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1.1 Abstract

We examine the emergence of complexity in the interface between quantum and
classical mechanics. By using the algorithmic complexity of Kolmogorov as our
definition we can explore complexity of a quantum compiler generated by coherent
control. We find that noise on the controls causes the system to collapse to classical-
like generalised coherent states. Thus classical like phenomena emergence due to
its resistance to noise. The traditional route from mechanics to thermodynamical
behaviour emerges from statistical averaging. Recent development has shown that
thermodynamical machines can be constructed from even a small quantum device.
This indicated to a quantum origin to the laws of thermodynamics and finite-time-
thermodynamics. Specifically we study the emergence of the III-law of thermody-
namics in a quantum model of an elementary absorption refrigerator.
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1.2 Introduction

A complex dynamical system is associated with a description which requires a num-
ber of variables comparable to the number of particles. If we accept that quantum
mechanics is the basic theory of matter we are faced with the dilemma of the emer-
gence of dynamical complexity. One of the main pillars of quantum mechanics is
the superposition principle. As a result the theory is completely linear. Dynami-
cal complexity is typically associated with nonlinear phenomena. Complexity can
be quantified as the ratio between the number of variables required to describe the
dynamics of the system to the number of degrees of freedom. Chaotic dynamics is
such an example where this ratio is close to one [1]. Classical mechanics is gener-
ically nonlinear and therefore chaotic dynamics emerges. Typical classical systems
of even a few degrees of freedom can become extremely complex. The complexity
can be associated with positive Kolmogorov entropy [2]. In contrast, quantum me-
chanics is regular. Strictly, closed quantum systems have zero Kolmogorov entropy
[3]. How do these two fundamental theories which address dynamical phenomena
have such striking differences? The issue of the emergence of classical mechanics
from quantum theory is therefore a non-resolved issue despite many years of study.

Figure 1.1 The relation between complexity, the number of particles and temperature in the
physical world. Complexity is measured by the ratio of the number of variables required to
describe the dynamics of a system compared to the number of degrees of freedom.

Thermodynamics is a rule based theory with a very small number of variables.
The theory of chaos has been invoked to explain the emergence of simplicity from
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the underlying complex classical dynamics. Chaotic dynamics leads to rapid loss of
the ability to keep track of the systems trajectory. As a result, a coarse grain picture of
self averaging reduces the number of variables. Following this viewpoint complexity
is created in the singular transition between quantum and classical dynamics. When
full chaos dominates thermodynamics takes over.

Quantum thermodynamics is devoted to the study of thermodynamical processes
within the context of quantum dynamics. This leads to an alternative direct route
linking quantum mechanics and thermodynamics. This link avoids the indirect route
to the theory through classical mechanics. The study is based on the thermodynamic
tradition of learning by example. In this context it is necessary to establish quantum
analogues of heat engines. These studies unravel the intimate connection between
the laws of thermodynamics and their quantum origin [4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27]. The key point is that
thermodynamical phenomena can be identified at the level of an individual small
quantum device [28].

1.3 The emergence of classical dynamics from the underlying quantum
laws.

1.3.1 Insight from quantum control theory

Quantum Control focuses on guiding quantum systems from initial states to targets
governed by time dependent external fields[29, 30]. Two interlinked theoretical prob-
lems dominate quantum control: the first is the existence of a solution and the second
is how to find the control field. Controllability addresses the issue of the conditions
on the quantum system which enable control. The typical control targets are state-to-
state transformations or optimising a pre specified observable. A more demanding
task is implementing a unitary transformation on a subgroup of states. Such an im-
plementation is the prerequisite for quantum information processing. The unitary
transformation connects the initial wavefunction which encodes the computation in-
put to the final wave function which encodes the computation output. Finding a
control filed for this task can be termed the quantum compiler problem. The exis-
tence of a solution for a unitary transformation is assured by the theorem of complete
controllability [31, 32, 33]. In short, a system is completely controllable if the com-
bined Hamiltonians of the control and system span a compact Lie algebra. Moreover
complete controllability implies that all possible state-to-state transformations are
guarantied.

Finding a control field that implements the task is a complex inversion problem.
Given the target unitary transformation Û(T ) at final time T what is the control field
that generates it?

i~
d

dt
Û = Ĥ(ε)Û (1.1)

where Û(0) = Î, and ε(t) is the control field. The methods developed to solve
the inversion problem could be classified as global, such as Optimal Control Theory
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(OCT) [34, 35, 36], or local, e.g., Local Control [37, 38, 39]. Optimal Control Theory
(OCT) casts the inversion task into an optimisation problem which is subsequently
solved by an iterative approach. The number of iterations required to converge to a
high fidelity solution is a measure of the complexity of the inversion.

How difficult is it to solve for the quantum compiler for a specific unitary transfor-
mation? This task scales at least factorially with the size of the transformation. The
rational is based on the simultaneous task of generating N − 1 state-to-state trans-
formations which constitute the eigenfunctions of the target unitary transformation.
To set the relative phase of these transformations a field that drives a superposition
state to the final target time has to be found. All these individual control fields have
to be orthogonal to all the other transformations, thus the scaling becomes N! more
difficult than finding the field that generates an individual state-to-state transforma-
tion [40]. This scaling fits the notion that the general quantum complier computation
problem has to be hard in the class of NP problems [41]. If it would be an easy task
a unitary transformation could solve in one step all algorithmic problems.

The typical control Hamiltonian can be divided into an uncontrolled part Ĥ0 the
drift Hamiltonian and a control Hamiltonian composed from an operator sub-algebra:

Ĥ = Ĥ0 +
∑
j

αj(t)Âj (1.2)

where αj(t) is the control field for the operator Âj and the set of operators {Â} form
a closed small Lie sub-algebra. This model includes molecular systems controlled
by a dipole coupling to the electromagnetic field. Complete controllability requires
that the commutators of Âj and Ĥ0 span the complete algebra U(N) where N =

n2 − 1 and n is the size of the Hilbert space of the system. If Ĥ0 is part of the
control algebra, the system is not completely controllable, i.e. there are state-to-state
transitions which cannot be accomplished. In the typical quantum control scenarios
the size of the control sub-algebra is constant but the size of control space increases.
For example, in coherent control of molecules by a light field the three components
of the dipole operator compose the control algebra. These operators are sufficient to
completely control a vast number of degrees of freedom of the molecule.

Are systems still completely controllable in the more messy and complex real
world? This task is associated with the control of an open quantum system where the
controlled system is in contact with the environment. The theorems of controllability
do not cover open quantum systems which remains an open problem. Coherent con-
trol which is based on interfering pathways is typically degraded by environmental
noise or decoherence. Significant effort has been devoted to overcome this issue,
mostly in the context of implementing gates for quantum computers. The remedy
which is known as dynamical decoupling employs vert fast control fields to reset the
system on track [42, 43, 44].

We argue that there is a fundamental flaw in these remedies. Although the noise
from the environment can be suppressed the fast controls introduce a new source of
noise originating from the controllers. The controller which generates the control
field has to be fast in the timescale of the controlled system. This means that the
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noise introduced by the controller can be modelled as a delta correlated Gaussian
noise. For the control algebra of Eq. (1.2) we obtain:

d

dt
ρ̂ = − i

~
[Ĥ0, ρ̂] +

∑
j

αj(t)[Âj , ρ̂] +
∑
j

ξj(t)[Âj , [Âj , ρ̂]] (1.3)

where ξ is determined by the noise in the controls [45].
Eq. (1.3) can have a different interpretation. It describes a system subject to

simultaneous weak quantum measurement of the set of operators {Â}. Quantum
measurement causes the collapse of the system to an eigenstate of the measured op-
erator. A weak measurement is a small step in this direction. It achieves only a small
amount of information on the system and induces only partial collapse. Eq. (1.3)
describes a continuous process of a series of infinitely weak quantum measurements
in time. A weak quantum measurement can be applied simultaneously to a set of
non commuting operators {Â}. In this case the system collapses to a generalised
coherent state associated with this control sub-algebra [46]. Generallized coherent
states are states that have minimum uncertainty with respect to the operators of the
algebra i.e. they are classical states.

When the size of the quantum system increases keeping the same control alge-
bra the noise from the control dominates. As a result the system will collapse to
a classical-like state. Superpositions of generalised coherent states will collapse to
mixtures. The rate of collapse is proportional to the distance between the states in
the superposition. This means that cat states which are superpositions of macroscop-
ically distinguished state have a very short lifetime. The consequence is that their
generation by coherent control becomes impossible.

For large quantum systems noise on the control means that complete state-to-
state control is lost [45]. This implies also that complete unitary control becomes
impossible. Does this imply that quantum computers cannot be scaled up? The
present analysis is sufficient only for a control model where the number of controls
is restricted while the size of Hilbert space is increased. This applies to molecular
quantum computers controlled by NMR or by light fields generated by pulse shaping
techniques. The general problem of complete controllability of unitary operators
subject to control noise where the number of controls is increased with the system
size is still open.

Additional studies with the control Hamiltonian of Eq. (1.2) have shown that
state-to-state control tasks from one generalised coherent state to another are rela-
tively easy. A control field found for a small system size can be employed when
the number of states increases with small adjustments. These can be classified as
classical control tasks. For example we could find a field that translates in space a
coherent state in a nonlinear Morse oscillator. When we decreased ~ and increased
the number of states maintaining the same field a high fidelity solution of the control
task was obtained. This simple picture completely changed when the control task
was to generate a superposition of generalised coherent states from a single initial
state [47, 48]. In this case the control field was not invariant to an increase in sys-
tem size. We can conclude by stating that classical control tasks are simply robust
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and scalable while quantum control tasks are delicate requiring a high algorithmic
complexity to generate. A noisy environment may be the cause of the emergence of
classical-like dynamics from the underlying quantum foundation.

1.4 The emergence of thermodynamical phenomena

Thermodynamics developed as a phenomenological theory, with the fundamental
postulates based on experimental evidence. The theory was initiated by an analysis
of a heat engine by Carnot [49]. The well-established part of the theory concerns
quasistatic macroscopic processes near thermal equilibrium. Quantum theory, on
the other hand, addresses the dynamical behaviour of systems at atomic and smaller
length scales. The two disciplines rely upon different sets of axioms. However, one
of the first developments, namely Plancks law, which led to the basics of quantum
theory, was achieved thanks to consistency with thermodynamics. Einstein, follow-
ing the ideas of Planck on blackbody radiation, quantised the electromagnetic field
[50].

Cars, refrigerators, air-conditioners, lasers and power plants are all examples of
heat engines. We are so accustomed to these devices that we take their operation for
granted. Rarely a second thought is devoted to the unifying features governing their
performance. Practically all such devices operate far from the ideal maximum effi-
ciency conditions set by Carnot [49]. To maximise the power output efficiency is sac-
rificed. This tradeoff between efficiency and power is the focus of ”finite time ther-
modynamics”. The field was initiated by the seminal paper by Curzon and Ahlboron
[51]. From everyday experience the irreversible phenomena that limits the optimal
performance of engines [52] can be identified as losses due to friction, heat leaks
and heat transport. Is there a unifying fundamental explanation for these losses? Is
it possible to trace the origin of these phenomena to quantum mechanics?

Gedanken heat engines are an integral part of thermodynamical theory. Carnot
in 1824 set the stage by analysing an ideal engine [49]. Carnot’s analysis preceded
the systematic formulation that led to the first and second laws of thermodynam-
ics. Amazingly, thermodynamics was able keep its independent status despite the
development of parallel theories dealing with the same subject matter. Quantum
mechanics overlaps thermodynamics in that it describes the state of matter. But in
addition, quantum mechanics includes a comprehensive description of dynamics.
This suggests that quantum mechanics can generate a concrete interpretation of the
word dynamics in thermodynamics leading to a fundamental basis for finite time
thermodynamics [5, 53, 54, 6, 55, 56].

The following questions come to mind:

How do the laws of thermodynamics emerge from quantum mechanics?

What are the quantum origins of irreversible phenomena involving friction and
heat transport?

What is the relation between the quasistatic thermodynamical process and the
quantum adiabatic theorem?
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Heat engines can be roughly classified as reciprocating cycles such as the Otto or
Carnot cycle or continuous resembling turbines. Each class has its advantages in
connecting to quantum theory. We will demonstrate this connection with the quan-
tum version of the Otto cycle for a reciprocating model and the quantum tricycle as
the generic model of a continuous heat engine.

1.4.1 The quantum Otto cycle

Nicolaus August Otto invented a reciprocating four stroke engine in 1861 [57]. The
basic components of the engine include hot and cold reservoirs, a working medium,
and a mechanical output device. The cycle of the engine is defined by four branches:

1. The hot isochore: heat is transferred from the hot bath to the working medium
without change in the external control.

2. The power adiabat: the working medium expands by changing the external
control producing work while isolated from the hot and cold reservoirs.

3. The cold isochore: heat is transferred from the working medium to the cold bath
without control change.

4. The compression adiabat: the working medium is compressed by changing the
external control consuming power while isolated from the hot and cold reser-
voirs.

Quantum Otto refrigeration cycle
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Figure 1.2 The quantum Otto refrigeration cycle. The cycle can operate at the level of a
single quantum harmonic oscillator shuffling heat from a cold to hot reservoir while adjusting its
frequency. The performance characteristics are equivalent to macroscopic Otto refrigerators.
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The external control could be a change of volume. In the quantum version the control
is a change of the frequency of the confining potential of a trap [56] or the external
magnetic field [58] in a magnetisation/demagnetisation device. The efficiency η of
the cycle is limited to ηo ≤ 1 − ωc

ωh
where ωh/c is the frequency at the hot and cold

extremes. As expected, the Otto efficiency is always smaller than the efficiency of
the Carnot cycle ηo ≤ ηc = 1− Tc

Th
.

1.4.2 Quantum dynamics of the working medium

The quantum analogue of the Otto cycle requires a dynamical description of the
working medium, the power output and the heat transport mechanism. The dynamics
on the state ρ̂ during the adiabatic branches is unitary and is the solution of the
Liouville von Neumann equation [59]:

d

dt
ρ̂(t) = − i

~
[Ĥ(t), ρ̂(t)] , (1.4)

where Ĥ = Ĥ0 + Ĥc(ω(t)) is time dependent during the evolution. Notice that
generically [Ĥ(t), Ĥ(t′)] 6= 0 since the drift Hamiltonian Ĥ0 does not commute
with the control Ĥc.

The dynamics on the hot and cold isochores is an equilibration process of the
working medium with a bath at temperature Th or Tc. This is the dynamics of an
open quantum system where the working medium is described explicitly and the
influence of the bath implicitly:

d

dt
ρ̂(t) = − i

~
[Ĥ, ρ̂] + LD(ρ̂) , (1.5)

whereLD is the dissipative superoperator responsible for driving the working medium
to thermal equilibrium, while the Hamiltonian Ĥ = Ĥ(ω) is static. The equilibra-
tion is not complete since only a finite time τh or τc is allocated to the hot or cold
isochores. The dissipative superoperator LD is cast into the semigroup form [60].

To summarise, the quantum model of the Otto cycle contains equations of mo-
tion for each of the branches. It differs from the thermodynamical model in that a
finite time period is allocated to each of these branches. Solving these equations for
different operating conditions allows to obtain the quantum thermodynamical ob-
servables. Can a simple thermodynamical picture emerge even for driven systems
far from equilibrium dynamics?

1.4.3 Quantum thermodynamics

Thermodynamics is notorious in its ability to describe a process employing an ex-
tremely small number of variables. For a heat engine, the energy E and the entropy
S seem obvious choices. A minimal set of quantum expectations 〈X̂n〉 constitutes
the analogue description where 〈X̂n〉 = Tr{X̂nρ̂}. The dynamics of this set is
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generated by the Heisenberg equations of motion:

d

dt
X̂ =

∂X̂

∂t
+

i

~
[Ĥ, X̂] + L∗D(X̂) , (1.6)

where the first term addresses an explicitly time dependent set of operators, X̂(t).
The energy expectation E is obtained when X̂ = Ĥ, i.e. E = 〈Ĥ〉. The quantum

analogue of the first law of thermodynamics [61, 5]: dE = dW + dQ is obtained by
inserting Ĥ into Eq. (1.6):

d

dt
Ê = Ẇ + Q̇ = 〈 ∂Ĥ

∂t
〉 + 〈 L∗D(Ĥ) 〉 . (1.7)

The power is identified as P = Ẇ = 〈 ∂Ĥ∂t 〉. The heat exchange rate becomes
Q̇ = 〈 L∗D(Ĥ) 〉. The Otto cycle contains the simplification that power is produced
or consumed only on the adiabats and heat transfer takes place only on the isochores.

The thermodynamic state of the system is fully determined by the thermodynam-
ical variables. Statistical thermodynamics adds the prescription that the state is de-
termined by the maximum entropy condition subject to the constraints set by the
thermodynamical observables [62, 63, 64].

The state of the working medium of all power producing engines is not in ther-
mal equilibrium. In order to generalize the canonical form additional variables are
required to define the state of the system. The maximum entropy state subject to this
set of observables 〈X̂j〉 = tr{X̂jρ̂} becomes:

ρ̂ =
1

Z
exp

∑
j

βjX̂j

 , (1.8)

where βj are Lagrange multipliers. The generalized canonical form of Eq. (1.8) is
meaningful only if the state can be cast in the canonical form during the complete
cycle of the engine leading to β = β(t). This requirement is called canonical invari-
ance [65]. A necessary condition for canonical invariance is that the set of operators
X̂ in Eq. (1.8) is closed under the dynamics generated by the equation of motion.
By knowing the initial values of the observables 〈X̂j〉(0), the Heisenberg equations
of motion for the cycle can be solved. This leads to the values of the thermodynami-
cal observables at any time 〈X̂j〉(t). If this condition is also sufficient for canonical
invariance, then the state of the system can be reconstructed from a small number of
quantum thermodynamical observables 〈X̂j〉(t).

The condition for canonical invariance on the unitary part of the evolution taking
place on the adiabats is as follows: If the Hamiltonian is a linear combination of
the operators in the set Ĥ(t) =

∑
m hmX̂m ( hm(t) are expansion coefficients ),

and the set forms a closed Lie algebra [X̂j , X̂k] =
∑
l C

jk
l X̂l, (where Cjkl is the

structure factor of the Lie algebra), then the set X̂ is closed under the evolution [66].
In addition canonical invariance prevails [67].
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As an example for the Otto cycle with a working medium composed from a har-
monic oscillator:

Ĥ =
P̂

2

2m
+
mω(t)2

2
Q̂

2

the set of the operators P̂
2

, Q̂
2

and D̂ = (Q̂P̂ + P̂Q̂) form a closed Lie algebra.
The Hamiltonian can be decomposed into the two first operators of the set P̂

2
and

Q̂
2
. Therefore canonical invariance will result on the adiabatic branches. On the iso-

chores this set is also closed to the operation of LD. This means that the conditions
of canonical invariance are fulfilled for this case [56]. Only two additional variables
to the energy are able to completely describe the system even for conditions which
are very far from thermal equilibrium.

The significance of canonical invariance is that all thermodynamical quantities
become functions of a very limited set of quantum observables 〈X̂j〉. The choice of
operators X̂j should reflect the most characteristic thermodynamical variables. This
is an example of simplicity emerging from complexity.

1.4.4 The quantum tricykle

The minimum requirement for a continuous quantum thermodynamical device is a
system connected simultaneously to three reservoirs [68]. These baths are termed
hot, cold and work reservoir, as described in Fig. 1.1. A crucial point is that this
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Figure 1.3 The quantum tricykle: A quantum heat pump designated by the Hamiltonian Ĥs

coupled to a work reservoir with temperature Tw, a hot reservoir with temperature Th and a
cold reservoir with temperature Tc. The heat and work currents are indicated. In steady state
Jh + Jc + P = 0.

device is nonlinear, combining three currents. A linear device cannot function as a
heat engine or a refrigerator [69].
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A quantum description requires a representation of the dynamics working medium
and the three heat reservoirs. A reduced description is employed in which the dynam-
ics of the working medium is described by the Heisenberg equation for the operator
Ô for open systems [60, 70]:

d

dt
Ô =

i

~
[Ĥs, Ô] +

∂Ô

∂t
+ Lh(Ô) + Lc(Ô) + Lw(Ô) , (1.9)

where Ĥs is the system Hamiltonian and Lg are the dissipative completely positive
superoperators for each bath (g = h, c, w). A minimal Hamiltonian describing the
essence of the quantum refrigerator is composed of three interacting oscillators:

Ĥs = Ĥ0 + Ĥint

Ĥ0 = ~ωhâ†â + ~ωcb̂
†
b̂ + ~ωwĉ†ĉ

Ĥint = ~ωint
(
â†b̂ĉ + âb̂

†
ĉ†
)
.

(1.10)

Ĥint represents an annihilation of excitations on the work and cold bath simultane-
ous with creating an excitation in the hot bath. Ĥint is non linear in contrast to the
linear Ĥ0. In an open quantum system the superoperators Lg represent a thermo-
dynamic isothermal partition allowing heat flow from the bath to the system. Such
a partition is equivalent to the weak coupling limit between the system and bath
where ρ̂ = ρ̂s ⊗ ρ̂B at all times [6]. The superoperators Lg are derived from the
Hamiltonian:

Ĥ = Ĥs + Ĥh + Ĥc + Ĥw + Ĥsh + Ĥsc + Ĥsw , (1.11)

where Ĥg are bath Hamiltonians and Ĥsg represent system bath coupling. Each of
the oscillators is linearly coupled to a heat reservoir for example for the hot bath:
Ĥsh = λsh(âÂ

†
h + â†Âh) . Each reservoir individually equilibrates the working

medium to thermal equilibrium with the reservoir temperature. In general, the deriva-
tion of a thermodynamically consistent master equation is technically very difficult
[71]. Typical problems are approximations that violate the laws of thermodynam-
ics. We therefore require that the master equations fulfil the thermodynamical laws.
Under steady state conditions of operation they become:

Jh + Jc + P = 0

−Jh

Th
− Jc

Tc
− P

Tw
≥ 0 ,

(1.12)

where Jk = 〈Lk(Ĥ)〉. The first equality represents conservation of energy (first
law) [72, 73], and the second inequality represents positive entropy production in the
universe Σu ≥ 0 (second law). For refrigeration Tw ≥ Th ≥ Tc. From the second
law the scaling exponent α ≥ 1 [7].

1.4.5 The III-law of thermodynamics

There exist two seemingly independent formulations of the third law of thermody-
namics, both originally stated by Nernst [74, 75, 76]. The first is a purely static (equi-
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librium) one, also known as the Nernst heat theorem, and can simply be phrased as
follows:

(a) The entropy of any pure substance in thermodynamic equilibrium approaches
zero as the temperature approaches zero.

The second is a dynamical one, known as the unattainability principle:

(b) It is impossible by any procedure, no matter how idealized, to reduce any
assembly to absolute zero temperature in a finite number of operations.

Different studies investigating the relation between the two formulations have led
to different answers regarding which of these formulations implies the other, or if
neither do.

A more concrete version of the dynamical third law can be expressed as follows:

No refrigerator can cool a system to absolute zero temperature at finite time.

This formulation enables us to quantify the third law, i.e., evaluating the characteris-
tic exponent χ of the cooling process:

d

dt
T ∝ −T ξ (1.13)

for T → 0 . Namely, for ξ ≥ 1 the system is cooled to zero temperature at finite time.
The cold bath is modelled either by a system of harmonic oscillators (bosonic bath) or
the ideal gas at low density, including the possible Bose-Einstein condensation effect.
To check under what conditions the third law is valid, we consider a finite cold bath
with the heat capacity cV (Tc) cooled down by the refrigerator with the optimised
time-dependent parameter. The equation which describes the cooling process reads:

cV (Tc)
d

dt
Tc = −Jc ≥ 0 (1.14)

The third law would be violated if the solution Tc(t) reached zero at finite time. The
heat current has the universal structure when Tc → 0:

Jc = ~ωcλ(ωc) (1.15)

where ~ωc is the energy quant of transport and λ(ωc) the heat conductance rate. The
optimal cooling rate is obtained when ωc ∝ Tc [77, 78]. The ration of λ(Tc)/cV (Tc) ∝
T

1
2 when Tc → 0 for a Bose/Fermi gas cold bath. For a phonon bath λ(ωc) depends

on the spectral density. An Ohmic bath has the ratio λ(Tc)/cV (Tc) ∝ 1 which could
violate the III-law. This is consistent with the observation that for Ohmic spectral
density the system and bath have no ground state.

The analysis of the examples of both the discrete and continuous quantum heat
engines shows that a thermodynamical description is valid at the level of a single
quantum device. Consistency with thermodynamics has always proven to be correct.
Apparent violations of the thermodynamical laws could always be attributed to faulty
analysis[27]. Although there have been challenges to this rule [79] we still stand by
our statement.
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1.5 Perspective

The issue of complexity in dynamical systems is still not resolved. We tried to
present a unifying framework based on Kolmogorov’s idea of algorithmic complex-
ity. We examined the control task which leads to quantum computing: generating a
unitary transformation. If this task was easy, many complex algorithmic problems
could be solved in parallel. This indicates that the problem of the quantum compiler
is complex. Similar approaches could quantify the complexity of other quantum
dyanmical encounteres, where much work should be doene. Once noise is intro-
duced for example in the control fields of coherent control calssical like phenomena
emerges. In addition this noise on the controls can make the quantum compiler task
uscaleable. Similar external noise will also reduces quantum dynamics into classical
like localised states, thus pointing to a route of the emergence of classical phenomena
from quantum mechanics.

Finite time thermodynamics emerges naturally from quantum dynamics of open
systems. Even a small quantum engine, due to inherent statistical fluctuations be-
haves like a thermodynamical device. A necessary condition for any quantum device
is a non-linear charactercombining at least three energy currents. This is the defi-
nition of the quantum thermodynamical tricycle. Quantum network composed from
tricycles will display complex dynamics due to this nonlinearity. In a simple analysis
of the quantum tricycle we could study the emergence of the III-law of thermody-
namics.
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