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A semiclassical quantization procedure 1s introduced within the Green’s function formalism for non-closed quasipeniodic
trajectorics which have previously defied quantization with this formalism The results are interpreted 1n terms of the uncer-
tainty principle and lead to conjectures concerning the semiclassical quantization of ergodic trajectories

1 Introduction

When applying quantum theory to complicated
multidimensional chemical or physical systems, 1t 1s
often necessary to determine the set of energy eigen-
values. One approach to the problem is provided by
the stationary phase integral approximation, common-
ly known as WKB or semiclassical methods. Semiclassi-
cal quantization methods have been developed in a
variety of different fashions for situations (and ener-
gies, etc ) where the classical equations are integrable
[1—6]. Considerable interest remains 1n the semiclassi-
cal quantization for cases where the classical trajec-
tories are stochastic 5]

The majornty of semiclassical quantization methods
erther utilize, or are closely related to, the Einstein for-
mulation [7,8} which quantizes the action along a set
of topologically inequivalent paths whose number
equals the dimenstionality of the system. These types
of quantization methods leave unanswered the physi-
cally interesting question as to whach classical paths
actually contnbute to generating the semiclassical
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wavefuncuons {9] for multidimensional non-separable
systems. Such questions require the retention of phase
information, and Green’s function semiclassical quan-
tization methods can, in principle, attack this problem
[5,6,9—11]. However, within the Green’s function for-
malism, as described below, some of the simplest readi-
ly solvable classical systems have defied semiclassical
quantization [12] Here we generalize these methods
to enable them to apply to cases of quasiperiodic non-
closed orbits. The quantization conditions involve a
set of classical trajectories as allowed by the uncertan-
ty principle. One important reason for pursuing the
generalization of the Green’'s functton method to in-
tegrable systems, which are quantizable by other
means, 1s the fact that these semiclassical Green’s func-
tion techniques do not appear to be hmited to the do-
main of integrable classical trajectories. Indeed, this
formalism permits us to make some conjectures con-
cernung semuclassical quantization of ergod:c classical
trajectones.

A direct method for calculating the sermiclassical
eigenvalues 1s obtained by examning the density of
states of the system. The poles generate the eigenval-
ues Gutzwiller {6], Berry and Tabor [12] and others
[11} have developed methods of evaluating the density
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of states by a series of stationary phase integrals. Their
somewhat differing methods all use only periodic clas-
sical orbits as a base for the quantization. The present
paper, on the other hand, shows that in any quantiza-
tion of multidimensional systems quasiperiodic trajec-
tories have to be considered as well. Thus is 1llustrated
by use of a simple example for which there are no
penodic classical orbits

The starting point for obtamning the semiclassical
approximation involves the propagator G(g,¢q', 1)
with g the spatial position and # the time. According
to the spirit of method, this propagator is calculated
from a path integral using the stationary phase method
The classical nature comes about through the station-
ary phase integration which selects out the classical
trajectory of duration ¢ connecting the end poimnts g
and ¢’. Thus trajectory 1s then used to evaluate the ac-
tion of the propagator. At this point quantum features
appear through the possibility of many different clas-
sical trajectories contributing to the propagator G(q,
q', r). Ths arnises because, although the positon of the
end points and the transit time are fixed, the momenta
at the end points are not. Therefore, there is the pos-
sibility of many contributions to the propagator [13]
from classical trajectonies with different momenta.

The second stage of approximation, following
Gutzwiller {6], 1s to convert the propagator G(q,q’, 7)
to the energy Green’s function G(g, g, £) through a
Fournier transform. In the semiclassical approximation
thus integral 1s approximated by the method of station-
ary phase, and the result 1s [6,14]

' — A
G(q.q'.E)=Q@mh)"2 2+ |Dg|\/?

classical

paths

X exp[ih~! W*(q, q', E) — phases], (1.1)
where )

q
W'@q.q.E)= [ p-dq,
q

Y

o2w/agaq’ 92wW/oqoE
Do = /eq3q" 2 /293 (1.1a)

92W/oEaq’ d2W/oE?

and the phases in (1.1) are discussed after (2.17) be-

low.
Formula (1.1) 1s the starting point of Gutzwiller’s
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method. Then he proceeds to calculate the density of
states through

n()= [ dq G(g.q.E). a2)

Thus g integral is also approximated by the stationary
phase method, so only classical trajectories are foun-?
to cocntnbute to the density of states in which the mni-
tial and final momenta are equal. This implies that only
periodic orbitals can be considered. A pole in the density
of states 1s found whenever the action of the perntodic or-
bit 1s a multiple of 277 (apart from some constants
arising from the phases in (1.1) which are discussed be-
low) [15]. A similar conclusion 1s found in the work of
Berry and Tabor [12] who utilize an action—angle
varnable formulation

Once this theory had been developed, 1t became ap-
parent that systems without periodic orbits could not
be quantized by these Green’s function methods. The
most obvious example 1s the two-dimensional harmonic
oscillator whose frequencies have ratios which are irra-
tional. Berry and Tabor recognized this problem m
their paper [12].

The present paper, whose main motivation is a crii-
1cal examination of the semiclassical Green’s function,
deals with the quasipentodic classical orbits directly,
showing that and how they contribute to semiclassical
quantization. This significant conclusion expands the
famuly of trajectories which can be quantized by this
semiclassical method; it prownides interesting physical
insight into those classical trajectories which contrib-
ute to the wavefunction; and it enables us to provide
conjectures on the quantization of ergodic trajectories.

2. The eigenvalues of the two-dimensional
incommensurable harmonic oscillator

Because one-dimensional semiclassical methods for
quantum analysis are so effective, it is surprising that
so far multidimensional methods have not been. For
example, the one-dimensional semiclassical theory of

the harmonic oscillator matches almost exactly the
full quantum mechanical theory [11]_On the other

hand, the harmonic oscillator had not been quantized
successfully in multidimensional Green’s function the-
ory. Using the incommensurable multidimensional har-
monic oscillator as the example, therefore, the present
section of this paper examunes the reason why the
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multidimensional theory has been difficult and how
the proposed modifications clear up these previous
difficulties

When the Green’s function miethod 1s critically ex
apmned 1n the spint of the semclassical approxima-
tion, 1t would seem that 1t ought to have a certain de-
gree of fuzziness in accord with the uncertainty prin
uple, a fuzziness which 1s absent 1n previous calcula-
tions with strictly periodic orbits It 1s by incorporat
ing this fuzziness of variables into the semiclassical
Green's function method that the multidimensional
quasiperiodic systems can be quantized

As discussed 1n section 1, the common method of
wdentifying eigenvalues of a system within the Green’s
function formahsm 1s to caiculate the poles 1n the den-
sity of states function This requires the performance
of three successive stationary phase approxusiations
for the path integral (The methods of Gutzwiller [6]
and of Berry and Tabor [12] differ in the orders of n-
tegration chosen ) Instead of proceeding to calculate
the density of states 1t 15 possible to obtain the eigen-
values one step earher 19,10], starting from the ener-
gy Green’s function,
6la,q',5)= L 6,(@) /@) (e - 1) @n
for the points g and q' The exgenvalues of the system
can be identified as poles of G(gq, ', L), regardless of
the end points ¢ and ¢" This conclusion is important
because any initial and final points and not only g = ¢’
have to reflect the full quantum nature of the system
Methods based upon (2 1) retain phase information
which 15 destroyed 1n the stationary phase approxima
tion to the g integral u, (1 2) Hence, the semiclassical
wavefunctions ¢/(q) can n principle, be obtamned as
residues of (2 1) at the poles E; [9]

In the spint of the semiclassical approximation,
our starting point for the Green's function s eq (1 1)
The next step 1s to analyze how a pole can be built up
in the semiclassical approximation Examining eq
(1 1), 1t can be seen that a pole is possible whenever a
constructive interference 1s accumulated by an infinite
number of classical trajectortes which have the same
end points ¢ — ¢" and their actions 1n phase The mamn
deviation from the previous theories 1s at this point
In previous theories all trajectories have actions that
contribute exactly in phase, here the actions contnb
ute almost 1n phase (modulo 27fi) It 1s this shght
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change which opens a new famly of classical trajecto
nies to contributing to the quantization scheme In or-
der to illustrate our 1deas, we solve 1n detail the semu-
classical quantization of the incommensurable two-di-
mensional harmonic oscillator

Consider a two-dimensional harmonsc oscillator
with frequencies w, and w,, whose ratio 1s irrational
We seek a pole at energy £ As mentioned above, tra
jectortes with almost the same action are required to
construct.vely interfere to produce the pole Consider
first the reference trajectory starting with x5, y, at
t =0 and ending at xy,y at time £ = #; Since the
enesgy and time are fixed, the values xg, 59, X1, 5]
are enough to calculate the amphtude and phase of
the two oscilfations 1n the x and y directions {rom the
well-known trajectories

x()=A, cos(w,t+9,),

y(t)=Ay cos(wyt+¢y) 22)

Next, another trajectory 1s sought with the same
mitial and end points Of necessity, the new trajectory
reaches the end pont at a different time £ =¢,,,,, The
subscripts denote that the trajectory oscillates # more
times in the x direction and m more times in the y di-
rection than the first reference trajectory This trajec-
tory 1s found by adyusting the amphtude and phases
subject to conservation of the total energy which con-
fines the amplitudes to

L= A} +a A2, 23

where &, = 3 m,t.o;'Z , and the matching of end points
which relates the amphtudes to phases by

Ay =yglcos ¢, (24)

Using (2 3) and (2 4) there 15 a relationship between the
amphtude and phase of the two trajectories Denoting
these phases by ¢2, ¢, etc , this gives

Ay =xgpfcos o,

cos(@) +w, ;) cos@) + 6o, lyp)

cos ¢;’,"’

25
cos ¢2 23)

A time adjustment constant is defined by the relation,
26

The constant §, measures the deviation from strict
peniodicity of the nm trajectory from the reference
trajectory Definc also 2 phase adjustment constant

1

am = 11+ 2mfeo, + 5,
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gy = 60— gim en

Next n and m are chosen 1n order to mumize the dif-
ferences §,, and Sy Therefore, by using (2.6) and (2 7)
eq (2.5) can be expanded to the first order 1n § and
Ag yielding

Ag, sin ¢, cos(P, + w, ;)

= [cos b, sin(y + wy )] (wyby +Ady),  (2.8)

or

B¢y =Bby,

where

By = wy[1 —tan ¢, cot (g, + thl)]—l

Simular relations are oLtamed for By and A¢y Using
the condition (2 3) of conservation of energy A¢,
and A¢y can be related by

sxA¢x = _EyA¢y, (2 9)
where
g=Etang, (1=x,y),
with
E.=a A f, ete
We now define the important constant €,
- m 2om (“x  n
=§.-8 =27r(— —'-L) =— ——_—)
€% 0 Wy Wy we \wy, m
(210)

Examining eq (2 10) 1t can be seen that € 1s propor-
tional to the error 1n a rational approxaima aon to the
urational number w,/w),, This approximation 1m-
proves faster than !/n2 for n large Therefore for large
n and m, € can be made as small as we please Usmg
the relations between the adjustment constants, up to
first order all remaining quantities can be expressed as
functions of €

In order to sum the Green’s function over classical
trajectories, the following compares the action of the
reference trajectory to the one which revoives n times
on the x axis and m times on the y axis The action of
the reference trajectory

WI =S‘(t1) +Et1,
with
5*(11)=5,{t;) v 5,(t1),

@211)
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Etl =Ext1 +Eyt1,
and

S[(tl) = [m,w,/Z sm(witl )]

X {[@P + (g1 cosleo,ty) - 240a 7},
1s compared to the action of the nm trajectory,
W;m =Sx(tmn) +Sy(tnm) +E,’vlm tum "3mtnm
(212)
Using the defimtion (2 6) of ¢, we get
W, (0 +8 ) +EXT (21 +8,)+5,(t) +6,)

nm ~ 2x

+EJ7(t) +8,)+ 2mEY" 0oy + 20mE ) [w,
@215
Next the action 1s e/panded 1 powers of € with the
result

385,13 +5,) 3E, 35,(11+5,) ﬁ,)

£ _ ot
Wom = W1 +( aE, o ' oE, ol

oy 0 T w, e

214
where the unprimed variables correspond to the rejer
ence trajectory Now using eqs (2.3)—(2 10) the a:
tion becomes

Wom = W) +2anE, Jeo, + 27mE, [e,

2nn 2mm (21rm 9L, 2 aEy) c

£,Bc B
+e2 X0 (1 1)+ 0 (€3
£8, 758, V1OED
Eq (2 14) demonstrates that the action of the refe
ence trajectory and the mm trajectory differ by the
penodic factor

2ank, jw, + ZmnEy/w ,

plus hugher-order terms 1n the parameter ¢ As dis
cussed above, when 7 and m grow large, the difference
1 action between the reference trajectory and the nm
trajectory {except for the periodic factor (2 15)} can
be made small much faster than the growth 1n the pen
od indices m or n Tais means that for each presele.ted
difference 1n action trom the reference trajectory [« x
cluding the pentod.c factor (2 15)] there are infimtely
many difjerent classica! hiajectories with the same spa
tial end points and actions within this range

(215

@16

6ll
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Using the above results for the action, we can derive
the pre-exponentials (1 1a) Using the relation (2 15)
between the actions, we conclude that the pre-expo-
nentials also differ by high-order terms in €

The next step 1n the semiclassical calculation of
G(q,q',E)1s to add up the propagators for each con-
tnbuting path in order to look for conditions for
producing a pole The contribution to the propagators
from the reference trajectory is

Gy =y N DglY2 expl(h)~ W],

while for the nm trajectory 1t 1s necessary to add n/4
for each passage through a classical turning pomnt {6.81.

Gy = ()Y M1 DgIH2

Q17

X exp {Gn)~! Wi+ 2m(E, Jhw, — yn

+ (€, Ihw, —3)m} + O (>N 18)

In order to have a pole, an infinite number of trajecto-
ries must contnbute in phase. Examining (2 17). we
find that n and 1 can be chosen of such large magni-
tude that the difference between (2.17) and (2 18)1s
small enough such that infinitely many trajectores
add up provided the quantization conditions

E/hw, =l+3, L fhw, =h+z,

! A integers.

(2.19)
are fulfilled. These are the well-known quantization
conditions in the x and y directions Because the sys-
tem is separable, this resuit could have been guessed
from combimng the two one-dimensional oscilfator
quantization conditions

Summarizing, it has been found that a pole can be
constructed provided infinitely many trajectories add
up in phase. The overwhelming majority of contribut-
Ing trajectones are the ones with very long lifetimes
For this group the differences in action can be made
as small as desired, so that all the trajectories construc-
tively interfere. These contributing trajeciones have a
simple physical interpretation in terms of the (non-
Tigorous) time—energy uncertainty principle. Trajecto-
rtes nm have energies which depart shigntly from (2.19)
for the x and y directions (Of course, £ = Ey + £y 15
fixed ) However, this deviation AE . 1s allowed be-
cause of the fimte transit tme ¢,,,, and AE, 1, <7
As nm grow large AE . becomes smaller, and this1s
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possible because € of (2 10) 1s becoming small even
faster.

3 Action—angle variables

Additional understanding of the problem can be
gained by a transformation to action—angle variables
to consider G(8,0’, £) with 0 the angle variables. For
the harmonic oscillator, this change 1s trivial, and the
classical orbits are of the form of eq (2.2) with the
angle vanable appeanng as argument while the ampli-
tude consists of the action The energy Green’s func-
tion 1s again to be constructed as a sum of contribu-
tions from classical trajectones using the appropriate
serniclassical formula It 1s found, however, that only
one classical trajectory connects the mnit1al @ and end
0’ angles This can readily be seen from the classical
trajectories (2.2) Let 8,0, be the starting points,
and 6}, 0 be the final point. The reference trajectory
has a transit ime of #;. We assume there exists a sec-
ond trajectory with £,,, Thus, we have for the refer-
ence orbit

0. =0 +wety, 0,=0,+w1,

G.1)

while in the case of the nm trajectory 1t 1s necessary to

note that the angles are defined only modulo 27.
Hence, thus trajectory yields

0y =0y twytpyy +2xk. 8, =0, +e b, +2ml,

32)
where k and [/ are arbitrary integers (positive or nega-
tive) Equating 6, —6, and 6, —6,, between the two
trajectories gwes

W, (ty — t,yn) = 27k, wy(tl ~tym) =27l

33
Dividing these two equations yields the contradiction
W, Jw;, = k[l Hence, only one trajectory exists going
from @ to ©' (modulo 27) for the incommensurable har-
monic oscillator This means that no poles can be
developed n the semiclassical G(9,0',E).

Obwviously the system has quantum states, and the
problem with the semiclassical quantization can arise
for a variety of reasons. In the first place 1t may stem
from the difficulty of employing action—angle type
vaniables as canonical quantum mechanical variables.
However, 1t 1s possible to consider G(g, g’ , E) with ¢
and ¢’ defined by the classical canonical transforma-
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tion from action—angle vanables ® and 8°, whereupon
the semiclassical quantization becomes 1dentical to
that of section 2 Hence, the culprit agan appears to
be the stationary phase integrations converting the semi-
classical G(E) from q to @ representations ¥. Neverhteless,
1t should be possible to find a means for semuclassical-
ly quantizing G(0,8°, £) directly

A way to overcome this deficiency s to allow a
small degree of fuzziness 1n the angles 8 and 8'. This
can be accomplished by extending the summation 1n
the action—~angle analog of eq (1 1) te include all trajec-

tories whose end angles are within a distance € from ® and 8

(modulo 27). Once this has been done, the situation
returns to the one analyzed in section 2, and the cor-
rect quantization conditions are obtained. The ra-
tionale for this blurring procedure, of course, lies 1n
the uncertainty principle This fuzzied end-point con-
struction 1s 1n accord with the observations of Heller
[15] that constructive phase interference over small
spatial regions occurs for sermuclassical quantization.

Classically, once the angles have been specified,
then thetr conjugate vanable, the actions, also can be
completely specified, leaving no room for uncertainty.
Therefore, a certain degree of fuzziness has to be added
to keep with the uncertainty principle In the himut
where i ~ 0, the semiclassical lirmit, the degree of fuzzi-
ness € (a function of /) has to disappear. Even for € ar-
bitrarily small there are infinitely many classical tra-
Jectones whuch can be added up 1n phase to producea
polein G(00°,E).

An important conclusion can be derived upon close
examination of the above results. Thus 1s, that a pole
can be found in the Green’s function provided the dif-
ference 1n action between two trajectories with the
same end poinits decreases faster than the number of
revolutions (r#n above) or than the tune needed to
reach the final posttion in the limit of large nm or long-

¥ Marmcv [11] explains that the origmal path integral cannot
be written in action—-angle varmables because only hinear
canomcal transformations are permitted
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time trajectones. As a conjecture, 1t can be concluded
that if the difference 1n action between the reference
trajectory and the multipeniodic one (modulo 2#), 1n-
creases less than linearly in time, a pole can be produc-
ed. On the other hand, consider 2n unstable stochastic
trajectory which begins imtially very close to the ref-
erence trajectory. With each orbit the difference in ac-
tion between trajectories grows exponentially in time.
Therefore, they cannot add up to build a pole, unless
some special conditions prevail in which this random-
ness does not appear modulo 277t on a scale of 2afi.
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