
ELSEVIER 

16 June 1995 

Chemical Physics Letters 239 (1995) 230-236 

CHEMICAL 
PHYSICS 
LETTERS 

A new method for numerical flux calculations in quantum 
molecular dynamics 

Gil Katz a,b Roi Baer a,b, Ronnie Kosloff a,b 

a Department of  Physical Chemistry, the Hebrew University, Jerusalem 91904, Israel 
b The Fritz Haber Research Center, the Hebrew University, Jerusalem 91904, Israel 

Received 24 January 1995 

Abstract 

The flux of an evolving wavepacket is the definite time integral of its probability current density. A new method for 
calculating the flux, based on a Chebychev polynomial expansion of the quantum evolution operator is presented. The 
central point of the development is that the time integration of the current density is performed analytically, resulting in a 
scheme which eliminates additional numerical errors. Using this method, one benefits from both the time-dependent and 
time-independent frameworks of the dynamics. Furthermore, the method requires only a small modification to the existing 
Chebychev polynomial evolution code. Examples of performance and accuracy and an application to the calculation of 
recombinative desorption probabilities of N 2 on Re are shown and discussed. 

I. Introduct ion 

The entire physical and chemical information con- 
cerning a molecular system is contained in the wave- 
function. When a molecular system is in a non-sta- 
tionary state it evolves in time, and a corresponding 
evolution of the wavepacket will take place. Mathe- 
matically, the wavepacket evolves according to the 
Sch65dinger equation, 

d ~  
ih = / l q t ( t ) ,  (1) 

dt  

where the nuclear Hamiltonian is the sum of kinetic 
and potential energies given by 

/4 = Y'. + 0 .  (2) 
2Mm 

The performance of a quantitative analysis of the 
dynamical evolution and properties requires a three- 

stage process. First, the wavepacket and the opera- 
tors are represented in a form accessible to comput- 
ers. Next, the wavepacket evolution is simulated 
numerically. The last stage, which is actually the 
goal of the calculation, is to analyze the wavepacket 
evolution in terms of measurable quantities. 

A comprehensive integration of these three stages 
in a single strategy is crucial for efficient, accurate 
and coherent analysis. Therefore, a representation 
which is suitable for all three stages is to be devel- 
oped. It must represent the wavepacket accurately 
enough to reflect all the relevant information content, 
and it should yield itself easily to the application of 
the Hamiltonian operator. Finally it must enable an 
easy extraction of the dynamical particulars which 
are of interest. 

In many applications, representing the wavepack- 
ets on a sufficiently dense spatial grid has the benefit 
of meeting all the above demands. It is well known 
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that the wavepacket information can be accurately 
represented on such a grid and that fast and accurate 
application of both the potential and the kinetic 
energy operators are in hand - the first is diagonal 
on a spatial grid and the second can be achieved 
using fast Fourier transform (FFT) algorithms [1]. 
For a diverse variety of problems grid methods can 
be easily applied in order to extract dynamical, 
physical and chemical information from the 
wavepacket grid representation [2,3]. 

The fast application of the Hamiltonian operator 
to a wavepacket represented on a grid enables the 
use of uniform polynomial approximations to func- 
tions of the Hamiltonian, most notably the evolution 
and Green function operators [4,5]. Thus, time evolu- 
tion can be achieved on a grid. Since the Hamilto- 
nian is a Hermitian operator, polynomial approxima- 
tions can be used which have uniform convergence 
properties on a closed interval of the real line. One 
such approximation is the Chebychev polynomial 
expansion, which is by now widely used in many 
applications of molecular dynamics [6]. It has the 
benefits of accuracy, stability and simplicity. 

Once on the move, the wavepacket's course is 
followed through the dynamical process, and its 
structure is analyzed in order to obtain quantitative 
information. This can be done by a variety of meth- 
ods, most involve the application of projection opera- 
tors. In many applications, however, a simple use of 
projection operators is not possible due to practical 
computational problems. A typical example appears 
in reactive scattering problems, where one is inter- 
ested in the net wavepacket amplitude left in a 
certain region of the nuclear-configuration space af- 
ter the reaction has ended. For instance, in a collision 
of the wavepacket with a potential barrier, the proba- 
bility for reaction is obtained by determining the 
amplitude of the wavefunction in the asymptotic 
region beyond the barrier after the collision has 
ended. 

This final wavepacket is usually widely spread 
since its amplitude is scattered in the various asymp- 
totic reactive channels. Such a spread poses a practi- 
cal problem - the need for a large grid extending 
vastly into the asymptotic regions of most reactive 
channels. Practically, however, there is no real need 
to spread a grid deep into the asymptotic regions, 
since these regions have no effects on the reaction 

mechanism. Thus the grid can terminate at the 
asymptotic region. In order to avoid boundary effects 
of this abrupt grid termination, the use of a negative 
imaginary potential (NIP) is usually recommended 
[7]. A properly constructed NIP has the capability of 
absorbing wavepacket amplitudes which reach the 
grid boundaries with almost no reflection or trans- 
mission [7-12]. The amount of final wavepacket 
amplitude in the various asymptotic channels cannot 
be determined by projection operator methods, since 
by the time the collision has ended, this amplitude, 
together with others, has been absorbed by the NIPs. 
Thus what is needed is a dynamical counter which 
integrates the amplitude flowing into the asymptotic 
region, before it is absorbed by the NIPS. This is 
accomplished by using the integral of the flux, that 
is, the current density is integrated over the entire 
reaction time and then spatially over a surface per- 
pendicular to the reaction coordinate in an asymp- 
totic channel to yield the total probability of reaction 
via that channel. 

While the spatial integration is easily and accu- 
rately performed on the grid points - by a simple 
summation - the time integration can present prob- 
lems. One way is to perform the time evolution in 
short time steps and to simply sum the flux over 
time. This method has the drawback of poor accu- 
racy and requires short time steps. Since the Cheby- 
chev scheme is especially efficient for long time 
steps, this method is usually inappropriate. 

In this Letter, a proper method to integrate the 
flux over time is presented, a method in the spirit of 
the Chebychev propagation scheme. It is based on 
the fact that the Chebychev series separates time 
from space. The time variable appears in well-known 
analytical functions, such as Bessel functions and 
exponentials, and therefore time-only manipulations 
can be done without any reference to the evaluation 
of the temporary wavepacket: they should be done 
before the application to wavepackets, and if possi- 
ble, analytically. This approach to the Chebychev 
expansion can be utilized in other applications, and 
can yield convenient expansions for various opera- 
tors. This idea is not new. Kosloff [2] showed that 
the time integral needed for the calculation of molec- 
ular absorption spectra can be worked out analyti- 
cally - yielding a new Chebychev polynomial whose 
coefficients are themselves Chebychev polynomials. 
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Recently Kouri and co-workers [5] used this same 
series to expand the Green function of the Hamilto- 
nian, thus obtaining 'time-independent' wavepack- 
ets. 

The integration method presented in this Letter 
was discovered [13] while developing a numerical 
algorithm for calculating the sensitivity functions of 
observables to the underlying potential energy sur- 
face. The time-dependent equation for sensitivity 
functions developed by Baer and Kosloff [13,14] 
involved the evaluation of the time integral of the 
product of two evolving wavepackets, and a scheme 
closely analogous to the one presented here was then 
used. In this Letter the method is described in detail 
and its characteristics and performance are tested. 
The organization of the Letter is as follows. The 
current density integration scheme is presented in 
Section 2. Some of the tests performed are shown in 
Section 3. An application of the scheme for the 
calculation of recombinative desorption probabilities 
is presented in Section 4. 

2. The current density time-integration scheme 

For completeness the essentials of the Chebychev 
expansion of the evolution operator are outlined, 
which can be written as the following series [3,9]: 

N 
l i t(T,  R ) = e  -idor E a,,( v ¢ ) 6 n (  R )  • (3)  

n=0 

The coefficients of the expansion, an(vr)  are propor- 
tional to the nth Bessel functions J . (x) ,  more specif- 
ically a.(x)=(2-6no)J,,(x).  The symbols ~b.(R) 
denote the functions obtained by operating with 
Tn(/~N) on the initial state ~(0),  where T.(x) are the 
Chebychev polynomials. This operation can be car- 
ried out recursively using the well-known recurrence 
relation of the Chebychev polynomials, 

(/)n+l = -2i/4N'bn + 4', 1. (4) 

The recurrence is initiated by setting ¢o = ~(0)  and 

t~l = --i/~Nq50. (5)  

The normalized Hamiltonian/~N is a shift-and-scaled 
version of the original Hamiltonian operator, enforc- 
ing the Hamiltonian eigenvalues into the [ - 1 ,  1] 
domain. The original Hamiltonian eigenvalue limits 

can be easily evaluated since the effect of the grid is 
to restrict the highest value of the momentum to the 
highest representable frequency - p/max= rr/Axi" 
Thus the eigenvalues of the original Hamiltonian 
reside in the interval [Emin, Ema x], where Emi n is the 
minimum value of the potential energy on the grid 
Vmin, and Ema x = ~"n (pnmax)Z/2mn + Vmax. The 
shift-and-scaled Hamiltonian is then given by 

/~N = ( / t -  ~ ) / v ,  (6) 

where & = ½(Ema x -Emi  n) and v = 2(Ema x l  + Emin)- 
The current density of a wavepacket ~ at a 

certain nuclear configuration R is the expectation 
value of the operator ] (R)=  ½2m Mml[Pm6( 1~ - 
R) + 6(1~ - R)Pm] given by the well-known expres- 
sion 

1 
J ( t )  = ~ Im[ qr* ( t ) V ~ ( t ) ] ,  (7) 

where, for simplicity of notation, the explicit refer- 
ence to R and the summation over the different 
nuclei of the molecule (the summation over m) are 
omitted. The integrated flux F(R, t) is obtained by 
integrating J over time: F( t )=(hM)  -1 Im[I(t)], 
where 

l ( t )  = fo'~ * ( r ) V ~ ( r )  dr.  (8) 

The proposed method exploits the fact that the 
Chebychev polynomial expansion of the evolution 
operator (Eq. (3)) is actually a series which separates 
the time variable from the spatial variables. The time 
variables in this series appear in well-known analyti- 
cal forms, such as Bessel functions and exponentials, 
so that the time integration can be made analytically. 
Unfortunately, in our case using this idea in a 
straightforward way, that is plugging Eq. (3) twice 
into Eq. (8) yields a time integral of two Bessel 
functions for which we could find no convenient 
analytical expansion. We did notice, however, that if 
we think of one of the q t ( r )  in Eq. (8) as a backward 
evolution of aP'(t) rather than a forward evolution of 
~(0),  we can make use of the following analytical 
property of Bessel functions [15]: 

foXjn( X -- y)Jm( y) d y 

= 2  g ( - - l ) k J n + m + 2 k + l ( X )  • (9) 
k=O 



G. Katz et al. / Chemical Physics Letters 239 (1995) 230-236 233 

Representing ~ ( r )  as a backward evolution of ~ ( t )  
means using the following expansion: 

N 

~ * ( ' r ) = e  i~'(~-O E a , (v ( r - t ) )X ,* (R) ,  (10) 
n=0  

where Xn(R) are given by the operation of the nth 
Chebychev polynomial 7", on ~ ( t ) .  Inserting the 
expansion of Eq. (3) to represent ~ ( r )  and the 
expansion of Eq. (10) to represent 1/* * ( r )  into Eq. 
(8) yields the following expression for I(t):  

2 
I(t, R) = -e - i '~ t  Y'~ ( - 1 ) ' ( 2 -  6 , 0 ) ( 2 -  6m0 ) 

v 
n ~ m  

X A m + n ( ~ , t ) x * ( R ) V C ~ n ( R ) ,  ( 1 1 )  

where the coefficients A,+m(X) are defined as 

Am+n( X) = l foXJm( X --Y)Jn(Y) dy 
~c 

= E ( - - 1 ) k J n + m + 2 k + l ( X )  " ( 1 2 )  
k=0 

Since the number N of terms in the Chebychev 
polynomial expansion is chosen so that J.(vt) is 
negligible for all n > N, the 'infinite' summation in 
Eq. (12) can be truncated, once 2k reaches the value 
N - ( m + n +  l). 

The numerical implementation of this algorithm is 
shown in Fig. 1. The first time step (A in the figure) 
establishes the wavefunction ~ ( t ) .  This wavefunc- 
tion must now be propagated both forward in time - 
step B - and backwards (for calculation of X~ (R) in 
Eq. (12)) - step B'. It should be noted that the same 
Chebychev functions th , (R)= T,(HN)aIt(R, t) are 
needed for both these propagations, thus eliminating 
almost completely the additional computation effort. 
This algorithm computes the flux (in a given direc- 
tion) in all points in space. If only the flux through a 

[ ~ 0  ~!.. 

Fig. 2. Top: three snapshots of the wavepacket at t = 0, t = 5 and 
t = 15. Bottom: The trough shaped potential surface and the flux 
dividing surface (here, a plane). A grid of 64 × 64 points was used 
with Ax = 0.313 and M = 1. 

given surface is needed, storage can be saved and the 
flux can immediately be integrated on the desired 
surface, as it is formed. The procedure is then re- 
peated to the next time step. Overall, the additional 
computational effort required for the calculation of 
flux (in a given direction) is that of a spatial direc- 
tional derivative per Hamiltonian operation. The ex- 
tra storage is not large since the flux is accumulated 
only on a dividing plane separating the interaction 
region and the products. 

A B 
. . . . . . .  . . . . . . .  

, , , : t  

B' 
Fig. 1. A schematic view of the sequence of applying the flux 
integration in the Chebychev evolution procedure. The total time 
is divided into smaller segments. Step A is the initiation step. Step 
B and B' are executed simultaneously, using the same Chebychev 
functions. 

3. Testing the algorithm 

In order to test the algorithm, a wavepacket was 
propagated on a two-dimensional potential energy 
surface shaped as a trough with a tilting slope toward 
the right-hand side (see Fig. 2). This potential energy 
surface eventually forces an initial wavefunction to 
leave the grid. To eliminate artificial boundary ef- 
fects, an appropriate NIP was placed on the right- 
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hand side of the grid. The initial wavepacket was 
chosen as a Gaussian in the translation coordinate 
and the v = 1 vibrational eigenvalue in the perpen- 
dicular coordinate. Fig. 2 shows the potential surface 
used and three snapshots of the propagating 
wavepacket. 

The flux was calculated at two different dividing 
planes on the grid, the first is shown superimposed 
on the potential surface in Fig. 2. Due to the struc- 
ture of the potential a wavepacket positioned to the 
left of the flux planes will eventually cross them 
both at different times. Since all the wavepacket 
amplitude eventually leaves the grid passing through 
the dividing planes, the flux in this calculation should 
accumulate to one. This is shown in Fig. 3. 

The dominant source of computational error is the 
representation of momentum on the spatial grid. 
Once the grid spacing is chosen correctly, however, 
the results converge to computer accuracy. The time 
integration introduces practically no additional com- 
putational errors. This is shown in Table 1 where the 
asymptotic value of the accumulated flux is shown 
for different time steps and Chebychev series lengths. 
In principle, one could use even larger time steps 
(we obtained converged results up to At = 0.6 and 
n = 128), but this is limited in this case because of 
the presence of a non-Hermitian NIP term in the 

1 . 0  . . . . . .  

0.8 

~ 0 . 6  

0.4 

0.2 

0.0 
0 5 10 15 

t ime 

Fig. 3. The crossing rate and accumulated probability of crossing 
two dividing planes located at x = 8.76 (dashed) and x = 9.696 
(solid). Starting on the left at t = 0, the wavepacket crosses first 
the left plane and then the right. At t = 16, practically all ampli- 
tude has crossed both surfaces and the accumulated crossing 
probabilities reaches its asymptotic limit of 1. 

Table 1 
The integrated flux obtained versus the time step At and the 
number of expansion coefficients N in Eq. (3) 

N At Integrated flux 

4 0.1 0.7863304969002306 
8 0.2 0.9996801964320893 

16 0.2 0.9999735160206360 
32 0.2 0.9999999999996339 

Hamiltonian, which causes the Chebychev expansion 
to become unstable for larger time steps [16]. 

4. Application to recombinative desorption 

Recombinative desorption is a process taking place 
on a crystal surface where dissociated adsorbed atoms 
assemble to create a molecule which then leaves the 
surface. The process can be modeled as taking place 
on two potential surfaces, an inner potential describ- 
ing the adsorbed atoms and a physisorption potential 
describing the molecular physisorption well which 
leads to the dissociated species. The two potentials 
are coupled by a nonadiabatic coupling potential V12. 
The potential is a modification of the potential used 
in Ref. [17] which amounts to closing the dissocia- 
tion channel and is shown in Fig. 4 (see Table 2). 

To model the process, a wavefunction is posi- 
tioned on the inner potential. As time passes part of 
the wavefunction will cross into the outer potential 
which leads to desorption. Fig. 4 shows a model 
potential describing the recombinative desorption of 
N 2 on a Re surface. Superimposed on the potential is 
the evolving wavepacket. The initial wavepacket is 
vibrationally hot in the mode perpendicular to the 
surface. 

Fig. 4 shows the evolution of the wavepacket 
where only a small portion is able to escape. The 
mean energy of the wavefunction is 2 k J /mol  below 
the barrier crossing point, therefore the process pro- 
ceeds by tunneling. From an experimental point of 
view the internal energy distribution of the desorbing 
molecule is of interest. To obtain this information, 
the flux into the asymptotic internal eigenstates is 
calculated. This is done by first projecting the wave- 
function on the flux dividing plane (which is perpen- 
dicular to the translational coordinate Z) on an 
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asymptotic eigenfunction and then integrating the 
flux by the procedure described above. 

Fig. 5 shows the flux into the individual vibra- 
tional levels of N 2, showing only a small amount of 

Table 2 

Parameters of propagation in au 

grid Az  = 0.06 A y  = 0.06 z 0 = 1.2 Y0 = 0.9 
physisorption grid N~ = 64 Ny = 64 

inner grid N z = 64 Ny = 64 

t ime propagation At  = 0.2 (au) Ne~ = 16 

8xlO-Tf 
I 
, i x l O - 5 ,  

6x10-7 i ~ ~×~°~' 

I~ 4x10-7 - 2.,o-'! 

~ r 
o; 

2xlo-7 

o 
o 200 

t 

400 600 
t i m e ( a . u . )  

8O0 

Fig. 5. The flux function as a function of t ime for the v = 0 
(dashed) and v = 1 (bold dashed) asymptotic states. The total 
dissociative flux is shown as a solid line. The insert shows the 

integrated flux as a function of time. Notice that the flux arrives in 

waves. 

iiii/ ( 

I I 
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-0.5 0 0.5 1 1.5 

Z 

2.5 

2 

1.5 

1 

0.5 

0 Y 

-0.5 

-1 

-1.5 

-2 

vibrational excitation. This finding is in accordance 
with the picture obtained from the reverse process of 
dissociative adsorption of N 2 on Re where both 
experiment and calculation show that vibrational en- 
ergy is less effective than translation in promoting 
the dissociation [17]. 

Fig. 4. Snapshots of a recombinative desorption event. The Z 

coordinate is perpendicular to the surface and the Y coordinate is 
the molecular N - N  internuclear distance. The lower panel shows 

the wavefunction at t = 0 in the inner chemisorption potential. 
The flux dividing plane on which the flux is integrated to give the 

rate is displayed. The lower middle panel shows the wavefunction 
at t ime t = 200 au. Notice that a new wavefunction is born on the 
dissociative potential at the position of the outer turning point of 
the inner potential. The upper middle panel, t = 400 au, the 
dissociative wavepacket  progresses down the exit channel. A more 
developed wavepacket  is shown in the upper panel for t = 1000 
a u .  
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5. Conclusions 

The increasing popularity of time-dependent 
quantum mechanical methods supplies the motiva- 
tion to search for effective means to perform on-line 
analyses. In this work the integrated flux was studied 
as such an analysis tool. It was shown that the 
integrated flux to an individual asymptotic channel 
can be calculated with extremely high accuracy. 
Moreover, the flux analysis can supply causal infor- 
mation on the sequence of events that lead to a 
particular result. 

From a qualitative viewpoint the flux vector is the 
closest analogue to the trajectory line in classical 
mechanics supplying the information on the direction 
of flow of a mechanical system. In this capacity it 
has been utilized as a qualitative tool from the early 
days of time-dependent grid methods [18-21]. The 
flux analysis is, therefore, a source of insight in the 
spirit of  time-dependent quantum mechanical meth- 
ods. 
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