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Abstract 

A time dependent quantum mechanical framework is used to examine the dis
sociation dynamics of van der Waals clusters, in particular the Hen - 12 system. The ti me 
dependent approach exploits the time scale separation between the He motion and the 12 
vibration. The formalism used is the Time Dependent Self Consistent Field (TOSCF). In 
this picture, in which the He degrees of freedom are moving in the average field of the 12 
molecule and vice versa, the equations of motion are solved by the Fourier grid method 
which calculates the operation of the operators constituting the Hamiltonian locally. The 
result is a very fast convergence with respect to grid size. The TOSCF approximation is 
tested for the collinear He-12 system by comparing to an exact time dependent propaga
tion. Good results were obtained for low vibrational excitation of the 12 bond. For higher 
excitations the TOSCF approximation could not account for the fast dephasing part of the 
autocorrelation function, nevertheless the long time behavior responsible for the dissocia
tion was represented well. The TOSCF approach was then applied to calculate the disso
ciation of T-shaped and X-shaped Hen-I2 clusters. The basis of this approximation is the 
weak interaction bet\veen the He atoms, and the extra averaging due to increase in the 
number of particles. Results show very small dependence of dissociation rate on cluster 
size in contrast to. an RRKM picture. The symmetry of the He wavefunction to exchange 
is investigated. A. scheme to incorporate part of the correlations responsible for collective 
motion which are missing in the simple TOSCF approach is presented. This scheme is 
based on a projection operator approach and the time dependent variational principle. On 
the basis of symmetry it is predicted that the dissociation rate of a cluster consisting of 
He3 will be faster than a cluster of He 4. 
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L Introduction 
Dissociation of van der Waals clusters has received considerable attention 

both experimentally and theoretically. The introduction of the seeded supersonic beam. in 
combination with new laser spectroscopic techniques, enabled the detailed study of the dis
sociation dynamics of these clusters [I]. These studies of a well-defined isolated system 
inspired considerable theoretical work [1)[2]. The "text book" cluster of Hen-I2, which 
was also one of the first to be produced, is the subject of this study. While this system has 
been studied both classically [2] and quantum mechanically [3], nevertheless it is still a 
source of fundamental questions on the nature of these van der Waals clusters. 

In this work a time dependent quantum mechanical approach is used to eluci
date the following problems: 
I) The relation between the clu<;ter size and dissociation rate. 
2) The role of quantum effects at the low temperatures of the experiment and in particular 
the role played by the symmetry to particle exchange of the Hen part of the wavefunc
tion. 
3) Classical studies [4[[5] have found that the energy transfer is dominated by bottlenecks. 
How does this behavior manifest it<;elf in a quantum regime'? 

The study of van der Waals clusters through a time dependent picture is 
appealing becau<;e of the ability to interpret the dynamical process while following the evo
lution. Moreover the time dependent treatment is directly comparable to classical trajec
tory result<; which allows an easy identification of quantum effects. Numerical time 
dependent techniques have advanced considerably recently, enabling exact quantum 
mechanical detailed studies. The time dependent quantum mechanical method u<;ed in 
this work is the Fourier method [6][7]. This method has fast 'convergence properties and is 
very flexible. Numerical efficiency is obtained becau<;e of the Fast Fourier Transform 
(FFT) algorithm which is well suited for parallel and vector computers. 

The time dependent approach is also the source of a dynamical mean field 
approximation. The Fourier method allows a simple direct implementation of a Time 
Dependent Self Consistent Field (TDSCF) formulation [8]. The time dependent approach 
gives a superior mean field approximation to the static SCF due to the ability to include as 
a time correlation many of the omitted static correlations. This approximation is found to 
be accurate in the study of van der Waals clu<;ters becau<;e of the natural time scale separa
tion between the molecular degrees of freedom and the surrounding rare gas atoms. It is 
also expected that the quality of the approximation should increase with the cluster size 
due to the extra averaging with the increase in the number of cluster atoms. Classical 
and semiclassical TDSCF studies of similar systems have been tried previou'ily [9][10], but 
the validity of these approximations could not be tested directly, therefore a full quantum 
mechanical time dependent study of the collinear dissociation of the He-I? molecule has 
been carried out In that study a direct comparison of the exact and TDSCF-wavefunctions 
was done [l1J. That work proves the validity of the TDSCF approximation for treating 
wan der Waals clu<;ters. This study is directed at understanding the behavior of He clus
ters at low temperature where a quantum picture is necessary. In particular we want to 
shed light on the three fundamental questions posed previou<;ly. 

This paper is divided as follows. Section II describes the u<;e of the Fourier 
method and the development of the TDSCF approximation for collinear He -I2. Section III 
describes the dissociation dynamics of large T-shaped and X-shaped clll<;ters. Section IV 
develops a systematic procedure to include correlations omitted in the simple TDSCf 
approach. Section V summarizes the results. 
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IL The collinear He-I2 as a test of the validity of the TDSCF approximation. 
The dissociation of the collinear He-I2 system is used to demonstrate the 

quality of the time dependent self consistent field approximation for van der Waals clus
ters. This is done by comparing an exact solution of the time dependent SchrMinger equa
tion for the collinear system to the approximate TDSCF approach. 

The starting point of this comparison is the two-dimensional SchrMinger 
equation in atomic unit'>: 

.otjl • 
l- = HtjI (2.1 ) 

at 
subject to the initial condition in which the vibrational bond of I2 is excited. The Hamil
tonian can be written 

H = ~ (P;1 + p;zl + V(1'1,1"2) (2.2) 

using a mass scaled coordinate system for which: r 1 = aR 'H.!-I2 and I" 2. = hR I-I' where: 

h (2.3) 

Examining equation (2.3) one can identify the I" 1 coordinate as predominantly a He 
motion and r2 as a relative 12 motion. 

A direct numerical solution of the SchrBdinger equation is based on a discreti
zation scheme in which all operators constituting the Hamiltonian operators are calculated 
locally. This is done by representing the wavefunction on a grid. In configuration space 
the potential operator is local and therefore it'> operation is just a multiplication of the 
value of the wavefunction at a grid point with the value of the potential at that point The 
kinetic energy operator is calculated locally in momentum space. The transfonnation from 
coordinate space to momentum space is done by a discrete Fast Fourier Transform ( FFT ). 
As a result the classical phase space is discretized by rectangular cells of area h. The 
time propagation operator is expanded in a Chebychev polynomial: 

N 

V(t) = e- iHt = ~an<Pn(- tHeIR) (2.4) 

n 

where <Pn is the complex Chebychev polynomial which is calculated by its recursion rela
tion, an are expansion coefficient'>, and R is the range of eigenvalues of H represented on 
the grid multiplied by t. The details of the method can be found elsewhere [12]. The ini
tial wavefunction was chosen as a product form in the rl and r2 coordinates where, for 
the He degree of freedom, a Morse initial wavefunction was chosen and for the I2 coordi
nate the eigenfunction problem was solved on a one-dimensional grid by a relaxation 
method described previously [J3t This procedure overcame the numerical difficulties of 
calculating high order Morse wavefunctions [14][15]. 
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The TDSCF equations for the collinear He- I2-

The TOSCF idea in quantum mechanics manifest~ itself by the product form 
for the wavefunction: 

(2.5) 

and normalization: 

<<1>1<1» = I <xix> = 1. (2.6) 

The phase convention is chosen such that (J(t) = f <H >dt where <H> is the total 
o 

energy of the system. This convention enables a direct comparison to the exact two-
dimensional propagation. The choice of the r I and r 2 coordinates is critical to the success 
of the TOSCF as well as static SCF methods [16]. The choice of equation (2.3) reflects the 
physical intuition that the He degree of freedom is separated from the I, motion. The 
equations of motion are generated by the Hamiltonian. In order to save sto-rage in a com
puter code, the sum of products form for the interaction potential is used 

(2.7) 

Inserting (2.5) into the Schr5dinger equation (2.1): 

aljJ(rl,r2) a<l>(rl) aX(r2) 
i--x(r2) + i<l>(rl)-- (2.8) 

at at at 
" ... ... i "i 

x(r2)H j (rl)<I>(rj) + <I>(rl)H2(rVx(r2) + LVI (rl)V2 (r2)<I>(rj)X(r2) 

• MUltipling by X (r 2) and integrating on the r 2 variable using the normalization condition 
a 

-<<1>1<1» = 0 and the fact that the r.h.s. is Hermitian one obtains the TOSCF equations: 
at 

a<l>(r I) • SCF 
= HI (r 1)<I>(r I) (2.9) 

at 

and: 

aX(r2) • SCF 
i-- H2 (r 2)x(r 2) 

at 

where: 

H;CF(rl) 

i = I , 2 



TIME DEPENDENT QUANTUM MECHANICAL CALCULATIONS 57 

The equation is solved by constructing a grid for th~ r 1 and r 2 coordinates. On this grid 
the operations of equation (2.9) are calculated. The Hi operator in equation (2.9) is calcu
lated by the Fourier method for one degree of freedom. The second term is the average 
energy of the complementary degree of freedom. The third operation in equation (2.9) is 
a sum of potential terms multiplied by averages of potential terms from the other degree 
of freedom. Summing up these contributions completes the Hamiltonian operation. The 
propagation in time is done simultaneously in both degrees of freedom by the second order 
differencing scheme ( SOD) [6][7]. 

cI>(t+at) :::: cI>(t-at) - 2i adlscP/>(t) (2.10) 

where HSCF is the operator on the r.h.s. of equation (2.9). A similar propagation scheme 
exists for X. Use of the SOD propagating method is employed because the operators of 
equation (2.9) become time dependent and the Chebychev scheme cannot handle the time 
qrdering operation involved. This scheme preserves the norm of both wavefunctions since 
HSCF is Hermitian. The total energy becomes the expectation value 

E = <cI>IHscF<r1)lcI» = <xIHscF<r2)lx> (2.11) 

and is conserved in time. The second order propagation scheme requires two initial condi
tions cI>(O'at) and cI>(l·at). The scheme is therefore started by a second order Runga-Kutta 
propagation. 

Results. 
A typical calculation start" by constructing an initial wavefunction on the grid. 

The initial wavefunction was a product of the ground state of a Morse in the He direction 
and an excited vibrational state in the 12 direction calculated by a relaxation method [13]. 
The potential was a Morse potential in the R He-I and in the R I-I coordinates, the parame
ters were adopted from reference [31 other details of the calculation as well as a more 
extensive discussion of the results can be found in reference [11). The same initial 
wavefunction was propagated by the direct Fourier method with the Chebychev scheme 
and by the TDSCF method. Figure I compares propagation of both schemes for \'=5 . 
v=ll, and v=22 vibrational initial states of 12 by displaying the overlap: 

as a function of time. 

1.00 

0.80 

-;:::: 0.60 

e: ...... 

~ 0.40 
0.00 20.0 

, 
h(t) = 1<\jJ(r1.r2)lcI>(rl)x(r2»I- (2.12) 
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Figure 1: The overlap between the ~CF wavefunction and the exact wavefunction as a function of time for the initial 

vibration of the 12, v=5, v=11, and v=22 
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The overlap criteria for comparison of wavefunctions is a more strict test of the approxi
mation than commonly used average quantaities such as the dissociation rate or average 
energy. 

Lifetimes of the different states can be estimated by the autocorrelation func
tion [17][18]: 

(2.13) 

Figure 2 displays the autocorrelation function as a function of time for both the exact and 
TDSCF wave functions. 
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Figure 2: The autocorrelation function as a function of time for the solid line is the exact result and the da,hed line ;; 

the TDSCF approximation. the initial state is v=22. 

Figure 3 shows the exact vs the TDSCF wavefunction superimposed at 40000 au for \'=5 . 
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Figure 3: A contour plot of the wavefunction on the potential at t=.:IOOOO a.LL ( approximately 1 p.s. ) for v=5. The 

solid line is the exact result and the dotted line is the TDSCF approximation. The vertical direction i; r 1 and the hor· 

izontal direction r 2' The potential is drawn as a dashed line 
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Upon examining the plots it can be concluded that the TDSCF wavefunction compares 
well with the exact evolution. Deviations are found for the 1'=22 IJ initial state. The rea
son is that for this highly excited state part of the wavefunction penetrates into the class i
cally forbidden region. The result is a fast initial dephasing of the wavefunction which is 
not well represented in the TDSCF wave function. The long time behavior manifested by 
the superposition of the 12 vibrations on the He vibrations is represented quite well. 

The success of the TDSCF approximation for the collinear He-Iz is encourag
ing to the use of this approximation for larger c1LL~ters. It is expected that the quality of 
the method should improve due to the extra averaging when more particles are bunched 
around the central 12, 

III. The T -shaped and X-shaped Hen - 12 clusters. 

Experimental evidence suggest~ [1] that the He-12 molecule has a T shape. It 
is speculated that additional He atoms will stay on the same plane demonstrated by the X 
shape of He2-12 displayed in Figure 4. 

The TDSCF equations of motion for the T-shaped molecule are identical to 
equation (2.9). The mass scaling in equation (2.3) is changed to account for the different 
geometry : b =(lhm /'. The He-12 potential is expanded to second order in 
R 3 = R I-I - (R I-I)eq in order to preserve the product form of the potential in equation 
(2.7). 

The equations of motion for the X-shaped c1witer are solved in the set of 
coordinates represented in Figure 4. 

Figure 4: Coordinate set of the X·shaped Hez- 12 cluster. 

Using mass scaled coordinates, 

r1 = a R He1-Iz 

where: 
12 

a = [m 1Cm 2 +2m 3)) 

(m1+m 2+2111 3) 

m 1 = m 2 = m He and m 3 = 111 I' 

(3.1 ) 

b 
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the kinetic energy operator becomes: 

t = ~ (1\2 + pi + I)P1P2 + Pi) (3.2) 

and I) the kinetic energy coupling term is 

[ 
mlm2 j';, 

I) = (2m 3 + m2)(2m 3 + ml) 
(3.3) 

The potential energy is a sum of the I-I potential and the two He-12 potentials. The He-He 
potential is neglected because it is expected to be very small. The TDSCF wavefunction 
for this system becomes: 

(3.4) 

One should notice that the TDSCF wavefunction is symmetric to the exchange of the He 
atoms 1 and 2. Therefore only one TDSCF equations of motion for the He atoms has to be 
solved: 

where: 

and: 

. a<l>(r) 
I--

at 
• SCF 
Hdr ) <I>(r) 

I) • • • 
+ ;-<<I>(r)1 P,(r)1 <I>(r»P,(r) + <<I>(r)IH12(r)I<I>(r» 

• 2 
P, • 
- + V(r) 
2 

(3.5a) 

The equation of motion for the 12 degree of freedom becomes: 

where 

and 

aX(r 3) 
i-

at 
(3.5b) 

H 3(r3) + 2<<I>(r)IH12(r)I<I>(r» 

• j .j /) • 1 

+ 2L<<I>(r)IV12 (r)I<I>(r»V3 (r3) + ;-<<I>(r)IP,(r)I<I>(r»-
I 
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Very similar equations are obtained for larger clusters where the mass scaling and B 
parameter change. For the system under consideration the heavy 12 atoms serve as a kinetic 
energy block similar to the situation in the light heavy light triatomic molecule. To a first 
approximation one can use B = 0 instead of B = 2/131. Using this approximation the main 
difference as a function of clll~ter size comes through the conservation of energy terms 
inherent in the TDSCF equations. The He atoms are only subject to the forces exerted by 
the central 12 and no correlations between the different He atoms is assumed. 

Results. 
Calculations were performed for clll,ter sizes n=l , n=2, and n=4, for \' =23. 

Figure 5 displays the autocorrelation function as a function of time. 

c: o 
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~ 
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time p.s. 

6.00 8.00 

. ') 

Figure 5: 1be autocorrelation function 1 <1/1(1 )11/1(0»1- as a function of time for n=1 and n=4 size clusters. 

The main feature seen in the autocorrelation function is the superposition of the He and 12 
vibrations. The larger amplitude of the He4 cluster is only the result of the larger clll~ter 
size. When examining the autocorrelation functions of an individual He atom very small 
differences in the autocorrelation are found as a function of cluster size. This result 
demonstrates the almost perfect separability between the 12 degree of freedom and the He 
degrees of freedom. One way to picture the problem is to think of the 12 vibrations as a 
time varying force driving the He atoms out almost independently. The 12 frequency is 
much higher than the He frequency with a frequency mismatch of approximately 19/3 and 
the high excitation of the 12 molecule enables it to act as an energy sink. This situation is 
opposed to the situation explored by Brown and Wyatt [19J in which a Morse oscillator 
was driven by a constant frequency comparable to the vibrational spacings. In their study 
bottlenecks to the dissociation were found. Brown and Wyatt reasoned that these 
bottlenecks are I?roduced while the molecule acquires energy and its frequency changes, 
causing a frequency mismatch with the driving frequency. This mismatch in the two fre
quencies has to go through the golden mean which is the most diffIcult irrational number 
to be approximated by a rational product [20]. Classical studies on this system [4-5] also 
found bottleneck-type restrictions in the classical phase space. Considering the evidence 
concerning the quantum calculations [3], which show a monotonic increase in the dissocia
tion rate as a function of the initial vibrational excitation, no evidence for bottlenecks is 
found. 
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IV. Correlations and symmetry. 
The approximation inherent in the TOSCF method is of a separate motion for 

each degree of freedom in an effective time dependent Hamiltonian. Correlations between 
degrees of freedom exist only as time correlations i.e. energy can flow back and forth 
between the individual degrees of freedom. Two types of spatial correlations should be 
considered: He - I, correlations and He - He correlations which are also associated with the 
symmetry to exchange. Although the He-Iz correlations are weak some correlation still 
persist". As a demonstration of this effect one can consider the collinear He- I, molecule in 
the R He-I and R I, coordinates. In these coordinates the TOSCF initial state is ~m eigenstate 

of the TOSCF Hamiltonian. Therefore the TOSCF wavefunction does not dissociate. Exa
mining the exact dynamics one finds that dissociation occurs through a highly correlated 
motion which originates in the soft turning point of the 12. This is an example of a rare 
correlated event which in this choice of coordinates is the only route to dissociation. It is 
therefore desirable to amend the simple TOSCF method by including the important corre
lations without increasing the dimensionality of the calculations. This task can be done by 
adding configurations to the simple product wavefunction. 

The symmetry to exchange manifests it~elf by requiring: that the He 
wavefunction be symmetric to exchange of two He atoms for He4. For He~ this symmetry 
can only manifest itself if the He motion is correlated with other He atoms. Considering 
the He - He correlations two types of interactions can lead to correlations: a kinetic energy 
coupling, equations (3.2)-(3.3), and a potential coupling term which is dominantly an 
excluded volume term which is present in a full 3-D description. The question one wants to 
answer is the influence of symmetry on the dissociation rate. Considering the picture man
ifested by the calculations where the He motion is uncorreJated and the dissociation is 
impulsive, symmetry plays no role. For larger clusters ( n 2: 3 ) excluded volume interac
tions can lead to a correlated He motion. It is expected that this correlated motion should 
resist the 12 driving, resulting in a longer lifetime. An opposite extreme is an RRKlvI pic
ture where phase space has to fill up before dissociation can start. For this case the sym
metry reduces the density of states and therefore increases the dissociation rate. 

A more involved picture can be found for He3 clusters because He3 are fer
mions. Therefore the total wavefunction has to be antisymmetric including also the nuclear 
spin contribution. The situation is in analogy to the electronic structure of the He atom 
where the He3 atoms play the role of the electrons and the I, the role of the positive 
charge. This picture leads to the conclusion that when a third He3 atom is added it can 
only occupy an excited state, and as a result the system is already partially excited, with ~ 
higher dissociation rate. Another kinematic isotopic effect which also enhances the He 
cluster dissociation is that being lighter than He 4, its vibrational frequency is higher by a 
factor of 1.15. This will lead to a more efficient energy transfer from the I, vibration to 
the He motion. One can conclude that the main effects of symmetry are pre~.,ent only for 
larger He clusters. 

The 'addition of configurations to the wavefunction is the most simple way to 
include some correlations. This addition increases the number of coupled equations that 
have to be solved without increasing the dimensionality. The Multi-Configuration TOSCF 
(MC-TOSCF) approach is demonstrated for the symmetric He 4 cluster. A similar approach 
can be u.,ed to include He-I2 correlations. A simple TOSCF approximation is assumed for 
the separation of the 12 motion. 
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A multi-configuration symmetric wavefunction is chosen which has the form 

ljJ(rl,r2,r3) = x(r 3) (N 1<Va(rl)<Va(r2) + N2<Vb(rl)<Vb(rZ) + (4.1) 

N 3( <Va (rl)<Vb (r2) + <Va (rZ)<Vb(r 1) ) ) 

where the X and <V wavefunctions are normalized: 

<xix> = 1 <.1-·1.1-> = B·· '1', '1') ') 

where i , j = a , band N l' N 2 and N 3 are normalization constant~. The indices a 
and b can be interpret~d as channel indices. The choice of the wave functions is related to 
a projection operator P which defines the desired correlation. The projection operator is 
symmetric to particle exchange and operates in the tensor product Hilbert space of the two 
particles: 

(4.2) 

and 

with a similar relation for P2. Defining Q = I - P one obtains from the SchrBdinger 
equation (2.1) the coupled equations 

A aljJ 
iP

at 
A aljJ 

iQ-
at 

The following Hamiltonian is now used: 

PH (p + Q)1jJ 

QH (p + Q)1jJ 

(4.3) 

(4.4) 

where it (rj) is the .:<;ingle particle Hamiltonian of particle i. il(ri) is the kinetic energy 
coupling term, and V(ri) is the potential energy coupling term. Using the time dependent 
variational principle and the norm conservation one obtains the equations of motion for <Va 
and <Vb ( for simplicity the dependence on r 3 is omitted from the equations ). 

= HSCF.I- + iISCF.I-
aa 'l'a ab 'l'b (4.5) 

iISCF.I- + HSCF..k 
bb 'l'b ba 41a 
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where 

and 

• SCF 
Haa 

• SCF 
Hab 

R. KOSLOFF ET AL. 

N 2. • _ •. 
= - -<<Palir'l<h> - <<PaIH'I<Pa> + PH' 

N3 

(4.6) 

+ N1 <<Pblitl<Pa>PHo + <<PbIHol<pb>PHo + N1 <<PbIVI<pa>P" 
N3 N3 

• •• N 2 • 0 -0 
+ <<PbIVI<pb>PV - -<<PaI H l<Pb> <<PbI H l<Pb> 

N3 
N 

- <<Pa I HOI <Pa > <<Pb I it I <Pb> - ~<<Pa I VI <Pb> <<Pb I VI <Pb > 
N3 

N 
- <<Palvl<Pa> <<Pblvl<pb> - _1 <<PaIHill<Pa> <<PbIHOI<Pa> 

N3 
- N 1 

- <<Pa I HOI <Pb>2 - -<<Pa I VI <Pa > <<Ph I VI <Pa > - <<Pa I VI <Ph >2 
N3 

(4.7) 

A similar equation is found for H;;F. Simultaneously with equation (4.5) one solves the 
equations of motion for the terms N 1 _ N 2- and N 3 

aN 1 
i-

at 

(4.8) 

A similar equation exist~ for N 2' N 3 can then be calculated from the total normalization 
condition. 
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The set of equations (4.5)-(4.8) can be readily implemented. Only two one
dimensional partial differential equations (4.5) need be solved. This formalism allows f1exi
blity in the choice of projected states and should prove useful for many different scatter
ing phenomena. 

v. Conclusions. 

This paper presents a framework for calculating the dissociation dynamics of 
van der Waals clu"ters. Considering quantum calculations for large systems with many 
degrees of freedom a mean field approach seems the only alternative. The approach 
adopted here of a TDSCF approximation relies on the physical picture in which a time 
scale separation exist" between the He motion and the 12 degrees of freedom. This basic 
approximation can be amended by including part of the correlations as more configura
tions without increasing the dimensionality of the problem. The procedure is not limited by 
the number of configurations. By a proper choice of projection operators all important 
correlations can be included while still maintaining the feasiblity of the calculation, even 
for relatively large systems. 

From a numerical point of view the TDSCF method saves much computation 
time by decomposing one n -dimensional problem into n I-dimensional problems. For the 
collinear He-I? calculation a reduction of a factor of ten was found. An exact calculation 
for larger clusters would not be feasible on the minicomputer u~ed for this calculation. 
The TDSCF algorithm is also very well suited for parallel computation. By assigning one 
processor to each degree of freedom the processors carry out a lot of computation indepen
dently, with only a very small amount of communication between them. 

The simple TDSCF calculation shows that the dissociation rate depends very 
little on clu"ter size. An impUlsive model of the dissociation therefore results. This is in 
contrast to an RRKM picture which would predict a decrease in the dissociation rate. The 
emerging picture is of a He atom driven out of its well by a periodic fast perturbation. 

Considering the role of sy~metry in He clusters it is expected that different 
dissociation rates can be found for He than He3 for clusters with more than three He 
atoms. 
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