Volume 69, number 2

CHEMICAL PHYSICS LETTERS

15 Janua:zy 198C

QUANTUM EFFECTS IN INTRAMOLECULAR ENERGY TRANSFER:

THE ROLE OF OBSERVATIONS

Ronn: KOSLOFF * and Stuart A. RICE

The Departmenr of Chemistry and The James Franck Institute, The University of Chucago,

Clucago, Illinois 60637, US4

Received 29 August 1979; 1n final form 15 November 1979~

We show that when the nature of the preparation and observation processes are included in the quantum mechanical
description of intramolecular energy transfer, Heller’s argument for tie nonergodicity of 1solated degenerate quantum
systems must be modified The observation of nonergodic behavior in such systems 1s discussed.

Consider a system of coupled nonlinear oscillators.
It 1s now well established [1] that the classical mechan-
ical trajectones of such a system are quasiperiodic
at low energy and stochastic at high energy; the tran-
sition between these domains of different behavior
occurs over a small energy range, the location of
which depends on the system hamiltonian The cor-
responding quantum mechanical behavior was stud-
1ed by Nordholm and Rice [2].who examuned the
nature of the stationary states when represented 1n
a suitable harmonic oscillator basis. They proposed
that the quantum mechanical analogue of the transi-
tion from quasipeniodic to stochastic trajectories 1s
a dramatic change 1n the distribution of amplitude
amongst the basis functions; at low energy only a
few basis functions contribute to the wavefunction,
whereas at high energy all equienergetic combinations
of basis functions contribute to the wavefunction.
Although this cniterion 1s basis dependent, and to
some extent subjective, 1t has been venfied by studies
of the nodal distribution of the wavefunction [3},
and by studies of the nature of the representation of
the system wavefunction 1n the natural orbital basis
31

Heller [4], in an important contribution, has
pointed out the existence of interference effects that
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lead to a fundamental difference between the quan-
tum mechanical and classical mechanical behavior
of systems of coupled nonlinear oscillators. He show-
ed, using only group theoretical arguments, that non-
linear oscillator systems which have symmetries lead-
ing to degenerate quantum states do not transfer
energy equivalently to rigorously equivalent phase
space locations. In particular, 1f the initial state is a
wave packet, Heller shows that the time averaged
probability of finding the system in the initial state
is larger than that of finding the system in states
which are symmetrically equivalent. This behavior,
which 1s independent of energy, contradicts the be-
havior expected when the corresponding classical
mechanical trajectory is stochastic, since in the latter
case the time averaged probabilities for finding the
system 1n symmetrically equivalent states are equal.
The interference effects, destructive in some re-
gions of phase space and constructive in other regions,
represent only one of the fundamental differences
between, the quantum mechanical and classical
mechanical descriptions of a system. An equally impor-
tant difference arises from the nature of the observa-
tion process. In this note we demonstrate that the
means that must be used to prepare the system in an
initial state of the type discussed by Heller, or to veri-
fy the prediction that the time averaged probabilities
of finding the system in symmetrically equivalent
states are not the same, destroy the basis for the lack
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of equality of tune averaged amphtudes. Thus the
complete quantum mechanical description, including
the nature of the observauon, must be used to deter-
mine if there 15 asymptotic behavior which 1s neces-
sanly different from that of the classical mechanical
description.

Heller’s argument can be summarized as follows.
Let ¢, be the wavefuncuion of the imual state. The
tnine averaged probability of finding the system in
the state ¥, 1s [2]

Py = um [T [ Trlp, (N5, 1de |, )
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where 5. = 1a){g!. and .. = 15 (b} are the density
vhiere p, = (221, and Dy = 102(5] Are the aensity

operators corresponding to ¥, and ¥, Suppose the
eigenfunctions of the system hamiltonian are ¢,,,.
where n labels the energy and ¢ the degeneracy. Then
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Heller now compares P(ala) with P(alRa). where R

1s a sy nunetry operation Because R 1s represented

by a unitary matrix which preserves length, 1t 1s found
that
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which mmplies

Plaia) = P(ajRa).
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The prediction imphed by (5) 1s not meanmngful
unless the means of preparation of the initial state and
of observation are both specified. We now note that
m order to differenuatie betwveen symmetry cqulvmcnu
states of an 1solated system it 1s necessary to break the
1solation and the symmetry.1 e both the preparation
and the measurement process necessanly introduces
mnto the total hamiltonian for the system and the
measuring apparatus a term which lifts the degeneracy
of the states of the 1solated system hamiltonian. When
that degeneracy 1s iiiied Helier’s arguiment ceases to
be valid. For siimplicity. only the influence of observa-
tion will be analyzed below, a parallel argument can

be used to describe the preparation process.
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Consider, as an example, the Henon—Helles hamil-
tonian. The potential energy surface n this case has
three fold symmetry and belongs to the group Cs,-

or,0) =L +Lar3 sin30. (6)
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apparatus to differenuate the three equivalent states
[5,6]. the spin up state of the measuring apparatus
will be correlated with ¥, and spin down posi-

tion with ¥,. The mutial state of the measurnng ap-
paratus is, then, spin up. The interaction between the
system and the measuring apparatus 1s taken to be

=g(t)sm(%9)(&_\_~§), (N

vhere (r) specifies the tune dep _ndepcg of the
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probing interaction and G, 1s th e appropnate angular
momentum operator of the two level measurement
apparatus A measurement 1s made as follows: the
system 1s probed, subject to the interaction hamil-
tonian (7), for a period such that

j g(ryde =2x/3172. (®)

As a result of this probing, the final state of the meas-
uring apparatus records the time averaged probabili-
ty P(alb) in a system i which the threefold degener-
acy has been lifted. Although the form chosen for

Hy in (7) 1s specific, the principie implied 1s general-
ly valid; we conclude that eq (5) descnibes a situa-
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process.

The result of tlus analysis of the influence of ob-
servations on the asymptotic distribution of amph-
tude in a quantum mechanical system only shows
that the interference effects 1n a system with degen-
erate states that would prohibit quasi-ergodlc behav-
1Gr ar€ per turbed u_y uuacnv..luuu, the result does not
show that quasi-ergodic behavior must be observed,
nor does it show that it is impossible to observe the
consequences of (5). Imagine an ensemble of systems
with interaction (6) prepared 1n a coherent state. Sup-
pose the measurement process is carned out, at dif-
ferent times 1| <5 < ... on different replicas of the
ensemble. Alithough each measurement on one replica
alters the amplitude distnbution in that replica, ren-

dening 1t useless for further measurements, we imagine

that 1n the absence of measurements (5) holds so that
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measurements on different replicas will yield behavior
different from that predicted 1f (5) does not hold. The
validity of this interpretation will depend on the na-
ture of the preparation process and of the observa-
tion made, and each case must be examined for spe-
cial charactenstics. For example, one way of ob-
serving interference effects that prevent attainment
of ergodicity, and to avord having the measuring pro-
cess lift the degeneracy of the 1solated system. 1s to
determune the values of a set of operators that com-
mute with the symmetry operators of the isolated
system. In the case of the Henon—Heiles system one
such operator is the angular momentum. Because the
potential energy operator (6) has C5, symmetry, pos-
sible changes 1n the angular momentum must satisfy
selection rules and therefore, the angular momentum
will not change 1n an ergodic fashion.

CHEMICAL PHYSICS LETTERS

15 January i980

This research was supported by grants from the
NSF CHE78-01573 and AFOSR F49620-76-C-0017.
Discussions of the contents of this note with Profes-
sor R A. Harris and with Professor R. Heller were
helpful in focusing our thoughts.

References

[1] M. Henon and C Heiles, Astron. J. 69 (196%) 73:
J. Ford, Advan. Chem. Phys. 24 (1975) 155.

[2] K S.J. Nordholm and S A. Rice, J. Chem. Phys. 61 (1974)
203,61 (1974) 768.

. [3] R M Stratt, N.C. Handly and W H. Miller, . Chem. Phys.,

to be pubhished.
[4] E.J. Heller, Chem. Phys. Letters 60 (1979) 332,
[5] A Peress, Am.J. Phys 42 (1974) 886.
[6] R Koslotf, Advan Chem. Phys , to be published.



