. Becaose of
the presence of the low energy terms in the expansion
tEq. £3.6)), the relaxation estimate represents a lower
bound Lo the true resonance encrgy. This 1s also 1o be
expected for svstems containing more than one reso-
nance i they are well separated. The hallwadths are m
good agresment with the analvtic results,

5, DISCUSSI0MN

We have emphasized the characterization of reso-
nances through the box and  lime-dependent ap-
proaches. While the resolution of the methaod 1o deter-
mine the phase shift, Le., the “density™ of states per unit
cnergy available, 15 enhanced by a large box size, the
excellent agreement between approximate and exact
phuse shifts allows mixing of two or more box sizc
results  until the desired resolution is obtained.
Although the model polential 15 one-dimensional, the
methads employved are broadly applicable and do not
suffer from this dimensionality Himit. In particular, the
relaxation procedure 15 routinely used in one, two, and
three dimensions, and cven an imaginary lime propaga-
tion for six degrees of freedom has been accomplished
on a minicomputer.”™ The generality of the schemes
used means that they have applhication to other physical
svstems in addition to those containing resonances, For
instance, the propagator of Eg. (3,16} can directly vield
the cipenstate and eigenvalue for some arbilrarily speci-
fied level (dependent upon the value of 2) of a bound
system. A problem of current active interest, the highly
excited levels of HON, would be a good candidate.

As a final nole in closing, we would like to return to
the challenge of brideing the gap between the discrete
and conlinuous represenlations and offer a resolution.
In addition to directly bridging this gap (a nontrivial
task), c.g., by the developmenl of Eq. (2.13) equating
the continuum phase shift to two discrete spectral
guantities, our time-dependent methods have implic-



ithy done so. To see how this is accomplished, we need
te recall that quantizalion resulls when the wavelune-
tioh 15 subjected to the boundary conditions of the
problem. Examining the waveluncuons of Fig. 3, the
heavy solid line does not satisfy the pericdic boundary
conditions of the box, while the dashed, dotted, and
dash-dotted lines define wavefunctions which do, The
former represents the exact conlinuum stationary scat-
tering state (boundaries at — oo and 4 o), while the
latter three are cigenfunctions of the box with periodic
boundary conditions imposed at — L/2 and - Ls2.
How can one simulate a propagation that satishes
continuum boundary conditions in a discrete caleulas
tion upon g grid? This work presents two ways of doing
s0. Use of a comples optical polential eliminates the
perindic boundary conditions of the box. Then, the
time evolution of a wavefunction initially localized in
the potential region is the continuam evolulion, at least
within the region where the imaginary potential is not
applied. These are the conditions under which the
autocorrelation function (Eg. (3,133 and hence the
resonance widlh were obtained. In addition to explic-
ity changing the boundary conditions of the Hamilto-
nian, one can localize the wavelunction so that it has
negligible amplitude in the boundary region. The
choice of a Gaussian wavepacked viclds a semilocalized
function both in coordinate space and in momentam
space. Although this funclion cannot be strictly con-
fined to a finite volume {e.g., the potential region), the
amplitude out of a volome in phase space exponentially
converges 1o zero with an increase in volume.® This s a
will-known property of 4 Gaussian distribution which
we may restale in the terminolopy of probabulily:
99, 74% of the distribution is to be found within 30 of
its mean. Hence, 1If we center a Gaussian wavepacket
about the potential and choose a bhox size sufficiently
greater than 3o, we have a wavelunction which docs not
“feel” a periodic potential but rather the potential of
the continuum, A similar argument would apply Lo
momentum space. The concept that a confined function
in phase space can be discretely represented with no
loss of either information or accuracy finds its formal
justification n the Whittaker-Kotel nikov=Shannon
sampling theorem.'” This is the underlying basis of our
modified relaxation method for obtaining an estimate
for the resonance energy and a wavepackel converped
o 4 superposilion dominated by the continuom reso-
nant state and nearby perturbed states.

“Adiabatic” molccules that contain resonance states
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even though their potential energy surfaces exhibil no
wells are interesting systems that may demonstrate the
applicability of our methods. Finding these dynamic
resonances it reactive scattering problems and deter-
mining the encrey dependence of the phase shift and
width are natural problems for this approach.
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