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Abstract

The origin of an artifact known as the appearance of ghost states in mapped Fourier grid methods is investigated. It was found that
the ghost states can be attributed to under sampling of the high momentum components which are folded from the inner to the outer
region of the potential to create the ghosts. The effect was corrected by addition of a complex potential at the outer region. The exterior
complex potential was shown to shift the ghost states to the continuum part of the spectrum in a controllable way. The various methods
to improve the mapped grid method are discussed in this context, and the use of zero boundary conditions is shown to be not essential.
� 2006 Elsevier B.V. All rights reserved.
1. Introduction

The computational cost of a quantum calculation cru-
cially depends on the size of the Hilbert space N used for
the simulation. Dynamical calculations can be made to
scale semi linearly with the number N (O(N logN)) directly
for propagation methods, or as O(N3) for methods based
on diagonalization [1]. Practically, N becomes the number
of grid points required to converge the calculation. Effi-
cient computational methods tend to minimize the number
N as much as possible. The idea is to limit the representa-
tion to points where the probability amplitude of the wave-
function is above a certain threshold value. A pre-
estimation of the number of grid points can be obtained
by examining the representation boundaries in phase space.
Once an upper limit for the energy in the calculation is
established, the phase space volume contained in this
energy shell can be calculated from the Hamiltonian. In
one dimension the minimum number of points N is the
phase pace volume V divided by �h, N min ¼ V

�h [2]. Outside
the energy shell the wavefunction will decay exponentially
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fast and some sampling points are required to represent
the evanescent part of the wavefunction. As a result the
actual number of points required to achieve exponential
convergence is larger than Nmin ¼ V

h [2,3]. In addition, sam-
pling considerations increase further the number of grid
points. For example, a uniform grid has a rectangular
shape in phase space. The boundaries of such a grid have
to be set to contain the extreme points of the energy shell.
If the shape of the energy shell is convoluted most of the
phase space area of the rectangular representation is
waisted. This leads to a lower sampling efficiency
g ¼ NMin

N � 1. The problem is particularly acute in the field
of ultracold scattering and photoassociation. A very small
grid spacing is required to represent the maximum momen-
tum the colliding atoms acquire when they approach each
other. On the other hand, the grid has to be extended to
extremely large distances in order to describe the very long
De-Broglie wavelength of the cold atoms in free space. The
sampling efficiency can be as low as g � 10�4.

A solution to the grid optimization problem was sug-
gested by Fatal et al. [4] which introduced a mapping func-
tion from a uniform to a non-uniform grid. Such a grid has
a denser sampling at points with higher momentum values.
As a result, the sampling correlates position with momen-
tum. An important addition to the mapping procedure
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was developed by Kokoouline et al. [5] suggesting the use
of a semiclassical mapping function. The idea is to relate
the local grid spacing to the inverse of the classical momen-
tum corresponding to the value of the energy shell at that
point. An improvement of the sampling to account for
regions where the semi-classical approximation is not valid
was suggested by Nest and Meyer [6]. Since its introduction
the semiclassical procedure has been extensively used in the
field of ultracold molecules [7]. For example calculating the
last bound levels of alkali diatomic molecules as well as in
simulating photoassociation of ultracold atom pairs [8,9].
The mapping procedure enabled accurate calculation of
these processes which was not possible before.

Despite this success, a troubling artifact appeared and
was termed ghost states [10]. The signature of these states
showed unphysical energy states embedded in the physical
spectrum of bound states. Most of the amplitude of the
ghost was at large interatomic distances. The exact origin
of the ghost states has never been fully understood. It
was found that the use of fixed boundary conditions that
vanish at the end of the grid eliminate some of the ghost
states. This enforcement of zero boundary conditions is
restrictive. Moreover, it sets constraints on the number of
grid points to contain exact integer number of periods, a
limitation which does not necessarily relate directly to the
system under consideration.

In this Letter we characterize in more details the ghost
states and suggest an explanation of their origin. We show
also that a complex scaling of the potential, namely, the
addition of imaginary boundary conditions to the potential
can be used as a simple and natural solution to the removal
of ghost states.

The outline of this Letter is as follows: in Section 2 we
will describe shortly the mapped Fourier grid method, fol-
lowing Refs. [5,10]. Section 3 will investigate the features of
the ghost states and will try to deduce explanation of their
origin. In Section 4 we will show the usefulness of an addi-
tion of an exterior complex potential in removing these
states from the spectrum. Section 5 will conclude and sum-
marize the discussion.
2. The mapped fourier grid method

The purpose of the mapping procedure is to find the
most efficient grid representation for the Hamiltonian of
the form:bH ¼ bT þ bV ð1Þ
where bH; bT and bV are the Hermitian Hamiltonian, kinetic
and potential energy operators. A uniform Fourier grid will
be built according to the following steps:

1. The energy space of the problem Emax and Emin is esti-
mated. Typically Emin is the bottom of the attractive
potential and Emax is the maximum kinetic energy of
the colliding pair to be represented on the grid.
2. Using Emax and a semiclassical estimation of tunneling
Rmin is determined. Rmax is determined to include all
the interval needed to represent the last bound state.
The grid interval becomes LR = Rmax � Rmin.

3. By estimating the maximal kinetic energy Tmax = E

max � Vmin, the maximal possible semiclassical momen-
tum is calculated pmax ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mT max

p
, where m is the

reduced mass of the pair. The corresponding grid in
momentum space has to comply with jpj 6 pmax, so that
Lp = 2pmax.

4. Each volume in phase space at the size of �h should hold
at least one grid point. The number of grid points to
support the system will be than given by: N�h = LRLp.

5. Distribute the N grid points equally on the grid (each
grid point at the middle of a segment).

The operator bV in this coordinate representation is diag-
onal. The kinetic energy operator bT can be evaluated either
numerically by bidirectional FFT, or analytically as :

bT i;i ¼
p2

mL2
R

N 2 þ 2

6
ð2Þ

bT i6¼j ¼
p2

mL2
R

ð�1Þi�j

sin2½ði� jÞp=N �
ð3Þ

assuming an even number of grid points. For the case of
odd number of points see [11]. For large grids the numeri-
cal application of bT is more efficient since it scales as
O(N logN) compared with O(N3) for applying Eq. (3) while
the accuracy of the two is comparable.

An important feature of the uniform Fourier grid
method is that the considerations for choosing the grid
are global. Each of the grid points can support the largest
possible momentum required. This over-estimation is
reduced significantly by using a Mapped Fourier Grid.
The algorithm for building a mapped Fourier grid is the
following:

1. Use the same grid length in coordinates LR as was deter-
mined in the uniform Fourier grid method.

2. Beginning from the inner grid point Rmin, integrate the
local classical action up to b to get R1:

b ¼ 2m
p2

� �1
2
Z R1

Rmin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eadd � V ðrÞ

p
dr: ð4Þ

Eadd is given by the maximal asymptotic kinetic energy to
be represented on the grid, usually with small additional
energy to allow the extension of the grid to classically
forbidden zones. The parameter b 6 1 serves as an esti-
mation for the local volume coverage in phase space.
Smaller values of b will distribute more points on the
grid, while for b = 1 the minimal classical estimation
for the needed phase space density of the points is taken.

3. Continue to integrate the action from R1 to get R2, R3

etc. to the end of the physical grid, with RN = Rmax.
4. The length of the mapped grid Lx is given by b(N � 1).



S. Kallush, R. Kosloff / Chemical Physics Letters 433 (2006) 221–227 223
The matrix representation of bV is still diagonal at the
{Rn},n = 1,. . .,N grid points. To represent bT one has to cal-
culate the diagonal Jacobian operator for the change of
variables from the mapped to the physical grid dR/dx. This
is given simply by:

bJðRnÞ ¼
dR
dx

����
Rn

¼ b0jRn
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m
p2
½Eadd � V ðRnÞ�

r
ð5Þ

Now the kinetic energy operator is given by the matrix
multiplication:

bT ¼ � p2

2mL2
x

bJ�1=2 bDbJ�1 bDbJ�1=2 ð6Þ

Where bD is the first derivative operator, given by:

bD i;j ¼
d

dx

� �
i;j

¼
0; i ¼ j
ð�1Þi�j

sin½ði�jÞp=N � ; i 6¼ j

(
ð7Þ

Note that this algorithm eliminates any numerical differen-
tiation which was found to be a source of inaccuracies in
[10]. We comment here that the integrand on Eq. (4)
I2nd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðEadd � V Þ=p

p
originated from a semiclassical

approximation for the wavefunction. To incorporate for
regions in the potential where the WKB is not valid, one
can use the ideas of Ref. [6], and replace I2nd by
I3rd ¼ 1=D, where D is the (analytical) solution of the
equation:
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Fig. 1. (a) Vibrational eigenvalues logE(v) for the bound states of the a3Rþu
interval log(dE(v)). The eigenenergy corresponds to the ghost is indicated.
jEadd � V jD2 þ 2

3
jV 0jD3 ¼ p2

2m
ð8Þ

where V 0 denotes a derivative of the potential with respect
to the position.

In this paper we will make our demonstration by calcu-
lating the eigenenergies and eigenstates of the lowest triplet
state of the Cesium molecule, a3Rþu . The potential surface
for this state supports 54 bound states, with a binding
energy of 8.91 · 10�6 cm�1 for the most weakly bound
state, and spatial extension of �2500 Bohrs.

3. Ghost states

In a converged grid, when calculating the eigenvalues,
each of the calculated eigenfunctions can be associated to
a physical stationary state. The mapped grid method may
lead to an artifact, a state embedded in the spectrum which
has no physical meaning and called a ghost state. Our task
is first to identify these states, and then to remove them.
For a progression of vibrational states one expects that
the adjacent energy intervals dE(v) = E(v) � E(v � 1) is
also a smooth function of v, the vibrational quantum num-
ber. Fig. 1 presents the calculated spectrum �log(�E(v))
and the energy intervals �log(dE(v)) as a function of the
vibrational quantum number v, for a grid size
LR = 3030 Bohr, and b = 0.6. The number of grid points
for these parameters is N = 1258. A uniform Fourier grid
30 35 40 45 50 55
v

30 35 40 45 50

 1

A Ghost state
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potential in Cs2, as a function of the quantum number v. (b) The energy
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for this coverage will demand more than N = 40 000 grid
points. The discontinuity that appears at the spectrum
close to v = 51 is a clear indication of such a ghost state.

Once the ghost state has been identified, we want to
understand its character by comparing it to an adjacent
physical state. The left panels of Fig. 2 display the wave-
functions of the ghost v 0 = 51 state and the nearby v = 50
state. The ghost state can be characterized by an unphysical
oscillatory behavior in the classically forbidden region.
Both the physical and the ghost states are almost identical
in the region where the potential is almost flat, but the
small amplitude of these oscillations for the physical state
are barely noticeable. This finding indicates that the source
of the error is a global representation problem. Further
insight regarding the source of the error could be obtained
by inspecting the wavefunction in momentum space. The
first two panels of Fig. 3 are the momentum space represen-
tation j�wðpÞj of the two states of Fig. 2. The middle panel
shows the expected behavior for a stationary state in
momentum space. The number of oscillations of the wave-
function enumerate the quantum number v. This main fea-
ture is almost entirely smeared out for the highly excited
vibrational state due to the concentration of the probability
around zero momentum p = 0 with low kinetic energy. The
wavefunction of the unphysical state shows fingerprints of
a periodic behavior, but it seems like a discrete superposi-
tion of several plane waves, and not of a bound state. A
change in the grid length, for a constant b, leaves the erro-
neous eigenenergy and the wavefunction in both position
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Fig. 2. (a) The wavefunction of the ghost state and (b) the adjacent ph
and momentum space unchanged. The bottom panel of
Fig. 3 shows the unphysical wave function in momentum
space for b = 0.8, .i.e., a less dense grid in the position
space. The eigenenergy of the state is lowered, and becomes
v 0 = 40. The characteristic features of the wavefunction
remain the same, but the superposition is now over denser
plane wave components. For b 6 0.585, the ghost state is
removed from the bound spectrum.

The combination of these features, indicates that the
source of the systematic error is the result of an under sam-
pling of the wavefunction in momentum. In terms of the
spectral methods, the sampling is below the Nyquist fre-
quency. A high momentum component in the potential well
leaks to the asymptotic region where it is undersampled. As
a result it obtains an artificially lower kinetic energy com-
ponent. An extension of the grid in the position space
increases the resolution in momentum space, but leaves
the grid increment, and accordingly the ghost state,
unchanged. An increase of density of the points, i.e.,
decrease of b, extends the grid increment in momentum
space and allows the support of higher momentum compo-
nents. As b decreases, the expression of the missed momen-
tum components is given in terms of higher momentum
components and its eigenenergy is driven toward the
unbound part of the spectrum until it finally disappears.

The problem of undersampling of the potential is more
acute at regions where the potential changes rapidly and
the semi-classical sampling criterion (Eq. (4)) is no longer
valid. The use of I3rd instead of I2nd was found to improve
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the sampling by about 40%. For the conditions of this
paper the ghosts were found to disappear for N > 731
points, and b < 0.51. Note, however, that for methods of
different orders b is no longer a good parameter due to
the different way of distributing the points. Yet, the phe-
nomenon with its characteristic features as described
above, tends to appear for this method as well.

4. Shifting the energy of the ghost by an exterior complex

potential

Addition of an exterior complex potential is now sug-
gested to eliminate the ghost states. The method of com-
plex scaling has been used primarily for locating
resonances states embedded in the continuum [12]. Within
the method the potential is supplemented by an imaginary
component either by a direct change of spatial variables
from real to complex ones, or by adding an imaginary part
to the potential, e.g., absorbing potential at the grid bound-
aries [13,14]. The method is also widely used for simulating
scattering processes. The addition of the imaginary part the
Hamiltonian operator makes it non-Hermitian.

The complex scaled Hamiltonian is chosen to have the
form:b~H ¼ bH þ ia exp½bðR� RN Þ�; ð9Þ
a and b are constants. The effective influence of the scaling
is an additional absorbing/creating complex boundary con-
ditions for R!1 for negative/positive values of a.
We checked the dependency of the energy eigenvalues
on the scaling intensity a for different values of b and sizes
of grid. In all the following examples b = 0.1 Bohr�1.

Fig. 4 shows the change of the eigenenergies due to the
scaling. Only the lowest five eigenstates that have signifi-
cant imaginary eigenvalues are shown. The upper and
the lower panels of the figure are for grid sizes of 3000
and 6000 Bohr, respectively. Two kinds of eigenvalues
can be seen in the figure. Eigenvalues that correspond to
the continuum states, i.e., Re(E) > 0, move toward the
positive direction in both the imaginary and real axis.
The eigenvalue that corresponds to the ghost state is
pushed mainly into the unbound part of the spectrum.
For grid size of 3000 Bohr the ghost state is not a part
of the physical bound spectrum for a = 3.2 · 10�5 au.
All the eigenvalues that correspond to bound states, are
unaltered due to the scaling. Moreover, all the scattering
states below the continuum state with the lowest real part
that are shown in the figure are also not changed. Prob-
lems which involve dynamical calculations of scattering
processes demand a correct representation of a superposi-
tion of scattering states. To perform such calculations, one
will need to increase a even more and push the ghost fur-
ther. For a = 7.0 · 10�5, the real part of the unphysical
state’s energy is 9.2 · 10�8 Hartree. Even for a relatively
small grid size we used here, 135 scattering states up to
25 mK could be represented correctly. We remark here
that for our purposes the choice of the sign of a is arbi-
trary. An identical calculation with negative a, i.e.,



-4 0 4 8 12 16

0

1

2

3

4

-4 0 4 8 12 16

0

1

2

3

4

Continium States

 Im
ag

 E
 

 Im
ag

 E
 

x10-7

x10
-5

Real E 

Ghost

x10-7

42

36

30

24

18

12

1

Ghost

Continium States

6

x10-5

a

b

Fig. 4. (a) The effect of an addition of exterior complex potential, for
various amplitudes of the exterior complex potential. The values presented
in the figure are given in units of 10 · 10�6 au. Only the five eigenvalues
with the lowest real energy and significant imaginary part are shown. The
ghost and the continuum states are indicated. For larger amplitudes of
complex potential several other energy eigenvalues moves into the
complex plain with larger real energies and not shown here. b = 0.6,
and LR = 3000 Bohr. (b) Same as (a), with a grid size with
LR = 6000 Bohr.

a

b
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For b = 0.8 only the lowest continuum state is shown. The other states
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absorbing boundary conditions, gives exactly the same
results as in the previous example, except for the imagi-
nary part of the eigenvalues, which are now negative, with
the same magnitude.

The lower part of Fig. 4 presents the same energy eigen-
values for doubled grid size. The energy eigenvalues of the
continuum exhibit exactly the same scaling and does not
depend on the grid size. The ghost, however, moves into
the unbound spectrum more rapidly.

The upper and the lower panels of Fig. 5 demonstrate
the scaling of the energy eigenvalues for b = 0.8 and 0.5,
respectively. As was already noted previously, larger values
of b lower the erroneous energy. Here, it is obvious that the
scaling into more positive values is also suppressed, so that
the scaling is not useful for too large b. The lower panel
emphasizes this trend even more. For b = 0.5 no ghost
state appear at all, but the scaling of the continuum states
toward the positive real axis is more rapid.
5. Discussion and summary

Understanding the origins and the characteristic fea-
tures of the ghost artifact is an important step. The semi-
classical method to determine the local grid spacing will
create ghost states whenever the change in the potential is
comparable to the local wavelength. This usually happens
in high energy continuum levels of the spectrum. Imposing
fixed boundary conditions as suggested by Wilner et al. [10]
can eliminate some of the ghost states. An alternative high-
order non-classical methods [6] forces a denser sampling in
regions where the derivative of the potential is large. This
improves the sampling procedure and eliminates the ghost
states. As shown in this Letter, addition of an exterior com-
plex potential can eliminate the ghost states from the
bound part of the spectrum and push them, in a controlla-
ble way, to the continuum. Nevertheless, one might con-
sider finding a way to tolerate the ghost states and
account for their erroneous effects. The highly oscillatory
behavior of the ghost state decouples it from all the other
physical states, and allow to identify and control the error
introduced.
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