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Quasi-bound (resonance) states are present in the continuous spectrum of the Hamiltonian of two coupled Morse oscillators. 
Two different methods for approximating these as local&d states are compared. The algebraic approach is shown to be in very 
good accord with-the other method which is formulated in coordinate space and hence is differential in character. For these 
highly excited states an intennul~plet mixing term is included in the algebraic Hamiltoniau 

1. Introduction 

Bound states of two coupled Morse oscillators have 
been the subject of much recent discussion [I-S]. 
Such a Hamiltonian has however also a continuous 
spectrum. It corresponds to an atom interacting_with 
an oscillator via a potential which has an attractive 

part. Embedded in this continuum we expect to find 
quasi-bound states [9-l l] where the atom is (tempo- 
rarily) bound to an excited state of the oscillator. The 
purpose of this Letter is to compare two different 
ways of approximating these as localized states. One 
method is based on wavefunctions in coordinate space 
and the secondis algebraic. 

The primary conclusion is the agreement between 
the two approximation methods and the exact scatter- 
ing computation [ 1 1] . The reason why such an agree- 
ment is required is that one is approximating a quasi- 
bound state by a bound one. This is achieved by “de- 
coupling” a manifold of bound states from the con- 
tinuum to which they are _in fact coupled [ 12]_ Hence 
all such procedures are inherently approximate. 

Such a comparison is particularly important for the 
algebraic approach, where the geometrical significance 
of the procedure is less obvious. What is done in that 
approach is to express the Hamiltonian using the gen- 
erators of a compact * Lie group. The resulting spec- 
trum of the Hamiltonian is then necessarily discrete. 
It is then found that the bound atate spectrum ex- 
tends beyond the nominal dissociation energy [14,15] _ 
*The total number of bound levels is however finite, 
and the density of suchstates declines past the dis- 
sociation energy and ultimately vanishes. For diatomic 
molecules [ 143 the bound states past the nominal dis- 
sociation threshold can be unambiguously identifkd 
as the states quasi-bound by the centrifugal barrier 
(Yotational predissociation” [16]). Quasi-bound states 
are however also found in the algebraic treatment of 
non-rotating triatomic molecules [ 15]. There is con- 
siderable indirect evidence that these are the states 
corresponding to “vibrational predissociation”. The 

+ For the technical def?nit%on of “compact” and other 
group theoretic terms. see ref. [ 131. 
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present study is the first direct demonstration of this 
interpretation. 

The agreement between the algebraic and the co- 
ordinate space (“*differential”) approach is found not- 

only for the energy levels but also for the wavefunc- 
tions- 

2. Coordinate space Hamiltonian 

In coordinate space the Hamiltonian used is that 
employed in the scattering computations [ 11,173 : 
Two equivalent Morse oscillators coupled by a cross 
kinetic energy term 

H=HAB +HBA + (fi2/m&2/arA+~A +D, _ (1) 

Here HAB (and HBA) are Hamiltonians of a Morse os- 
cillator corresponding to the two bond modes, Al3 
and BA of ABA 

HA, = -(Jr’/2 &S)a2/8& + &fexp [-=@AB - ro)] 

- 2 exp f-a(rA~ - r&1 1 (2) 

and Similar~)’ for rr, A. The reduced mass ls as usual 

PAB = mAmB/(mA + mg). The mxs of the central 

atom is taken here (as in several other corresponding 
studies [11,18,19]) to be low mg = 6mA. The two 
Morse oscillators are thus strongly coupled. The sec- 
ond parameter which deserves special mention is the 
value of the anharmonicity parameter x,, where 1163 

X, = oJ#o/We , m,xe = fi2a2/2pAB , 

D, = &40,x, , (3) 

x, = f/19.85 in the present model. This is an a-typical- 
ly high value implying a very anharmonic oscillator_ 
Note that the number, (N + 1)/2, of bound states of 
the Morse oscillator is related to x, as the highest in- 
teger value below 2D,lo, -r- l/2. 

3. The algebraic Hamiltonlan 

A simple algebraic Hamiltonian for two coupled, 
equivalent, Morse oscillators has been discussed-re- 
cently [8 ] . This Hamiltonian is simpler than that giv- 
en by (1). (It is closely related to the 1-l resonance 
approximation to the Hamiltonian (l), which was in- 
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traduced in ref. [6] .) The primary s&plifying feature 
of the algebraic Hamiltonian as used in ref. [S] is that 
it has a good constant of the motion. This is P, the 
sum of the vibrational quant_urn numbers of the two 
local modes. For many ABA trlatomi&the multiplets 
of levels corresponding to different values of P hardly 
overlap in energy; Hence terms which couple levels of 

different values of P are to have only a 
is therefore a 

an accurate description of the over- 
of the stretching of many 

) triatomics. Other model 
is good quantum num- 

ber are known. 

Explicitly, the algebraic I-Iamiltonlan used in ref. 
[S] is given by 

H=A [C,(O(1)2) + C,(O(2)2)] +x2(02) 

+ hC#2) _ (4) 

Here -4A = w,x, and the first term is the two un- 
coupled Morse oscillators.-The magnitude of B affects 
only the distance between multiplets, and not the 
spacings of levels within a multiplet (cf. (5) below), 
and X is the coupling amongst the local modes. The 
first two terms in (4) are diagonal. Using In, m) to 
designate a local state with n quanta in one mode and 
m in the other, 

(m, tilHln, m) = 4A [n(n -N) + m(m -N)] 

+4BRP-ZN)+h[n(N-m)+m(N-n)] , (5) 

07r+l,n--IliWn,m> 

= -X[n(m + l)(N -mXN - n + l)] l/? _ (61 

As can be seen from (6), P = n + m is a good quantum 

number. The numerical value of X usedin the algebraic 

approach is one that ensures that the Hamiltonian (l), 
will, to order I/N, have off-diagonal elements (6) of 
the same numerical value as the algebraic Hamiltonian 

(4). 

4. Intemahiplet mixing 

As a measure-of l & importance of the interaction 
between adjacent multiplets one can cbmpare.the en- 
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ergy gap (denoted by Win the figures) between the _ 
highest energy level of a given multiplet and the level 
just belqw it (in the same multiplet) and the energy. 
gap (denoted by D in the figures) between the same 
highest level and the lowest level of the next higher 
multiplet. O&e D becomes comparable to W, energy 
gap ccnsiderafions no longer restrict intermultipet 
mixing. 

Fig. 1 contrasts the situation for water {parameters 
in the Hamiltonian (4) from ref. [S]) and for the pa- 
rameters in (4) for the present problem. Since the 
highest observed overtones in water are in the P = 5 
multiplet, intermultiplet coupZing can be safely ne- 
glected. Not so in the present problem (and in all prob- 
lems for the quasi-bound states where P is comparable 
tom. To see this analytically consider first the s&n- 

pier case when X &4 (weak coupling between the lo- 
cal modes). Within a multiplet, the range of energy 
levels is determined by the anh~monicity A and 
equals AP. The energy separation between the centers 
of two consecutive multiplets is determined by the 
frequency and equals ==+A + 2&&V - P)_ (4AJV 
is the frequency, o,, at the bottom of the weU.) 
Hence for small X values intermultiplet mixing is im- 
portant only asP approachesN. However, a larger 
than typical value of h (as is true here because of the 
low mB fmA ratio) wiIl cause a further broadening of 
the range of energies in a multiplet: Fig. 2 is similar 
to fig, 1 except that the energy and the Hamiltonian 
parameters are in reduced units [S] , and the only dif- 
ference between the two panels in fig. 2 is the value 
of h. (Fig. 2 is for N = f9 corresponding to x, = 
l/19.85, which is the value used here.) 

3 I5 

Fig. 1. Inter (0) and intra (w) multipkt energy gaps versus 
P= n + m. Energy In lo3 cm-‘. (a) Water (A = - 18.96 cm-l, 
B = -1.14 cm-l, a = 1.03 cm-‘, N= 44). @) The same Ham- 
fltur&m, (4), as used for water but with parameters co*orm- 
$ttg to the prese_nt problem (4 = -15.92 cm-‘,B = 0.70 
CIII-*, h= 3.38 cm-l ,N= 13). Note the far high& value of 
&/A ali compFd to-water. The r&u& is that the energy scale 
in (b) is exp=de.d as kquired to (a). 

Fig 2. Energy gaps (in units of -A Jcos x) versus P, as in rip, 
1, for the Hamiltonian (4) with the sameN as the present 
problem atid with the parameters B = 0, A = -cos x and h = 
10 sin xfIV (dimensionless). x is the reduced coupling param- 
eter between the local modes, tan x = -NA/lOA 18 J. The 
two plots differ in t&e magnitude of the coupling: (a) x = 
O.&r, (b) x = 0.4x. 
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The evidence then is that one must break the O(2) 
symmetry of the Hamiltonian (4) and ahow inter- 
multiplet mixing. 

In principle one can construct an algebraic Ilam& 
tonian which is strictly equivalent to the coordinate 
space Hamiltonian Cl). Here we adopt a GmpIer pro- 
cedure, namely including only the lowest-order terms 
which faii to conserve P. To understand the route to 
such a term it is easiest to begin with the classical limit 
of the Hamiltonian (4). This was computed in refs. 
[8,2I] and to order l/Nis 

-i- 4B(P -N)2 + 2AN2 

+ Wl(N -2,) fJ2W - $11 , 

v(il, I,, 8 1, 02) = -2~(1~1.#2 COS(~ 1 - e,) . (7) 

Jf and ei are the action and angle variables for the ith 

bond and P = 11 +I,. As is evident the classical limit 
is that of two anharmonic oscillators wi+h a 1 : 1 re- 
sonance term of the same type discussed in ref. 161. 

The conservation of P = II + 12 follows from the 
fact that the Hamiltonian (7) is cyclic in the conjugate 
angle variable, 01 + 82, To break the O(2) symmetry 
we therefore add the next higher resonance, which is 
a 1 : 2 term. The Fourier analysis [6] of the Ham& 
tonian (1) shows that the couphng coefficients of the 
1: 1 (VI1 COS(#~ -+a)) and1 :2 (V,, c0s(28~ - 
82)) terms must be in the ratio E63 

vi1lV11= -_[(l - wI/wg)/tl i- ~l/~O)l V2 f (8) 

where w1 = we - 2wexe11. Hence to order I/N, 

V21/5I = -(&lN31’2 . (9) 

In the classical limit, the lowest non-linear resonance 
term that will induce ~te~~ti~~et coupling is there- 
fore, using (7) for VI1 

V21 = -V11(11~iv)l~2 = 2(%j..Ml(Ivr2)1@ . W) 

Due to con&vation of parity there is also a VI2 
term. Hence the 1 : 2 resonance terms to be added to 

(7) are 

Scr,.&, ol, 3,) = 2~M&%‘i@@ co@, - 2fQ) 

+ ~q~~~~~~~~ COs@~ - 282) ) (11) 
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With!Q=A./N_ 
The algebraic operator whose classicaI limit to or- 

der l/N (determined by the method of ref.‘ [2 l] ) is - 
(11) is given by 

S-= 7dQl-&_CQ~+ ? Q2_..3 + Q1-Q2&!1- + Q2+>1 

09 
The matrix elements of S are implied by 

Sjn,VZ)=SfIn+ 1,??2-22)+Sij#Z- l,m+2) 

+s~~n~2,m-.1~+s~~n--2,m~1~. (13) 

sf=g[(N-n)(n+ l)(N-r++r+ 1) 

Xm(?&?--1)Qv-??z+2)J1~, 

sl=rj[(N--rr+ l)n(N-tn) 

X (ru + l)(m-+ 2)(N - m - l)] l/2 , 

s$=v[(N-UQo(+ l)(N-n+ 1) 

x n(n - l)(iY--n +2)]l/2 , 

sz =s#V--mf l)m(N-n) 

X(n+ 13@2+23(N-zz- l)f1’2. (143 

These matrix elements have been computed from the 
definition [22] of the Q operators 

Q+jrz>= [(N-n)(rz t- l)]lfll, + 1)) 

Q_],>= f{N--+ l)n]l~2+- 1). (15) 

The &nplIcation of (133 is that S couples states of the 
muItiplet P only to the neighbouring,P -i- 1, multiplets. 
As a consequence, the (multiplet P) block-diagonal re- 
presentation (S), (6) of the HamStonian H (4) is 
blown up to a tri-block-diagonal representation (53, 
(6), (133 of the Hamihonian 1H + S, (4), { 11). Needless 
to say it is numerically simpler to diagonallze this al- 
gebraic ti-b~o~-~agon~ matrix than the non-sparse 
codrdirxate representation matrix of the Hamiltonian 

Cl). 

5. Re?nllts 

The eigenvalues (and eigeSmctic&) of the alge- 
b&c ISn-niltonianU~given by (4)) and the algebra&z 
NamiltonianW -f S @ given by (1233 we& computed, 
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The number** ofboundand quasi-boundstateswere 

f&mdtobe the sam!: forboth computations,namely 

100, the number of Morse oscillator states squared. 
TheeigenvaluesofthesetwoalgebraicHarniltonians 
were differentbyrmsdeviation of6X 10e3 eV,and 

evenmore ofaprominentdifferencewasfoundfor 
thewavefunctions(see beIow).The reasonis,of 

course, that the Hamiltonian H precludes intermulti- 

**Thisnumber(10O)isdetenninedbyN.Sincex,=(N+ 
l)-l,tbevalueofNandhencethenumb&ofstatesis 
immediatelygiveninte~softheparametersinthecoor- 
dinatespaceHamiltonian(1). 

pletmixing.Such eigenvalues that did change were,as 

expected,nearthe boundaries ofthe multipletswhere 

the coupling induced by S is particularly important. 
The eigenvalues for the Hamiltonian N + S are giv- 

en, for all 100 states, in table 1. The parameters used 
in table 1 were optimized for a best fi_t to the first 55 
states computed_by coordinate space methods. (With 
the result that, say, 7) does not quite have the classical 
value of x/N, and A differs slightly from --w,x,/4.) 
The rms deviation of the fit is 2.3 X 1O-3 eV. The 
reason for the existing deviation is, in part, that only 
the lowest two resonances in the Fourier expansion of 
the momentum coupling were taken into account. 

Table 1 
Energylevelsoftwo coupledMorse oscillators(eV) 

Symmetricstates 

algeb.a) coord.b) 

Asymmetricstates 

algeb. a) coord.b) algeb. a) coord.b) &eb.a) coord.b) 

-0.61100 -O.tillOO 
-0.48174 -0.48313 
-0.36140 -0.36347 
-0.32716 -0.32579 
-0.25214 -025402 
-0.22251 -0.22173 
-0.15762 -0.15856 
-0.12333 -0.13369 
-0.07987 -O.08011 
-0.07322 -0.07497 
-0.03183 -0.03313 
-0.01544 -0.01508 
0.00924 0.00945 
0.02742 0.02624 
0.05483 0.05228 
0.05996 0.06137 
0.07730 0.07312. 
0.08626 0.08713 
0.11970 0.12178 
0.14639 0.13955 
0.15658 0.15669 
0.17319 0.17542 
0.19231 0.19627 
0.20925 0.20746 
0.21135 0.21055 
0.23565 0.24090 
0.26543 026708 
0.29015 0.29384 

0.30609 0.31436 
0.32557 0.32083 
0.33251 0.33115 
0.33940 0.34445 
0.37533 0.37280 
0.38927 0.39650 
0.40868 0.41538 
0.42495 0.43556 
0.43732 0.44366 
0.46335 0.46768 
0.48503 0.48118 
0.49468 0.50565 
0.51528 0.52447 
0.53312 053025 
0.55119 0.55793 
0.55766 0.58298 
058324 059267 
0.60765 0.60509 
0.62386 0.62565 
0.63534 0.64954 
0.65581 0.66594 
0.67058 0.67565 
0.69235 0.69840 
0.70851 0.71231 
0.73790 0.73060 
0.76082 o-74281 
0.78982 0.75742 

-0.46584 -0.46443 
-0.35161 -0.35096 
-0.24804 -0.24794 
-0.19665 -0.19636 
-0.15669 -0.15685 
-0.10451 -0.10376 
-0.07882 -0.07884 
-0.02486 -0.02532 
-0.01183 -0.01082 
0.02720 0.02633 
0.04049 0.03603 
0.05834 0.05446 
0.06000 0.06294 
0.07730 0.07314 
0.10883 0.10847 
0.12404 O-12502 
0.16040 0.16174 
0.18499 0.18475 
0.19310 0.19700 
0.20944 0.21043 
0.23746 0.23296 
0.24957 024598 
0.28147 0.28369 
0.30458 0.30206 
0.31223 0.31758 
0.32629 0.33245 
0.35440 0.35525 

0.39118 0.39364 
0.41232 0.40325 
0.42076 0.42494 
0.42979 0.43955 
0.46269 0.45274 
0.49264 0.49180 
050791 0.51913 
0.51660 0.53143 
0.55677 0.53448 
0.58445 0.57138 
0.58785 0.59830 
0.60770 0.61044 
0.64627 0.63389 
0.66390 0.66017 
0.69879 0.67260 
0.70790 0.70456 
0.76824 0.71691 
0.79260 0.74438 

a) UsingthealgebraicHa~toniann+S~eqs(4),(12))withparametersA=-l.97336 X 10m3 eV, B= 0.086286 X10-'eV,h= 
0.418533 X 10-j eV,~=O.O19779 X 10m3 eV.N=lP. 

b)Usingthe wordinatespaceHamiltonian~~((eq.(l))~~ithparametersD,=0.76 eV,a=lau-',rnA= 35/31amu, mB= 210131 
amu(adaptedfromref. [ll]).Thealgebraicandcoordmatespaceresul~ddifferbyrms=0.00228eV. 
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Higher terms will give higher order in the generators 
and will improve the fit, 

Table 1 also shows the best results obtained by di- 
agonaIizing the coordinate space Hamiltonian in the 
basis of 100 products of Morse functions In&l+& 
where 0 < nA,, ,&A =G 9 denote the vibrational 
quanta in the AB, BA bonds Cl lf _ The convergence 
has been tested by comparison with alternative (hyper- 
spherical DIVAH) basis functions, and with exact 
scattering results [ 1 l] _ It is believed that (at lea;&) the 
lowest 5.5 states are well converged_ For some of the 
lower quasi-bound states the coordinate space compu- 
tation has also been checked by using these states as 
initial states for Gme propagation [lP] _ To the best 

numerical accuracy, such states did exhibit a pure ex- 
ponential decay, 

It should be stressed that the use of a unitary rep- 
resentation of the compact algebras to describe the 
system precludes the pure algebraic calculation of the 
width * , but we can use the double Morse coefficients 
to build a geometric representation of the wavefimc- 
tions and to propagate it in time in the geometric rep- 
resentation of the potential [ 191 _ Such a calculation 
was done on the state (16*). It was found that the 
iifetirne of this resonance was T = O-163 ps which is 
very close to the lifetime r = 0.168 ps in the purely 
coordinate space approach. As a result, the width of 
this resonance state was 4.0 X 10m3 eV, which is one 
order of magnitude smaller then the average separa- 
tion between the resonances. 

It is not always realized that the algebraic approach 

does provide wavefunctions (i.e. eigenvectors; see, for 

example ref. [15f )_ In the present problem these are 

the expansion coefficientbs of the wavefunction in prod- 
ucts of Morse eigenfunctions of both bonds. Such 
coefficients were found to be in good agreement with 
the coordinate space computations_ As expected, 
many states (in particular the “local modes” [3,11, 

193) have dominant coefficients for states In, m> in a 
single multipiet P = n f m, but there are also others 
(in particufar the “delocalized” and the ‘hyperspheri- 
cal modes” [ 11,18,19] ) with dominant coefficients 
from neighbouring multiplets P, P * 1. The intermulti- 
Flet mixing, section 4, is essential for accurate accounts 
of such non-local modes. 

+ Using non-unitary representation it was recently shown 
how a purely algebraic @mputation of the width can be 
performed [23f _ 
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As examples for the changes in the-wavefunctions 
caused by the intermultiplet mixing consider the fol- 
lowing cases: 

(1) The wavefunction for the symmetric state with 
energy -0.07987 eV is approximately given by ‘. 

*J?=-O.o7987 eV = O-92 ISO+> + O-3122+) + 02 141’) __ 

This is a local mode state in the multiplet P = 5, but 
the next dominant contribution is from the state with 
a different P. 

(2) The resonance state with energy 0.17319-eV 
(symmetric) has its dominant contributions (more 
than 80%) from the states 143’) (34%) and ]7l*f> 
(46%) which belongs to two different multiplets. 

6. Summary 

In the algebraic approach to bound-state problems 
the Hamiltonian is expressed in terms of generators of 
a compact group. The resulting spectrum is then pure- 
ly discrete. Yet realistic algebraic Hamiltonians pre- 
dict states higher in energy than the nominal dissocia- 
tion threshold. By comparison with more convention- 
al (coordinate space based) methods and with scatter- 
ing computations, these higher energy states are iden- 
tified as the quasi-bound c‘resonance”) states of the 
HamiItonian. 

To obtain an accurate description of the quasi- 
bound states where intermultiplet coupling is always 
important, and in view of the strong local mode cou- 
pling constant of the coordinate space H~~to~~, a 
new term trilinear in the generators (breaking the O(2) 
symmetry) was added to the algebraic Hamiltonian of 
ref. [S]. _ 

A system of two st.ron@y coupled anhaimonic os- 
cillators is a well characterized example [17,24] of 
classically chaotic dynamics_ Yet a compact Lie group 
provides a realistic description even of the quasi- 
bound states. Of course, quite a few of the eigenstates 
are linear comb&ations of many basis functions, with 
all expansion coefficients below 0.5 [25] . But the al- 
gebraic approti& is fully able to account for such be- 
haviour. 
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