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Quantum mechanical constants of motion which have no classical analogue 
are the source of discrepancy between the onset of chaos in classical 
and quantum dynamical systems. This difference can be measured by using 
objective criterions such as the classical and quantum Kolmogorov en
tropy. This difference is found to the lowest order in h. 

1. INTRODUCTION 

Recent advances in the theory of classical dynamics, particularly 
those concerning the onset of chaos in Hamiltonian systems (1-8), have 
stimulated two very different approaches to understanding the corres
pondence of quantum mechanics. One category of studies is concerned 
with the general relationship between classical and quantum mechanics 
(9-12) the nature of the transition between them, and with the develop
ment of convenient and accurate algorithms for so called semiclassical 
quantization. The second category of studies is related to attempts to 
improve understanding of intermolecular dynamics, in particular the re
lative rates of vibrational relaxation, isomerization, dissociation. In 
this second category the onset of chaos is often used to give theore
tical justification for the use of statistical theories in intermole
cular phenomena. It is usually assumed that the onset of chaos in the 
classical mechanical model, signals the onset of rapid intermolecular 
energy transfer in the corresponding quantum mechanical model. In turn 
this assumption presupposes that dynamical chaos in classical and quan
tum mechanical models of the same system, occur under nearly the same 
conditions, e.g. the nature of excitation and energy are similar, and 
that the existence of chaos in classical mechanics systems implies the 
existence of chaos in the corresponding quantum mechanical system (13-
18). This study on the other hand argues that the onset of chaos in 
classical and quantum mechanics is different and that interference 
effects inherent to quantum dynamics, render it different from classi
cal dynamics. Indeed when a common quantitative measure of chaos is 
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employed, namely the Ko1mogorov entropy (5,6,7,8,20) it is found that 
a bound quantum mechanical system cannot exhibit chaos even when the 
corresponding classical system does. This implies that dynamical pre
dictions derived from classical mechanics must be interpreted with con
siderable care. In the proceeding sections explicit examples are pre
sented where interference effects in quantum mechanics produce. new con
stants of motion with no classical analogue. These new constants of 
motion restrict the quantum motion causing it to be non chaotic. 

2. THE STANDARD MAPPING 

When investigating chaotic dynamics, it is found that dynamical discrete 
mappings exhibit chaotic behavior and that explicit formulas for the 
Ko1mogorov entropy can be obtained. 

Chirikov and coworkers (22-24), have studied the classical and 
quantum dynamics associated with the abstract "standard mapping" de
fined by 

P - P + KsinX 
(1) 

X-X+P x + P + KsinX 

For this mapping there is a critical value of K for which the motion 
becomes chaotic. Numerical investigations find this value to be K 
0.989. This abstract mapping (5) is equivalent to that defined by the 
classical Hamiltonian 

2 
P e 2 2 
---2- - m2 w coseoT(t/T) 
2m2 0 

H 

0T(t/T) = L cos(2TIt/T) 
n=-oo 

1/2 
which describes a pendulum of fundamental frequency w = (gil).,) 
ject to periodic ''kicks'' with period T. The c1assica1°equation of 
motion now reads 

(2) 

sub-

(3) 

Let en and Pen be the values of e and P e just before the n'th "kick". 
Integration of the equation of motion for time T gives 

(4) 
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2 2 2 with the definition Pn = PeT/m~ , K = woT , equations (4) reduce to the 
standard mapping form: 

(5) 

In the limit T -+ 0 for which the time between "kicks" vanishes the evo
lution is regular. As T increases away from zero the motion increasingly 
deviates from that of a pendulum Hamiltonian. For O<K<l the momentum 
variation is bounded with \6P\ = Kl/2, and the motion is confined to 
simple invariant curves. For K>l the simple invariant curves disappear 
and most mapping curves become chaotic point sets. For large K the 
classical motion becomes diffusion like with <p2> = (K2/2)t. For this 
model the Kolmogorov entropy can be calculated (24) and for K » 1 is 
h = ~nK, which is positive. 

The quantum mechanical analogue motion of the same Hamiltonian, is 
strikingly different. Numerical integration of the equation of motion 
reveals no transition to chaos when K exceeds one (22-23). Moreover, 
for certain choice of parameters, the motion becomes periodic. The pro
found difference between the classical and quantum motion can be ex
plained by the introduction of new quantum mechanical constants of 
motion which have no classical analogue. The first of these constants 
is the modulus momentum operator 

-1 A 

C 1 = exp {i h o:P } (6 ) 

where 0: is a constant to be defined later. To check whether Cl is a 
constant of motion one has to prove 

(7) 

Calculating the commutation relation of Cl with any periodic potential 
where period is 2nS 

(8) 

One finds using the identity ~A~B = ~BZA~-[A,B]. For each Fourier com
ponent 

-1 A 

[~ ih o:P, ~ :ikX / S] (9) 

This proves that C is a constant of motion if 0: = S. It can be noted 
that C] is not Hermitian, which means that there is no direct observ
able tnat we can associate with it. Moreover when h -+ 0 or where the 
correspondence to classical mechanics should be, the operator Cl loses 
its meaning. 
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Another quantum mechanical constant of motion is the modulus energy 

A -1 A 

C2 = exp{ih TH} (10) 

which is a time dependent constant of motion. To prove that this operator 
is a constant of motion one can use the formalism of Pfeifer and Levine 
(25) which defines an extended time dependent Hilbert space. In this 
space the energy operator is defined by 

A d 
H = i

dT 
(11) 

Using the commutation relation with the time operator and taking into 
account that the potential is periodic in time the proof that the 
modulus energy is a constant of motion is a repetition of equations 
(7), (8) and (9). 

These two constants of motion severely restrict the quantum evo
lution. Combined together these two constants of motion serve as selec
tion rules which give 

m2E +E 
o n 

(12) 

where ml and m2 are integers and E and P are the initial energy and 
momentum. The meaning of the selec~ion ru~e is that the dynamics is 
periodic or quasiperiodic, depending on the periodicity match of the 
time and space. A periodic solution is possible whenever the periods of 
momentum and energy match 

T (13) 

when n is an integer. 

Otherwise a quasiperiodic solution is obtained where the amplitude 
of the wavepacket is concentrated around the integers which are restric
ted by the selective rule. Because there is no exact match the amplitude 
grows to higher and higher values of energy. Eventually the system will 
obtain infinite energy. 

To conclude this comparison the quantum dynamical evolution is 
quasiperiodic restricted by non classical constants of motion. As a 
consequence the quantum evolution has zero Kolmogorov entropy in con
trast to the classical system. 

3. THE LINEAR MAP 

After considering the previous "standard map" for which the quantum 
evolution was regular, one asks under what conditions does a quantum map 
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become chaotic. The linear map supplies an example where some kind of 
quantum chaos does exist, and there is a close correspondence between 
the quantum and classical map. This mapping is defined by 

P 
+~T qn 11 

P n+l = Pn - TV' (q n+l) 

Now if V(q) 
122 

obtains zwq one 

( 1 
Till ) M = 2 2 

-llW T l-w T 

(14) 

the linear map Xn+l MX n 

(15) 

111 

As can be expected for linear systems, the quantum and classical maps 
are similar where the main difference is that P and q are operators in 
the quantum version. In order to integrate the equations of motion the 
eigenoperators and eigenvalues of M are calculated, 

where (16) 

and 
Q +"1 (1 _ 1 2T2)1/2 
~12 = _1 llW ~ 

Because the map is area preserving Al ·A2 = 1 and the operator N 1112 
is therefore an invariant of motion, representing the area preserving 
property. Writing N explicitly one finds 

where 

N = p2 + w,2q2 

W' 
2 2 

11 W 

(17) 

The motion is periodic for real w' and becomes chaotic quantum mecha
nically and classically when w becomes imaginary and the spectrum of N 
becomes continuous. 

A Th~ dynamics of the map can be analysed by examining the operators 
II and 12 
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(18) 

One finds that the motion is expanding in II and contracting in 12 • Cla
ssically the measure of the degree of stochasticity is obtained from the 
rate by which neighbouring trajectories diverge, which is in this case 
AI. In order to define the Kolmogorov entropy one has to define a com
pact space. This is usually done by implying periodic boundary condi
tions on phase space with the result of 

(19) 

Considering the quantum mapping implying periodic boundary conditions 
will completely change the dynamics to a regular type. This is an example 
of how the non local character of quantum mechanics influences the onset 
of chaos. 

Seeking a quantum measure of stochasticity for the non compact sys
tem consider an initial Gaussian density operator which is diagonal in 
the II representation 

- A 2 
P = exp{X(I 1-a) + y} (20) 

The entropy associated with the measurement of the operator II is now 
considered as a measure of stochasticity 

(21) 

As can be seen this entropy is linear in the time step. Now the measure 
of stochasticity is defined as the entropy increase per time step, which 
for this mapping is: 

(22) 

Which is identical to the classical Kolmogorov entropy and that has a 
few of the properties of the Kolmogorov entropy. 

To conclude this work the differences and similarities between 
classical and quantum systems were examined for model systems. The sig
nificance of these models is similar to the Hopff model of motion on a 
surface with negative curvature everywhere, which serves a model in 
which to compare real dynamical systems. It seems that a wavepacket has 
to spread exponentially in order to reach the onset of quantum chaos. 
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