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This paper considers the problem of obtaining maximum work from a conservative quantum

system corresponding to a given change in an external parameter in the Hamiltonian. The

example we present is a non-interacting collection of harmonic oscillators with a shared frequency

o which changes from a given initial to a given final value. The example is interesting for its role

in experiments at ultra-low temperatures and for probing finite-time versions of the third law of

thermodynamics. It is also the simplest system displaying quantum friction, which represents loss

mechanisms in any reversible prelude to a thermal process. The example leads to a new type of

availability. It is also the first example of a minimum time for transitions between thermal states

of a thermodynamic system.

Introduction

The concept of Gibbs free energy is familiar to most readers.

The change in free energy is the maximum work that could be

captured from allowing some specified change in a thermo-

dynamic system to take place or the minimum work needed to

make the change happen. The proviso that the change must

happen at constant temperature and pressure is needed. Without

this proviso, the change in a more general quantity called the

availability has this same optimum work characterization.w
The change of availability equals the work extracted in any

reversible process between the initial and final states. If any

dissipation is present, the change in availability is more than the

work extracted; this statement is one form of the second law of

thermodynamics.

This paper describes a quantum control problem where a

totally new kind of availability appears. It is the availability

associated with a specified change in an external parameter in

the Hamiltonian describing the system. Such time dependent

mechanics is perfectly reversible. The work extracted equals

the change in the energy of the system. Yet we find that some

ways of carrying out the change in the external parameter

result in more work extracted than other ways.

Another new feature of our ‘‘reversible’’ availability is that

the time duration of the process plays a crucial role. In fact we

find that there is a minimum time for achieving this maximum

work and without constraining the time, our extension of

availability to this situation becomes meaningless. It has

previously been pointed out in great generality1 that finite

time constraints typically force us to forego some of the

available work from a process. The fact that this applies even

when all processes considered are reversible, goes beyond the

considerations in that paper.

The specific example we treat in this paper is the optimal

control problem of cooling an ensemble of non-interacting

particles in a harmonic potential. The Hamiltonian of this

system is controlled by changing the curvature of the confining

potential by means of an external field. This amounts to

controlling the (shared) frequency o of the oscillators and is

described by the time dependent Hamiltonian Ĥ(o(t)).
Since we are dealing with a conservative mechanical system,

the change in the energy of the system is the work done by the

system. Thus for a given initial state, maximizing the work

done is equivalent to minimizing the final energy of the system.

The minimum value of the final energy is determined by

the value of the von Neumann entropy SVN, which must

necessarily stay constant during our reversible process. There

are many ways to reach the minimum energy subject to this

constraint, the classical example being the quantum adiabatic

process2 in which o is changed infinitesimally slowly. Moving

at finite rates excites parasitic oscillations in our system; a fact

that has been termed quantum friction3,4 and can be attributed

to the Hamiltonian at time t and at time a t not commuting,

[Ĥ(t),Ĥ(t0)] a 0. When the process duration needs to be fast,

we cannot avoid quantum frictional processes leaving some

energy in parasitic oscillations. This is the reason we fail to

capture the full classical availability; some of it is left behind in

such oscillations. Its ‘‘loss’’ owes partly to the fact that the

reversible process we envision is a prelude to a thermal process

and that during thermal processes, the energy in the parasitic

oscillations leaves the system as heat. It turns out, however,

that there exist fast frictionless controls and we find the fastest

such control below: the minimum time for extracting the

maximum work.

While the problem is interesting in its own right, it plays a

pivotal role as the adiabatic branch in a cooling cycle5 in which

the adiabatic branch is followed by a thermal branch. Such

cycles can be used to probe the unattainabilitity of absolute

zero.6 Our results applied to such cycles imply a finite time

version of the third law of thermodynamics. Specifically, they
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imply that as the temperature of the cold bath Tc approaches

zero, the cooling rate must approach zero as T3/2
c .6,7

Our problem is also the first example of another important

but until now unconsidered question for thermodynamics:

What is the minimum time for controlling a system to move

between two thermal states? The question is loaded with

subtlety; thermal equilibrium is traditionally approached only

asymptotically so asking how one can get to another equilibrium

state in minimum time should lead only to paradoxes. Not so

for our problem and the answer hints at possible ways of

attacking the question in general. The minimum time problem

has obvious importance in a number of contexts. As a familiar

example from solid state chemistry, consider the minimum time

problem of inducing a transition from graphite to diamond.

Our calculations below find the first closed form expression

for the minimum time between two thermal states of any

thermodynamic system.

There have been many studies exploring finite time effects

on thermodynamic processes.8–11 The example we solve here

extends our understanding of the finite time third law and of

the minimum time problem. It also introduces a new form of

finite time availability.

The system

Consider an ensemble of non-interacting particles bound by a

shared harmonic potential well. We control the curvature of

the potential o(t). The energy of an individual particle is

represented by the Hamiltonian

Ĥ ¼ 1

2m
P̂
2 þ 1

2
moðtÞ2Q̂2

: ð1Þ

where m is the mass of the particle, and Q̂ and P̂ are the

momentum and position operators. We will assume that the

system is initially in thermal equilibrium

r̂ ¼ 1

Z
e�bĤ: ð2Þ

It then follows that the state of the system at any time during

the process is a generalized Gibbs state of the canonical

form,12–16

r̂ ¼ 1

Z
egâ

2

e�bĤeg
� ây2 ; ð3Þ

where âw and â are the (time dependent) raising and lowering

operators of the harmonic oscillator. Note that this includes

thermal states, which are obtained when g = 0.

The dynamics is generated by the externally driven time

dependent Hamiltonian Ĥ(o(t)). Our description is based on

the Heisenberg picture in which our operators are time

dependent. The equation of motion for an operator Ô of the

working medium is:

dÔðtÞ
dt
¼ i

�h
½ĤðtÞ; ÔðtÞ� þ @ÔðtÞ

@t
: ð4Þ

The canonical state (3) is fully characterized by the fre-

quency o and the expectation values of three time-dependent

operators: Ĥ ¼ 1
2mP̂

2 þ 1
2mo2Q̂

2
, L̂ ¼ 1

2mP̂
2 � 1

2mo2Q̂
2
, and

Ĉ ¼ o
2ðQ̂P̂þ P̂Q̂Þ (the Hamiltonian, the Lagrangian, and a

position-momentum correlation). These three operators form

a Lie algebra and thus completely characterize the time

evolution generated by Ĥ(o(t)) which is an element of this

algebra. Thermal equilibrium (Cf. eqn (2)) is characterized by

hL̂i = hĈi = 0.

Substituting these operators into our equation of motion

(4) and taking expectation values leads to three linear coupled

differential equations, describing the dynamics that we need

to control

_E ¼ _o
o
ðE� LÞ ð5Þ

_L ¼ � _o
o
ðE� LÞ � 2oC ð6Þ

_C ¼ 2oLþ _o
o
C ð7Þ

where we have adopted the notation L = hL̂i and C = hĈi
and switched to E = hĤi to free up the symbol H for our

optimal control Hamiltonian in the sections to follow. To cast

our equations into the form required by optimal control

theory, we augment our dynamical eqns (10)–(12) by intro-

ducing an additional dynamical equation

_o ¼ ou ð8Þ

where u is our control variable and x = (o,E,L,C) are our

state variables. Using this new equation to eliminate _o from

eqns (10)–(12) our dynamical equations are all of the form

_x = (x,u),

_o ¼ f1ðx; uÞ ¼ ou ð9Þ

Ė = f2(x,u) = u(E � L) (10)

_L = f3(x,u) = �u(E � L) � 2oC (11)

Ċ = f4(x,u) = 2oL + uC (12)

as required for the formalism of optimal control.

The functions o(t) achievable using our control, do not

limit the size of _o which means that we will have occasion

to consider discontinuous jumps in o (u = �N). The

eqns (9)–(12) do not apply to such jumps. Rather for a jump

o1 - o2 we must require

E2 ¼
1

2
ðE1 þ L1Þ þ

1

2
ðE1 � L1Þ

o2
2

o2
1

ð13Þ

L2 ¼
1

2
ðE1 þ L1Þ �

1

2
ðE1 � L1Þ

o2
2

o2
1

ð14Þ

C2 ¼ C1
o2

o1
ð15Þ

These equations follow from noting that during the jump Q̂

and P̂ are constant. Thus we can express E = hĤi, L = hL̂i,
and C = hĈi before and after the jump in terms of Q̂ and P̂

and then eliminate Q̂ and P̂ from the resultant equations.
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A special control corresponding to a ‘‘wait’’ condition

_o ¼ u ¼ 0 will play an important part in our discussion below.

For this case the eqns (9)–(12) integrate to

o(t) = o(0) (16)

E(t) = E(0) (17)

L(t) = cos(2ot)L(0) � sin(2ot)C(0) (18)

C(t) = sin(2ot)L(0) + cos(2ot)C(0). (19)

During such waits, the variables L and C oscillate in time with

constant L2 + C2 and with angular frequency 2o. This is the
parasitic oscillation referred to in the introduction.

Since any o(t) represents Hamiltonian dynamics, the

von Neumann entropy of the system is perforce constant.

This entropy is given by6

SVN ¼ ln

ffiffiffiffiffiffiffiffiffiffiffiffi
X� 1

4

r !
þ

ffiffiffiffi
X
p

asinh

ffiffiffiffi
X
p

X� 1
4

 !
ð20Þ

where

X ¼ E2 � L2 � C2

�h2o2
: ð21Þ

We would expect the entropy to be a function of a combination

of E,L,C which is itself a scalar under unitary transformations

induced by the operator set. Such a combination is provided by

X (ref. 17, p. 47). We note that since SVN is a monotonic

function of X, constancy of SVN implies that X must stay

constant.

The minimum energy problem

As noted above, maximizing the work output is equivalent to

minimizing the final energy. An optimal control formulation

of the minimum final energy problem leads to a singular

problem18,19 for which the formalism of optimal control gives

no answer. This can be understood physically since any

trajectory is part of an optimal one. To see this, we begin by

noting that the minimum energy that can be reached by any

control starting from the thermal state (o,E,L,C) = (oi,Ei,0,0)

must have X = E2
i /�h

2o2
i . Since X stays constant, the value of

of sets the value of E
2
f � L2

f � C2
f . It follows that to make Ef as

small as possible, the final state should be another thermal

state, i.e., Lf = Cf = 0. The minimum final energy is E�f ¼
of
oi
Ei

for the thermal state with bf ¼ oi
of
bi. This energy can be reached

by any control that changes the frequency o infinitely slowly.2

Any finite rate control starting from a thermal state moves us

away from such a state as seen by examining the dynamical

eqns (10)–(12) with L = C = 0 but with _oa0. The trick to

reaching the minimum energy is to move back to a state with

L = C = 0 at the final time. There are many ways to do this.

For example,6 we can use the control

uðtÞ ¼ 2 lnðof=oiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p2 þ ½lnðoi=ofÞ�2

q oðtÞ ð22Þ

which can be solved analytically for explicit x(t) and reaches

the desired final state in time

t ¼
ð1� oi=ofÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p2 þ ½logðoi=ofÞ�2

q
2oi logðoi=ofÞ

: ð23Þ

Once we have one such solution, any trajectory can be part of

a trajectory that reaches this final state. For example, we can

simply reverse the trajectory and then follow eqns (22)–(23).

This is no longer true however when we constrain the time,

since then we may not have enough time to reverse the

trajectory or perhaps even to follow the trajectory in

eqns (22)–(23). In fact, once we ask for the minimum time

solution, we get an essentially unique answer. This is described

in the following section.

The minimum time problem

Our optimal control problem is then to minimize the time

t =

Z
f0(x,u)dt =

Z
dt (24)

subject to the constraints represented by the dynamical

eqns (9)–(12), the inequalities omin r o(t) r omax, the initial

state (oi,Ei,0,0), and the final state (of,Ef,0,0). The argument

in the previous section insures that such trajectories exist; here

we seek the minimum time trajectory.

The optimal control Hamiltonian20 is

H ¼
X4
n¼0

lnfnðx; uÞ

¼ l0 þ l1uoþ l2uðE� LÞ � l3ðuðE� LÞ þ 2oCÞ
þ l4ð2oLþ uCÞ ð25Þ

where the l’s are conjugate variables closely related to the

Lagrange multipliers in a Lagrangian formulation. Note that

the optimal control Hamiltonian is linear in the control u. To

emphasize this, we group the terms containing u and find

H= [l1o+ (l2� l3)(E� L)]u+ [l0 + 2o(l4L� l3C)](26)

= su + a (27)

where we have introduced the terms s = s(x,l) and a = a(x,l)
for the coefficients of H viewed as a linear polynomial in our

control u. The Pontryagin maximality principle20 tells us that at

any instant, the value of the control must maximizeH. Thus when

the switching function s is positive, umust be as large as possible

and when s is negative, umust be as small as possible. Since away

from the boundaries set by the inequalities omin r o(t) r omax

the value of u is not constrained, this amounts in our problem to

jumps in o. This can be seen by considering the problem with

|u(t)| r umax and letting umax - N. Such jumps must terminate

on the boundary arcs o(t) = omax or o(t) = omin which can be

used as segments of the optimal trajectory. In addition to jumps

and boundary arcs, the optimal control for such problems can

also have singular branches along which the switching function

s vanishes identically over a time interval. These are characterized

by sðtÞ ¼ _sðtÞ ¼ €sðtÞ ¼ � � � ¼ 0, which usually suffice to deter-

mine the optimal control u*(t) along such arcs. That is not the

case here; the equations that result from setting s and all its

derivatives identically to zero do not determine the control. While
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such problems are known in the optimal control literature,18,19

they are rare. For this problem, however, we can prove directly

that singular branches are never included in the optimal control

which must therefore be of the bang-bang type, jumping between

and waiting at the extreme allowed o’s. The proof is presented in

the appendix, which shows that finite, non-zero u can never be

part of an optimal control.

The number of jumps needed to reach our target state

ðof;
of
oi
Ei; 0; 0Þ turns out to be simply an issue of the number

of degrees of freedom. While we can use a single jump to reach

of, such a jump will put a considerable amount of energy into

the parasitic oscillation, since Lf becomes Eið1�
o2
f

o2
i

Þ=2.
Similarly, two jumps do not suffice. Three jumps, however,

turn out to be enough. Recall that any control must keep the

von Neumann entropy constant and thus effectively reduces

the dimension of our problem by one. Jumping

ðoi; t ¼ 0Þ

+jump

ðo1; t ¼ 0Þ

+wait

ðo1; t ¼ t1Þ

+jump

ðo2; t ¼ t1Þ

+wait

ðo2; t ¼ t1 þ t2Þ

+jump

ðof; t ¼ t1 þ t2Þ

leaves us with two wait times t1 and t2 as adjustable

parameters. Adjusting these times and using the specified value

of of and the constant value of SVN allows us to solve for the

values of t1 and t2 which reach the targetstate. In fact, this

combination allows us to reach the target state in the

minimum time. More jumps give alternative controls for

achieving the same state in the same time, but cannot improve

further on the three jump case. For any values of the

intermediate frequencies o1 and o2, the required values of

t1 and t2 are

t1 ¼
1

2o1
Arccos

2o2
1ðo2

2 þ o2
f Þoi � ðo2

1 þ o2
2Þðo2

1 þ o2
i Þof

ðo2
2 � o2

1Þofðo2
1 � o2

i Þ

� �
ð28Þ

t2 ¼
1

2o2
Arccos

2o2
2ðo2

1 þ o2
i Þof � ðo2

1 þ o2
2Þðo2

2 þ o2
f Þoi

ðo2
1 � o2

2Þoiðo2
2 � o2

f Þ

� �
ð29Þ

The total time t = t1 + t2 is shown plotted in Fig. 1. For the

case of cooling (of o oi), the smaller o1 and the larger o2 are,

the faster the process. The fastest process is obtained in the

limit o1 - 0 and o2 - N.

t��min ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� of=oi

p
ffiffiffiffiffiffiffiffiffiffi
ofoi
p ð30Þ

When o1 and o2 are constrained to lie within the interval

[of,oi], the best we can do is to take o1 = of and o2 = oi.

For this case, the minimum time to reach ðof;E0
of
oi
; 0; 0Þ is

given by

t� ¼ 1

2

1

oi
þ 1

of

� �
Arccos

o2
i þ o2

f

ðoi þ ofÞ2

 !
: ð31Þ

The optimal control works by jumping to the final frequency

and allowing just enough parasitic oscillation (eqns (18)–(19))

that when added to a similarly timed oscillation after a jump

back creates a state that can jump to L = C = 0!

We close by noting that if we let of - 0 in eqn (32), the

time t* - N as t* B o�1/2f . This is the result needed for

the strengthened version of the third law mentioned in the

introduction.

Conclusions

The arguments above presented an example in which the

maximum work that accompanies the change in an external

parameter of a Hamiltonian system has an associated mini-

mum time. If we try to go faster, some of the availability must

be ‘‘left behind’’ as parasitic oscillations. Is the available work

left in parasitic oscillations really lost? If, at the completion of

our process, we let the system equilibrate to a heat bath, the

energy in parasitic oscillations leaves the system as heat. In this

sense it will be lost. The minimum time maximum work

process described above does not leave any energy in parasitic

oscillations. It moves our system to a thermal state. If the

initial state is also thermal and we have at least the minimum

Fig. 1 The total time t to reach of with energy Ef ¼ of
oi
Ei as a function

of the intermediate frequencies o1 and o2. Note that the time is

monotonic in both o1 and o2. The global minimum is at o1 = 0

and o2 = N.
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time needed, the maximum work equals the change in the

classical availability. For shorter times this is not the case and

our availability deviates from the classical.

As a familiar example, consider a cylinder containing a gas

and equipped with a piston. If we decrease the pressure on the

outside of the piston infinitely slowly, we get the reversible

work which equals the change in availability of the gas. If we

drop the pressure instantaneously to its final value, we only

recover a portion of the available work. The remainder shows

up (at least initially) as a parasitic oscillation of the piston

about its equilibrium position. If the piston is frictionless and

the gas inviscid, this oscillation will continue undamped.

Either friction or viscosity would damp the oscillation,

converting the available work to heat. Does there exist a

minimum time control of the external pressure that ends up

capturing all of the available work for the frictionless piston

and inviscid gas? The answer is not known. However, the

example treated in this paper makes an affirmative answer

likely. More generally, we believe that there exist minimum

times for carrying out reversible versions of most thermo-

dynamic processes so as to avoid parasitic oscillations. Our

ensemble of harmonic oscillators is the first example in this

direction.

Besides its characterization as the maximum work that can

be extracted from our system for a given change in its

environment, our availability has the property that it is a

function of the initial state of the system and the initial and

final states of the environment: oi and of. For the initial state

(Ei,Li,Ci) of our system, the availability is

Wmax ¼ Ei � ðEfÞmin ¼ Ei �
of

oi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
i � L2

i � C2
i

q
ð32Þ

Note that when the initial state is thermal (Li = Ci = 0),

this reduces to the classical change in availability of the

system. It comes however with a minimum time; only

processes lasting longer than this minimum time can

capture all of the availability in (32). Finite time adjustments

to availability which must necessarily forego some of the

work due to finite time constraints have been discussed

previously.1 Their realization in a Hamiltonian system is

surprising.

While some previous work has found some relatively

fast ways to achieve the same net effects as a quasistatic

process21,22 our results are the first proof of a minimum time

solution to the transition between two thermal states of a

(quantum) thermodynamic system. Since thermal equilibrium

is something that is only approached asymptotically according

to current dogma, this is a surprising finding. Furthermore, we

believe that we have found the in-principle minimum, i.e.,

there exists no faster control even when additional control

modes are introduced.

The control described here is achievable to a good approxi-

mation and is of some experimental interest23 for cold gases in

optical lattices. The curvature of the periodic potential can

be switched several orders of magnitude faster than the

oscillation period so our control can be realized to a good

approximation. The control is robust, in the sense that

approximate controls approximate the results closely.

Our problem has important implications for our under-

standing of thermodynamics in finite time.8–10 The maximum

work we can extract from our ensemble of oscillators as the

frequency is changed from its initial to its final value is a finite

time conservative availability. It is the work obtained only

along a certain subset of all the (necessarily reversible!)

schedules for changing o(t) from oi to of. It bears on the

strengthened form of the third law and establishes a paradigm

for a new and important thermodynamic question: what is the

minimum time between thermodynamic states of a system. We

believe our results revitalize the thirty-something year old

subject of finite time thermodynamics with new, interesting,

and fundamental questions that show there is much more to

the subject than has met the eye.

Appendix. Proof of optimality

Our proof that all minimal time solutions are of the bang-bang

type is by contradiction. Assume that an optimal time trajectory

uses a twice differentiable control u(t) which does not vanish

identically in the time interval [a,a + t]. We show that we can

replace a small portion of the trajectory with a faster bang-bang

trajectory between the same initial and final states. Thus the

original trajectory could not have been optimal. The proof

proceeds by a direct calculation which needs to be third order to

see the effect. We use the dynamical equations and their

derivatives to construct a series solution to the equations after

a time step t. We then use the initial and final states of this

solution to construct a faster bang-bang solution between the

same states.

We begin by constructing the series solutions for the state

variables. For notational convenience, all unsubscripted

quantities refer to the initial state at time t = a of our small

time step. The series solutions are easily (although laboriously)

constructed by repeated differentiation of both sides of

eqns (9)–(12), and then elimination of all derivatives from

the right hand sides. Evaluating the first three derivatives of

the state functions in this manner, we write down the Taylor

series to third order for these functions.

of = o + [ou]t + 1/2[o(u2 + u0)]t2

+ 1/6[o(u3 + 3uu0 + u00)]t3 (33)

Ef = E + [(E � L)u]t + [1/2((E � L)(2u2 + u0)

+ 2oCu)]t2 + 1/6((E � L)(4u3 + 6uu0 + u00)

+ 4oC(2u2 + u0) + 4o2Lu)]t3 (34)

Lf = L + [(L � L)u � 2oC]t + [1/2((L � E)(2u2 + u0)

� 6oCu � 4o2L)]t2 + 1/6(4(L � E)u3 � 16oCu2

+ 6(L � E)uu0 � 24o2Lu � 8oCu0

+ (L � E)u00 + 4o2Eu + 8o3C)]t3 (35)

We have omitted the Taylor series for Cf since the invariance

of the von Neumann entropy forces the value of C once the

values of the other three state functions have been specified.

Next we consider a bang-bang solution constructed to go

from the same initial state to the same final state. It turns out

that we need to distinguish two cases: (1) uC o 0, and
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(2) uC4 0. For the former, we need the three-jump bang-bang

solutions employed in the manuscript

oðtÞ ¼

o; for t ¼ 0
of; for 0ot � t1
o; for t1otot1 þ t2
of; for t ¼ t1 þ t2;

8>><
>>: ð36Þ

while for the latter we need a one jump solution

oðtÞ ¼ o; for 0 � t � t1
of; for t1ot � t1 þ t2:

�
ð37Þ

Either way, when the eqn (33) is used in eqns (36) or (37), we

end up with expressions for Ef and Lf after the bang-bang

move to the same final frequency of. This expression is in

terms of t1,t2,t, and the initial state and control values.

Equating these to the expressions for Ef and Lf in eqns (34)

and (35) gives two equations for determining t1 and t2 in terms

of the initial state, the value of the control (and its derivatives)

and the duration t of the step. It is then a simple matter of

comparing t1 + t2 to t to determine which step is faster.

Unfortunately, while this program is straightforward

numerically, it bogs down with technical difficulties. If we

expand these equations to first or second order in the small

quantities t1, t2 and t, we find t1 + t2 = t. When we try to

solve using third order expansions, the best symbolic mani-

pulators (MAPLE and MATHEMATICA) cannot solve the

two cubic equations in two unknowns. Changing variables to

t1 = t/2 + e and t2 = t/2 � e helps. In this case the cubic

equation equating the values of Ef is only second order in e. An

explicit solution of this equation for e in terms of the quadratic

formula can then be substituted into the second equation (for

Lf) and all of it expanded to third order in t and t to give a

single cubic equation. Since our goal is to compare t and t, it is
expedient to change variables once again using the substitu-

tion t = t � d. Since we know that d = 0 to second order, it is

then sufficient to expand the resulting cubic to first order in

d and third order in t. For case 1 (uC o 0), this gives

5t3ou(E � L) + 12(2Lot + C + 2t2Cu2 + t2Cu0

+ 2tCu + 6t2oLu � 2o2Ct2 � 2out2E)d = 0 (38)

and solving this to third order in t gives

d ¼ � 5

12

t3ouðE� LÞ
C

: ð39Þ

Similarly for the second case (uC 4 0), the equation we get is

t3ou(E � L) + 12(t2ouE � C + 2t2Cu2 � 2Lot

� t2Cu0 � 2tCu � 5t2oLu + 2o2Ct2)d = 0 (40)

which results in the solution

d ¼ 1

12

t3ouðE� LÞ
C

: ð41Þ

Noting that t, o, and E � L are all positive, we find in either

case that d 4 0. Since d = t � t, we find that the bang-bang

solution proceeds faster between the same two endpoints

thereby completing our proof.
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