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A semiclassical quantlzatlon procedure IS introduced wlthm the Green’s function formahsm for non-closed quaslpenodlc 
UaJCCtOnCS which have prewously defied quantrzatmn wtth this formahsm The results are mterpreted m terms of the uncer- 
tamty prmnple and lead to conJectures concerrung the semwlasscal quantlzatlon of ergodlc traJectorles 

1 Introduction 

When applymg quantum theory to compkated 

multidlmenslonal chemical or physical systems, It IS 
often necessary to determtne the set of energy ergen- 
values. One approach to the problem IS provtded by 
the stationary phase Integral approxrmatton, common- 
ly known as WKB or semrclasstcal methods. Semrclassr- 
cal quantrzatton methods have been developed m a 
vanety of different fashons for sttuattons (and ener- 
gles, etc ) where the classtcal equattons are tntegrable 
[l-6]. Constderable mterest remams in the semtclasst- 
cal quantlzatlon for uses where the classical trajec- 

tones are stochastic [5] 
The majority of semlclasslcal quantlzatlon methods 

either utrhze, or are closely related to, the Ernstem for- 
mulation [7,8] whrch quantrzes the actron along a set 
of topologtcally mequtvalent paths whose number 
equals the drmensronahty of the system_ These types 

of quantizatlon methods leave unanswered the physl- 
tally mteresttng questton as to wtuch classical paths 
actually contnbute to generatmg the semtclassrcal 
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wavefunctlons [9] for multuhmenstonal non-separable 
systems. Such questlons require the retention of phase 

mfortnatlon, and Green’s function semlclasslcal quan- 
tlzatron methods can, m prmclple, attack thus problem 
[5,6,9-l I]. However, \wthm the Green’s functron for- 
mahsm, as described below, some of the stmplest reach- 
ly solvable classtcal systems have defied sermclasacal 
quantlzatron [ 121 Here we generalize these methods 
to enable them to apply to cases of quaslperlodlc non- 
closed orblts. The quantlzatron condttrons mvolve a 
set of classrcal trajectortes as allowed by the uncertarn- 
ty pt-mcrple. One unportant reason for pursumg the 
generalzation of the Green’s functron method to III- 
tegrable systems, which are quantrzable by other 
means, IS the fact that these semtclassrcal Green’s func- 
tlon technrques do not appear to be hnuted to the do- 
marn of Integrable classical traJectorres. Indeed, thrs 
formahsm permits us to make some conJectures con- 
cerrung senuclassrcal quantrzatron of ergodrc classral 
tl8JeGtNlGi. 

A dtrect method for calculatmg the semrclassrcal 
elgenvalues 1s obtamed by exammmg the densrty of 
states of the system. The poles generate the ergenval- 
ues Cutztier [6], Berry and Tabor [ 121 and others 
[ 11: have developed methods of evaluatmg the density 
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of states by a serves of stationary phase integrals. Their 
somewhat differing methods all use only perio&c clas- 
s~cal orblts as a base for the quantizatlon. The present 
paper, on the other hand, shows that in any quantiza- 
tlon of multldunenslonal systems quasiperiodic tralec- 
tones have to be considered as well. Tlus is Illustrated 
by use of a simple example for wtuch there are no 
penodic classical orbits 

The startmg pomt for obtaming the semiclassical 
approxlmatlon involves the propagator G(g, q’, c) 
with q the spatial position and t the tune. According 
to the spuit of method, this propagator is calculated 
from a path integral using the stationary phase method 
The class~al nature comes about through the statlon- 
ary phase integration which selects out the classical 
traJectoty of duration t connectmg the end pomts q 
and q’. Tlus traJectory IS then used to evaluate the ac- 
tion of the propagator. At thts povlt quantum features 
appear through the posslblhty of many dfferent clas- 
s~cal traJectones contribuhng to the propagator G(q, 
q’, t). Thus ar&es because, although the posinon of the 

end points and the transit time are fiied, the momenta 
at the end pomts are not. Therefore, there IS the pos- 
slbllity of many contrlbutrons to the propagator [13] 
from classical tralectones with &fferent momenta. 

The second stage of approxunahon, followmg 
Cutmkr [6], IS to convert the propagator G(q,q’, f) 

to the energy Green’s function G(q, q’,E) through a 
Fourier transform. In the semlclassxal approxlmahon 
tius mtegral IS approximated by the method of statlon- 
ary phase, and the result IS [6,14] 

X exp[ihbl W*(q, Q’, E) - ph=l, 
where 

W’(q,q’,E)=Jp-dq, 
4 

V-1) 

a2rv/aqaq’ a2tvIaqaE 
Ds = 

a2 rv/aEaq’ a* rv/af? 

<1_la> 

and the phases in (1-l) are discussed after (2.17) be- 
low. 

Formula (1.1) 1s the startmg point of Gutzwiller’s 

method. Then he proceeds to calculate the density of 
states through 

tl(E) =Jd4 G(q,q,E)- (l-3) 

T~s q integral IS also approximated by the stationar, 
phase method, so only classical trajectories are four.:’ 
to contnbute to the density of states in which the mi- 
tial and final momenta are equal_ This implies that only 

penodlc orbitals can be considered. A pole m the density 
of states IS found whenever the action of the penodic or- 
bit 1s a multiple of 2n?i (apart from some constants 

arismg from the phases m (1-l) which are discussed be- 
low) [ 151. A similar conclusion IS found in the work of 
Berry and Tabor [ 121 who utile an action-angle 
vanable formulation 

Once this theory had been developed, It became ap- 
parent that systems without penochc orblts could not 
be quantized by these Green’s function methods. The 
most obvious e.xample IS the two-dimensional harmonic 
oscfflator whose frequencies have ratios wluch are irra- 
tional. Berry and Tabor recognized this problem m 
their paper [12]. 

The present paper, whose mam motlvatlon is a crli- 
1ca1 examination of the semIclassIcal Green’s function, 
deals with the quaslpenoduz classical orbits directly, 
showmg that and how they contribute to semiclassical 
quantuation. This sqyuficant conclusion expands the 

famrly of tralectories wfuch can be quantized by this 
semiclassical method; It provides interestmg physicai 
insight into those classical trajectorres which contrib- 
ute to the wavefunctlon; and it enables us to provrde 
conJectures on the quantlzatlon of ergodlc trajectories. 

2. The eigenvalues of the two&ensional 
incommensurable harmonic oscillator 

Because one-dunenaonal semiclasslul methods for 
quantum analysis are so effective, it is surprising that 
so far multidimensional methods have not been. For 
example, the one-dunenaonal semiclassical theory of 
the harmonic oscillator matches almost exactly the 
full quantum mecharucal theory [I I] _ On the other 

hand, the harmonic oscillator had not been quantLed 
successfully III multidimensional Green’s function the- 
ory. Usmg the incommensurable multidimensional bar- 
momc oscillator as the example, therefore, the present 
section of thus paper exammes the reason why the 
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multldlmenslonal theory has been dlffcult and how 
the proposed modlficatlons clear UP these prewous 
dlfficultles 

When the Green’s functlon method 1s cntically ex 
ammed m the spint of the semdasslcal appromma- 
tlon, lt would stem that It ought to have a certam de- 
gree of fuzzmess m accord unth the uncertamty prm 
LJple, a fuzzmes= whlch 1s absent in premous calcula- 
tlons wlth stnctly perlodlc orblts It IS by mcorporat 
mg tlus fuwness of vanables mto the semdasncal 
Green’s functlon method that the multrdlmenslonal 
quaslpenodlc systems can be quantlzed 

As dlscussed m sectlon 1, the common method of 
Identlfyrng etgenvaluec of a system wlthm the Green’s 
functlon formahsm IS to calculate the poles m the den- 
sny of states functlon Thn requnes the performance 
of three successwe statlonary phase appromnlatlons 
for the path mtegral (The methods of Gutzwlller [6] 
and of Berry and Tabor [ 121 dlffer m the orders of in- 
tegratlon chosen ) Instead of proceedmg to calculate 
the denaty of states lt 1s possrble to obtam the eigen- 
v&es one step earher r9,10], startmg from the ener- 
gy Green’s function, 

G(g,g’J)= c #,(&?Xi)/(E. -b,) (2 1) 
I 

for the pomts 4 and q’ The eigenvalues of the system 
cm be Identlfled as poles of G(q, q’, L ), regardless of 
the end points q and q’ Ttis concluslon IS important 
becduse any mtial and hal points and not only q = q’ 
have to reflect the full quantum nature of the system 
Methods bdsed Lpon (2 1) retam phase mformatlon 
whlch IS destroyed m the statlonary phase appromma 
tion to the q mtegra111. (1 2) Hence, the semvlasslcal 
wavefunctions e,(q) can m pnnaple, be obtarned as 
resldues of (2 1) at the poles El [9] 

In the spirit of the semdassrcal apprommatlon, 
our startmg point for the Green’s functlon IS eq (1 1) 
The next step 1s to analyze how a pole can be bmlt up 
in the semdaswcal approamatlon Exammmg eq 
(1 l), lt can be seen that a pole IS posable whenever a 
constructive rnterference IS accumulated by an lnfbute 
number of clasacal trqectories whah have the same 
end points 4 - q’ and then actlons m phase The mam 
dewatron from the prevlous theones 1s at tIus point 
10 prevrous theones al1 trajectones have actlons that 
cmrhute exactly in phase, here the actlons contrlb 
Ute almost m phase (modulo 27rfi) It ts thls shght 
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change whlch opens a new famlly of class~cal trajecto 
nes to contnbutmg to the quanttzatlon scheme In or- 
der to illustrate our Ideas, we solve on detall the senu- 
classlcal quantlzatlon of the mcommensurable two& 
menslonal harmomc oscillator 

Conslder a twodlmensonal harmomc osnllator 
wlth frequenaes wX and wv whose ratio IS lrratlonal 
WC seek a pole at energy E As mentloned above, tra 
Jectones lvlth almost the same actlon are requlred to 
construct,vely mterfere to produce the pole Consrder 
first the reference trqectory stertmg wlthxg,yO at 
r * 0 and endmg at x1 ,yl at tlme t = tl Smce the 
energy and tlme are Fured, the valuesxO,yg,xI,yI 
are enough to calculate the amphtude and ph?se of 
the two osallatlons m the x and y dlrectlons from the 
well-known traJectones 

Y@)‘$ COS&J+4y) 0 2) 

Next , another trajectory 1s sought wlth the same 
mitlal and end points Of necessity, the new trajectory 
reaches the end pomt at a dtfferent tlme t = rnrn The 
subscripts denote that the traJectory osullates n more 
tunes m the x dnectlon and m more tlmes UI they dl- 
rectlon than the first reference tqectory Ths tralec- 
tory IS found by adjustmg the amplitude and phases 
subject to conservation of the total energy whlch con- 
fines the amphtudes to 

(2 3) 

where a, = i m,c$, and the matchmg of end pomts 
whlch relates the ampbtudes to phases by 

A, = Qos $JX > Au = v(Jcos $ (2 4) 

Usmg (2 3) and (2 4) there 1s a relatlonship between *the 
amplitude and phase of the two traJectones Denotmg 
these phases by & en” X, x ,etc,ttisgJves 

(2 5) 

A tlme adJustment constant is defined by the relatlon, 

r nm = rl + 2mtlw, t S, (2 6) 

The constant 6, measures the devlatlon from stnct 
penodlctty of the nm trqectory from the reference 
trqectory Definc also a phase adpstment constant 
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w&= &-4gm (2 r) 
Next n and m are chosen m order to mmlmae the dlf- 
ferences 6, and 6,, Therefore, by usmg (2_6) and (2 7) 
eq (25) can be expanded to the fiist order m 6 and 
A@ YleIdIng 

A& sm 4~~ cos(& + wX ft j 

= [cos 4~ sm(& + 0, Q)l (Q, * Aq), 

or 

A& = P$,, 

where 

(28) 

PX = %[l- Laq 4X tot@ + offer’ 
Slmlar relatlons are ottzmed for 6, and A$, Usmg 
the condttron (2 3) of conservatlon of energy A& 
and A$, can be related by 

h A& =-4vA4L, (2 9) 

where 

4; =E, tan 0, (I =x,Y), 

wlth 

Ex =a,AX,etc 

We now define the Important constante, 

(2 w 
Exammmg eq (2 10) lt can be seen that E IS propor- 
tlonal to the error rn a ratlonal appro=maJon to the 
Irratlonal number w.Jw,, Th~s approxunatlon lm- 
proves faster than !/n* for n large Therefore for iarge 
n and m, e can be made as smal1 as we please Uimg 
the relauons between the adjustment constants, up to 
fust order all remauung quant&zs can de Lxpressed as 
functlons of E 

In order to sum the Greel’s functmn over classrcal 
tqectones, the followmg compares the action of the 
reference trajectory to the one whlch revoives n tunes 
on the x ax~s and m trmes on the y ax~ The action of 
the reference trajectory 

w; =S*(r,) +Ef,, (2 11) 

wth 

Et, =Extl +acytl, 

and 

%(t,) = [m,w,/2 sm&tl)l 

x l k?pj* + (4;)*] cos&t: ) - 2&7;>19 

IS compared to the actlon of the nm tralectory, 

WJm = sx(rnm 1 * SY(fnm) + EX” t”m ‘-F” tnm 

(2 12) 

Usmg the defimtlon (2 6) of rm we get 

WJrn =Sx(zl +6,)+EXm(tl+6x)+S,(rl +$) 

Next the actlon IS e/panded IR powers of E wnth tbe 
resul t 

Wimz Wi+ 
asx(tl +a,j aEx 

aE 
x TG-+ 

+%E,t=E,,+ 
wY 

(2 141 

where the unpnmed vanables correspond to the rel ev 
ence traJectory Now usmg eqs (2.3)-(2 10) the a: 
tron becomes 

WJrn = W; + 27mEJw, + 2îvnEy/wy 

t$&y$ (1 1)+0(G) 
Yx*xY 

(2 ‘5) 

Eg (2 14) demonstrates that the actlon of the refe 
ence traJectory and the nm tG%JeCtO~ drffer by the 
penohc factor 

2nnExlwX f 2mnEylw,, , 12 ‘6) 

plus hlgher-order terms m the parameter F As dis 
cussed above, when n and m grow large, the dlfferenct 
m action between the reference traJectory and the nm 
tralectory [except for the perlok factor (2 15) ] Gin 
be made smal1 much faster than the growth m the per1 
od indices m or n Trus means that for each preselectell 
dtiference m ackon from the reference trajtctory [I x 
cludmg the pen&.c factor (2 15)] there are mfìmt4~ 
many drfèrenr clam.zJ tlalectones v&h the same %pa 
tnl end pomts and actlons wthm thls range 
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Usmg the above results for the actlon, we can derive 
the preexponentlals (I la) Usmg the relation (2 15) 
between the actlons, we conclude that the pre-eupo- 
nentlak also differ by Irrgh-order terms in E 

The next step III the semlclasslcal calculation of 
G(g,q’, E) IS to add up the propagators for each con- 
tnbutlng path m order to look for conditions for 
producmg a pole The contribution to the propagators 
from the reference traJectory is 

G1 = (Ifij-’ lDslu2 eup[(A)-’ IV;], (2 17) 

While for the tin2 traJectory It IS necessary to add ~74 
for each passage through a classlcal turning pomt [6,81, 

+ (E, km.\, -&zJ +0@)) (2 IS) 

In order to have a pole, an infinite number of traJecto- 
nes must contnbure in phnsc. Exan&m-~g (2 17). we 
find that II and )II can be chosen of such large magni- 
tude that the difference between (2.17) and (2 18) IS 
small enough such that mfmltely many traJectorles 
add up provided the quantlzdt’lon condltlons 

EJfiw, = I +f, C_,/tiw_, = X ++, 

I A Integers. (2.19) 

are fulfilled. These are the well-hnown quantlzatlon 
condltlons in the s and 1’ directions Because the sys- 
tem IS separable, tl-us result could have been guessed 
from comblnmg the two one-dlmenslonal oscdlator 
quantlzatlon condltlons 

Summarzing, it has been found that a pole can be 
constructed provided infinitely many traJectorles add 

up m phase. The overwhelmIng majority of contribut- 
mg traJectones are the ones with very long hfetlmes 
For thus group the differences m action can be made 
as small as desired, so that all the traJectones construc- 
hvely interfere. These contrlbutmg trajectones have a 
simple physlcal mterpretatlon m terms of the (non- 
ngorous) tune-energy uncertanty prtnclple. TraJecto- 

rtes 11rn have energies which depart shgntly from (2.19) 
for the x and y directions (Of course, E = E, + E,, LS 

fwed ) However, tlus devlatlon AE, 1s allowed be- 
cause of the finite transit time t,r,,l and AE,t,,,,, < fi 
As nm grow large AE, becomes smaller, and this IS 
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possible because E of (2 10) IS becommg small even 
faster. 

3 Action-angle variables 

Additional understandng of the problem can be 
gained by a transformation to action-angle variables 
to constder G(0,9’, E) kvlth B the angle variables. For 
the harmonic oscillator, this change 1s tnvial, and the 
classtcal orblts are of the form of eq (2.2) wth the 

angle vanable appeanng as argument whtle the amplk 
tude consists of the action The energy Green’s func- 
tlon IS agam to be constructed as a sum of contrlbu- 

tlons from classical traJectones usmg the appropriate 
semlclasslcal formula It 1s found, however, that only 
one classical traJectory connects the mltlal9 and end 
B’ angles Tlus can readily be seen from the classIca 
trajectones (3.3) Let I!?~, 0,. be the startmg pomts, 
and 0;) 0; be the fmal pomt. The reference traJectory 
112s a transit tme of t 1. We assume there exists a sec- 
ond tralectory with tn,,* Thus, we have for the refer- 

ence orbrt 

0; =8, +m,tl, e; =sY +w4 t1, (3.1) 

wble IJ-I the case of the tzm trajectory it IS necessary to 
note that the angles are defied only module 2n. 
Hence, tius trajectory yields 

KY; = 8, + wxrnrn -I- 2xX-. e: = 8, + 0, t”, + 2d. 

(3.2) 

where k and 1 are arbitrary mtegers (positive or nega- 
tive) Equatmg 0; - 0, and (3; -6, between the two 
traJectorles gives 

wx(tl - f,,,) = MC, CdJfl - t,,n*) = 2ni. (3 3) 

DIMding these two equations yields the contradlctlon 

“_&* k k/l Hence, only one traJectory exists gotng 

from f3 to 6’ (modulo 2’1~) for the incommensurable har- 
momc oscillator Thus means that no poles can be 
developed m the semiclassical G (9, B’, E). 

Obviously the system has quantum states, and the 
problem with the semlclasslcal quantuation can arise 
for a variety of reasons. In the fit place It may stem 

from the difficulty of employmg action-angle type 
variables as canorucal quantum mechanical variables. 
However, It IS possible to consider G(q, q’,E) with q 
and 4’ defied by the classical car~orucal transforma- 
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tion from actron-angle vanabfes 8 and 8’, whereupon 
the semxlassuxf quantization becomes Identical to 
that of sectron 2 Hence, the culprrt agatn appears to 
be the statronary phase integratrons converturg the semr- 
classrcaf G(E) from Q to 0 representatrons *. Neverhteless, 
rt should be possible to find a means For sermcfassrcaf- 
fy quantrzmg G@,O’,E) duectly 

A way to overcome thts deficrency IS to allow a 
small degree of fuznness m the angles 8 and 8’. Thrs 
can be accomplrshed by extendmg the summation m 
the actron-angle analog of eq (1 1) tc include all trajec- 
tortes whose end angles are within a &stance E from 8 and e’ 
(modufo 2rr). Once thus has been done, the srtuahon 
returns to the one analyzed m sectron 2, and the cor- 
rect quantization condrtions are obtamed. The ra- 
tfonale for this blurrtng procedure, of course, hes in 
the uncertamty prmcrpfe Thrs fumed end-point con- 
struction IS m accord wtth the observattons of Heller 
ilSJ that constructtve phase Interference over small 
spattaf regions occurs for senuclassrcaf quantrzatlon. 

Cfass~cally, once the angles have been specified, 

then their conjugate vanable, the actions, also can be 
completely specrfied, Ieavmg no room for uncertamty. 
Therefore, a certam degree of fuzzmess has to be added 
to keep wrth the uncertarnty prutctpfe Tn the furut 
where fz -+ 0, the semrclassrcaf hmrt, the degree of fuzzr- 
ness E (a functron of h) has to dnappear. Even for ear- 
brtrarily smaff there are mfmrtefy many classlcaf tra- 
fectones wfuch can be added up rn phase to produce a 

pole 111 G( 8 8 ‘, E). 
An rmportant concluston can be dertved upon close 

exammatron of the above results. Thrs rs, that a pole 
can be found m the Green’s functron provrded the drf- 
ference m actton between two trajectories with the 
same end pomts decreases faster than the number of 
revolutions (nnz above) or than the tune needed to 

reach the final posrtron III the hmrt of large nm or fong- 

* hfarmcv [I 11 explams Lhat tfre orrsrnaf pa!h rntewI cannot 
be written rn actlon-angle varnbfes because only fmear 
unorucal transformations are permnted 

tune trajectories. As a confectme, It can be concluded 
that rf the difference in actron between the reference 
traJectory and the multrpenodk one (modufo 2n), tn- 
creases fess than futeariy in time, a pole can be produc- 
ed. On the other hand, consider an unstable stochastrc 
trajectory whch begins lnltiafly very close to the ref- 

erence trafectory. Wrth each orblt the chfference III ac- 
tlon between trajectorres grows exponentially rn tune. 
Therefore, they cannot add up to burld a pole, unless 
some special condltlons prevad in which this random- 
ness does not appear modufo 2rrfi on a scafe of 2nfi. 
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