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Quasi-bound (resonance) states are present in the continuous spectrum of the Hamiltonian of two coupled Morse oscillators.
Two different methods for approximating these as localized states are compared. The algebraic approach is shown to be in very
good accord with-the other method which is formulated in coordinate space and hence is differential in character, For these
highly excited states an intermultuplet mixing term is included in the algebraic Hamiltonian.

1. Introduction

Bound states of two coupled Morse oscillators have
been the subject of much recent discussion [1—8].
Such a Hamiltonian has however also a continuous
spectrum. It corresponds to an atom interacting with
an osciilator via a potential which has an attractive
part. Embedded in this continuum we expect to find
quasi-bound states [9—11] where the atom is (tempo-
rarily) bound to an excited state of the oscillator. The
purpose of this Letter is to compare two different
ways of approximating these as localized states. One
method is based on wavefunctions in coordinate space
and the second is algebraic.

The primary conclusion is the agreement between
the two approximation methods and the exact scatter-
ing computation [11]. The reason why such an agree-
ment is required is that one is approximating a quasi-
bound state by a bound one. This is achieved by “de-
coupling” a manifold of bound states from the con-
tinuum to which they are in fact coupled [12]. Hence
all such procedures are inherently approximate.
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Such a comparison is particularly important for the
algebraic approach, where the geometrical significance
of the procedure is less obvious. What is done in that
approach is to express the Hamiltonian using the gen-
erators of a compact * Lie group. The resulting spec-
trum of the Hamiltonian is then necessarily discrete.

It is then found that the bound state spectrum ex-
tends beyond the nominal dissociation energy [14,15].
The total number of bound levels is however finite,
and the density of such states declines past the dis-
sociation energy and ultimately vanishes. For diatomic
molecules [14] the bound states past the nominal dis-
sociation threshold can be unambiguously identified

as the states quasi-bound by the centrifugal barrier
(“rotational predissociation® [16]). Quasi-bound states
are however also found in the algebraic treatment of
non-rotating triatomic molecules [15]. There is con-
siderable indirect evidence that these are the states
corresponding to “vibrational predissociation”. The

* For the techmnical definition of *‘compact” and other
group theoretic terms, see ref. [13].
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present study is the first direct demonstration of this
interpretation.

The agreement between the algebraic and the co-
ordinate space (“‘differential’”) approach is found not-

only for the energy levels but also for the wavefunc-
tions.

2. Coordinate space Hamiltonian

In coordinate space the Harmniltonian used is that
employed in the scattering computations [11,17]:
Two equivalent Morse oscillators coupled by a cross
kinetic energy term

H=Hpp +Hygp +#2[/mg)o2[orpgdrgs +De - (1)

Here i, g (and Hp p ) are Hamiltonians of a Morse os-
cillator corresponding to the two bond modes, AB
and BA of ABA.

Hpp=—B221,p)9% [0r4 5 + Do{exp[—2a(rap — 1)l

—2 expf—a(rag —7g)1} @

and similarly for Hy 5 . The reduced mass is as usual
Hap = mampf(m, +mp). The mass of the central
atom is taken here (as in several other corresponding
studies [11,18,19]) to be low mp = 6m, . The two
Morse oscillators are thus strongly coupled. The sec-
ond parameter which deserves special mention is the
value of the anharmonicity parameter x,, where [16]

Xe = woXplwe , WeXe=hH2a%[21,p ,

D,= c,.:§/4«:a3exe . 3)

Xe = 1/19.85 in the present model. This is an a-typical-
1y high value implying a very anharmonic oscillator.
Note that the number, (V + 1)/2, of bound states of
the Morse oscillator is related to x,, as the highest in-
teger value below 2D /o, + 1/2.

3. The algebraic Hamiltonian

A simple algebraic Hamiltonian for two coupled,-
equivalent, Morse oscillators has been discussed-re-
cently [8]. This Hamiltonian is simpler than that giv-
en by (1). (It is closely related to the 1—1 resonance
approximation to the Hamiltonian (1), which was in-
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troduced in ref. [6].) The primary simplifying feature
of the algebraic Hamiltonian as used in ref. [8] is that
it has a good constant of the motion. This is P, the
sum of the vibrational quantum numbers of the two
local modes. For many ABA triatomics, the multiplets
of levels corresponding to different values of P hardly
overlap in energy: Hence terms which couple levels of
different values of P are likely to have only a smalil ef-
fect. Neglecting such terms is therefore a realistic ap-
proximation, and the aforementioned algebraic Ham-
iltonian provides an accurate description of the over-
tones of the stretching modes of many ABA [8] (and
ABC [20}) triatomics. Other model Hamiltonians
(e.g., refs. [3,6]) for which P is a good quantum num-
ber are known. ]

Explicitly, the algebraic Hamiltonian used in ref.
[8] is given by

H =A[C,(01)2) + C,(0(2)2)] + BC,(02)
+2AC,(U2) . @)

Here —4A4 = cw X and the first term is the two un-
coupled Morse oscillators.- The magnitude of B affects
only the distance between multiplets, and not the
spacings of levels within a multiplet (cf. (5) below),
and A is the coupling amongst the local modes. The
first two terms in (4) are diagonal. Using |n, m) to
designate a local state with # quanta in one mode and
m in the other,

(m, n|H\n, mY=4A[n(n — N) + m(m —N)]

+4BP(P —2N) + Mn(V —m) +m(N —)] , (5)
$m t1,n—1{H\n, m> '

= AlnGn + DNV —m)NV —n +1)]1 12, (6)

As can be seen from (6), P=n +m is a good quantum
number. The numerical value of A used in the algebraic
approach is one that ensures that the Hamiltonian (1),
will, to order 1 /N, have off-diagonal elements (6) of
the same numerical value as the algebraic Hamiltonian

).

4. Intermultiplet mixing

As a measure of the importance of the interaction
between adjacent multiplets one can compare.the en-



Volume 116, number 4

ergy gap (denoted by W in the figures) bztween the .
highest energy level of a given multiplet and the level
just below it (in the same multiplet) and the energy
gap (denoted by D in the figures) between the same
highest level and the Jowest level of the next higher
multiplet, Once D becomes comparable to W, energy
gap coensiderations no longer restrict intermultipet
mixing,

Fig. 1 contrasts the situation for water (parameters
in the Hamiltonian (4) from ref. {8] ) and for the pa-
rameters in (4) for the present problem. Since the
highest observed overtones in water are inthe P= 5
multiplet, intermultiplet coupling can be safely ne-
glected. Not so in the present problem (and in all prob-
lems for the quasi-bound states where P is comparable
to V). To see this analytically consider first the sim-

1
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Fig. 1. Inter (D) and intra (W) multiplet energy gaps versus
P=n + m. Energy in 10® cm™, (2) Water (4 = —18.96 cm™,
B=-1.14 cm™, A= 1.03 cm™, N = 44). (b) The same Ham-
iltonian, (4), as used for water but with parameters conform-
ing to the present problem (4 = —15.92 em™, B = 0.70
cm™}, A= 3.38 cm™1, N = 19). Note the far higher value of
A/A as compared to'water. The result Is that the energy scale
in (b) is expanded as compared to (a).
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pler case when A €4 (weak coupling between the lo-
cal modes). Within a multiplet, the range of energy
levels is determined by the anharmonicity 4 and
equals AP. The energy separation between the centers
of two consecutive multiplets is determined by the
frequency and equals ~—4(4 + 2 BY(V — P). (—44N
is the frequency, w,, at the bottom of the well.)
Hence for small X values intermultiplet mixing is im-
portant only as £ approaches V. However, a larger
than typical value of A (as is true here because of the
low myg/m , ratio) will cause a further broadening of
the range of energies in a multiplet. Fig. 2 is similar
to fig. 1 except that the energy and the Hamiltonian
parameters are in reduced units [8], and the only dif-
ference between the two panels in fig. 2 is the value
of A. (Fig. 2 is for N = 19 corresponding to x, =
1/19.85, which is the value used here.)

70
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Fig. 2. Energy gaps (in units of -4 /cos x) versus P, as in fig.
1, for the Hamiltonian (4) with the same /V as the present
problem and with the parameters B= 0,4 = —cosx and A=
10 sin /N (dimensionless). x is the reduced coupling param-
eter between the local modes, tan x = -NAf104 [8]. The
two plots differ in the magnitude of the coupling: (g) x =
0.27, (b) x = 0.97.
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The evidence then is that one must break the O(2)
symmetry of the Hamiltonian (4) and allow inter-
multiplet mixing.

In principle one can construct an algebraic Hamil-
tonian which is strictly equivalent to the coordinate
space Hamiltonian (1). Here we adopt a simpler pro-
cedure, namely including only the lowest-order texms
which fail to conserve P. To understand the route to
such a term it is easiest to begin with the classical limit
of the Hamiltonian (4). This was computed in refs.
[8,21] and to order 1/NVis

H=Hy(l1,1)+ V({I,13,04,0,),

Ho(ly,I5) = —4ANI; + 44T} — 4ANI, + 4AI2
+4BP —N)2 +24N?
+ AN 1)+ I, (N -I)] .

Vly,12,01,02) = 2NN 115042 cos(0; — 0;) . (7)

I; and 8; are the action and angle variables for the ith
bond and P= Iy +1,. As is evident the classical limit
is that of two anharmonic oscillatorswitha 1 : 1 re-
sonarnce term of the same type discussed in ref. [6].

The conservation of P =1 + I, follows from the
fact that the Hamiltonian (7) is cyclic in the conjugate
angle variable, 6, + 0. To break the O(2) symmetry
we therefore add the next higher resonance, which is
a 1 : 2 term. The Fourier analysis [6]} of the Hamil-
tonian (1) shows that the coupling coefficients of the
1:1(Vyycos(@; —63))and1:2 (Vaycos(20; —
8,)) terms must be in the ratio [6]

Va1l Vip = —[(1 — @y/wg)/(1 + wifwg)]2,  (8)
where w; = we — 2wex 1. Hence to order 1/N,
Va1l Vip == /IN)2 . ©

In the classical limit, the lowest non-linear resonance
term that will induce intermultiplet coupling is there-
fore, using (7) for ¥5;

Va1 =—V13 (/N2 = 20JNINL VI . (10)

Due to conservation of parity there is also a V3,
term. Hence the 1 : 2 resonance terms to be added to
(7) are

Sy, 15,04, 05)=2nNI{(NI)2 cos(8, —264)
+ 2 NI, (NI )2 cos(64 — 265), an
258

CHEMICAL PHYSICS LETTERS

10 May 1985

with 7= A/N.

The algebraic operator whose classical limit to or-
der 1/N (determined by the method of ref. [21])is -
(11) is given by
§S=7[01+02 Q1+ + Q5 )+ Q4 _05,(01_ +02,)]

a2
The matrix elements of § are implied by
Sln,m)=sjln+1,m—D+s7Iln—1,m+2)
+s3n+2,m—D+syin—2,m+ D, Qa3)
si=nlV—m@m+ 1YWV —m+1)

X m(m — 1N —m +2)} 112 |
sy =nlV—n+ DN —m)

X (m+ Dn 4+ 2XN — m — 1)]12 |
s}'=n[(N—-m)(m+ IXV—n+1)

X n(n — DWWV —n+2)]12 |
s3 =[N —m + Dm{N —n)

X @+ 1) n+ 20N —n— 1D} a4
These matrix elements have been computed from the
definition [22] of the Q operators
Q;lmy= [V —m)n + D} 2in+ 1D,
O_Im={N—n+Dn]12\n- 1. 15)

The implication of (13) is that S couples states of the
multiplet P only to the neighbouring, £ + 1, multiplets.
As a consequence, the (multiplet P) block-diagonal re-
presentation (5), (6) of the Hamiltonian H (4) is
blown up to a tri-block-diagonal representation (5),
(6), (13) of the Hamiltonian H + S, (4), (11). Needless
to say it is numerically simpler to diagonalize this al-
gebraic tri-block-diagonal matrix than the non-sparse
codrdinate representation matrix of the Hamiltonian
D.

5. Results

_ The eigenvalues (and eigenfunctions) of the alge-
braic Hamiltonian H {given by (4)) and the algebraic
Hamiltonian H + S (S given by (12)) were computed.
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The number ** of bound and quasi-bound states were
found to be the same for both computations, namely
100, the number of Morse oscillator states squared.
The eigenvalues of these two algebraic Hamiltonians
were different by rms deviation of 6 X 10—3 eV, and
even more of a prominent difference was found for
the wavefunctions (see below). The reason is, of
course, that the Hamiltonian A precludes intermulti-

** This number (100) is determined by V. Since xe = (V +
1)71, the value of N and hence the number of states is
immediately given in terms of the parameters in the coor-
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plet mixing. Such eigenvalues that did change were, as
expected, near the boundaries of the multiplets where
the coupling induced by § is particularly important.
The eigenvalues for the Hamiltonian A + 8 are giv-
en, for all 100 states, in table 1, The parameters used
in table 1 were optimized for a best fit to the first 55
states computed by coordinate space methods. (With
the result that, say, i does not quite have the classical
value of A/, and 4 differs slightly from —cx./4.)
The rms deviation of the fit is 2.3 X 10—3 eV. The
reason for the existing deviation is, in part, that only
the lowest two resonances in the Fourier expansion of

dinate space Hamiltonian (1). the momentum coupling were taken into account.
Table 1
Energy levels of two coupled Morse oscillators (eV)
Symmetric states Asymmetric states
algeb. 3) coord. ) algeb. 3) coord. ®) algeb, 3) coord. ©) algeb. 8) coord. D)
-0.61100 —0.61100 0.30609 0.31436 0.39118 0.39364
—0.48174 —-0.48313 0.32557 0.32083 —0.46584 —0.46443 0.41232 0.40325
—0.36140 —-0.36347 0.33251 0.33115 —0.35161 —0.35096 0.42076 0.42494
-0.32716 —0.32579 0.33940 0.34445 —0.24804 —0.24794 0.42979 0.43955
-0.25214 —-0.25402 0.37533 0.37280 —0.19665 —0.19636 0.46269 0.45274
—0.22251 —~0.22173 0.38927 0.39650 —0.15669 —0.15685 0.49264 0.49180
-0.15762 —0.15856 0.40868 0.41538 —0.10451 —0.10376 050791 0.51913
—0.12333 -0.12369 0.42495 0.43556 —0.07882 ~0.07834 0.51660 0.53143
—0.07987 —£.08011 0.43732 0.44366 —0.02486 —0.02532 0.55677 0.53448
—0.07322 —0.07497 0.46335 0.46768 —0.01183 —0.01082 0.58445 0.57138
-0.03183 —-0.03313 0.48503 0.48118 0.02720 0.02633 0.58785 0.59830
~0.01544 —0.01508 0.49468 0.50565 0.04049 0.03603 0.60770 0.61044
0.00924 0.00945 0.51528 0.52447 0.05834 0.05446 0.64627 0.63389
0.02742 0.02624 0.53312 0.53025 0.06000 0.06294 0.66390 0.66017
0.05483 . 0.05228 055119 0.55793 0.07730 0.07314 0.69879 0.67260
0.05996 0.06137 0.55766 0.58298 0.10883 0.10847 0.70790 0.70456
0.07730 0.07312 058324 0.59267 0.12404 0.12502 0.76824 0.71691
0.08626 0.08713 0.60765 0.60509 0.16040 0.16174 0.79260 0.74438
0.11970 0.12178 0.62386 0.62565 0.1849% 0.18475
0.14639 0.13955 0.63534 0.64954 0.19310 0.19700
0.15658 0.15669 0.65581 0.66524 0.20944 0.21043
0.17319 0.17542 0.67058 0.67565 0.23746 0.23296
0.19231 0.19627 0.69235 0.69840 0.24957 0.24598
0.20925 0.20746 0.70851 0.71231 0.28147 0.28369
0.21135 0.21055 0.73790 0.73060 0.30458 0.30206
0.23565 0.24090 0.76082 0.74281 0.31223 0.31758
0.26543 026708 0.78982 0.75742 0.32629 0.33245
0.29015 0.29384 0.35440 0.35525

8) Using the algebraic Hamiltonian H + S (egs. (4), (12)) with parameters A = —1.97336 X 10~3 €V, B = 0.086286 X 10~ ¢V, A =
0.418533X 103 eV, =0.019779 X 102 eV.N = 19.

b) Using the coordinate space Hamiltonian H (eq. (1)) with parameters D, = 0.76 eV, a = 1 au™ , m4 = 35/31 amu, mg = 210/31
amu (adapted from ref. [11]). The algebraic and coordinate space results differ by rms = 0.00228 eV.
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Higher terms will give higher order in the generators
and will improve the fit.

Table 1 also shows the best results obtained by di-
agonalizing the coordinate space Hamiltonian in the
basis of 100 products of Morse functions {n,g)ng ).
where 0 <<ny p, g 4 <92 denote the vibrational
quanta in the AB, BA bonds {11]. The convergence
has been tested by comparison with alternative (liyper-
spherical DIV AH) basis functions, and with exact
scattering results [11]. It is believed that (at lea:t) the
lowest 55 states are well converged. For some of the
lower quasi-bound states the coordinate space compu-
tation has also been checked by using these states as
initial states for time propagation [19]. To the best
numerical accuracy, such states did exhibit a pure ex-
ponential decay.

It should be stressed that the use of a unitary rep-
resentation of the compact algebras to describe the
system precludes the pure algebraic calculation of the
width *, but we can use the double Morse coefficients
to build a geometric representation of the wavefunc-
tions and to propagate it in time in the geometric rep-
resentation of the potential [19]. Such a calculation
was done on the state (16%). It was found that the
lifetime of this resonance was 7 = 0.163 ps which is
very close to the lifetime 7= 0.168 ps in the purely
coordinate space approach. As a result, the width of
this resonance state was 4.0 X 10—3 eV, which is one
order of magnitude smaller then the average separa-
tion between the resonances.

1t is not always realized that the algebraic approach
does provide wavefunctions (i.e. eigenvectors; see, for
example ref. [151). In the present problem these are
the expansion coefficients of the wavefunction in prod-
ucts of Morse eigenfunctions of both bonds. Such
coefficients were found to be in good agreement with
the coordinate space computations. As expected,
many states (in particular the “local modes™ [3,11,
19]) have dominant coefficients for states |n, m) in a
single multipiet P = n + m, but there are also others
(in particular the “delocalized™ and the “hyperspheri-
cal modes™ [11,18,19]) with dominant coefficients
from neighbouring multiplets P, P + 1. The intermulti-
rlet mixing, section 4, is essential for accurate accounts
of such non-local modes.

¥ Using non-unitary representation it was recently shown
how a purely algebraic computation of the width can be
performed [23].
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As examples for the changes in the wavefunctions
caused by the intermultiplet mixing consider the fol-
lowing cases:

(1) The wavefunction for the symmetric state with
energy —0.07987 eV is approximately given by

VE—_0.07987 ev = 0-92I50%) + 0.3[22+) + 02[41%) ..

This is a Iocal mode state in the multiplet P= 35, but
the next dominant contribution is from the state with
a different P.

{2) The resonance state with energy 0.17319¢V
(symmetric) has its dominant contributions (mnore
than 80%) from the states |43%) (34%) and |71
{46%) which belongs to two different multiplets.

6. Summary

In the algebraic approach to bound-state problems
the Hamiltonian is expressed in terms of generators of
a compact group. The resulting spectrum is then pure-
1y discrete. Yet realistic algebraic Hamiltonians pre-
dict states higher in energy than the nominal dissocia-
tion threshold. By comparison with more convention-
al (coordinate space based) methods and with scatter-
ing computations, these higher energy states are iden-
tified as the quasi-bound (*‘resonance”) states of the
Hamiltonian.

To obtain an accurate description of the quasi-
bound states where intenmultiplet coupling is always
important, and in view of the strong local mode cou-
pling constant of the coordinate space Hamiltonian, a
new term trilinear in the penerators (breaking the O(2)
symmetry) was added to the algebraic Hamiltonian of
ref. [8].

A systermn of two strongly coupled anharmonic os-
cillators is a well characterized example {17,24] of
classically chaotic dynamics. Yet a compact Lie group
provides a realistic description even of the quasi-
bound states. Of course, quite a few of the eigenstates
are linear combinations of many basis functions, with
all expansion coefficients below 0.5 [25]. But the al-
gebraic appicach is fully able to account for such be-
haviour,

Acknowledgement

This work was partly supported by the Air Force



Volume 116, number 4

Office of Scientific Research, Grant AFOSR 81-0030,
the Deutsche Forschungsgemeinschaft and the Fonds
der Chemischen Industrie. The Fritz Haber Research
Center is supported by the Minerva Gesellschaft for
die Forschung, mbH, Munich, FRG.

References

[1] R. Wallace, Chem. Phys. 11 (1975) 189.
{2} O.S. Mortensen, B.R. Henry and M_A. Mochammadj, J.
Chem. Phys. 75 (1981) 4800.
{31 M.S. Child and R.T. Lawton, Faraday Discussions 71
(1981) 273.
[4] M.S. Child and L. Halonen, Advan. Chem. Phys. 57
(1984) 1.
[5] C. Yaffé and P. Brumer, J. Chem. Phys. 73 (1980) 5646.
[6] E.L. Sibert HII, W.P. Reinhardt and J.T. Hynes, J. Chem.
Phys. 77 (1982) 3583, 3595.
{71 M.L. Sage and J.A. Williams IfI, J. Chem, Phys, 78
{1983} 1348. .
[81 O.S. van Roosmalen, 1. Benjamin and R.D. Levine, J.
Chem. Phys. 81 (1984) 5986.
[2] N. Rosen, ¥. Chem. Phys. 1 (1933) 319.
[10] R.D. Levine, Accounts Chem. Res. 3 (1970) 273.
[11] X.C. Xulander, J. Chem. Phys. 79 (1983) 1279;
K.C. Kulander, J. Manz and H.H.R. Schor, J. Chem.
Phys. 82 (1985), to be published.

CHEMICA1 PHYSICS LETTERS

10 May 1985

[12] R.D. Levine, J. Chem. Phys. 49 (1968) 51;
R.D. Levine, R.B. Johanson, J.T. Muckerman and R.B.
Bernstein, J. Chem. Phys. 49 (19638) 56.

[13] B.G. Wybourne, Classical groups for physicists (Wiley,
New York, 1974).

{14] F. lachello and R.D. Levine, J. Chem. Phys. 77 (1982)
3046.

[15] O.S. van Roosmalen, F. Jachello, R.D. Levine and
A.E.L. Dieperink, J. Chem. Phys. 79 (1983) 2515.

[16] G. Herzberg, Spectra of diatomic molecules (Van
Nostrand, Princeton, 1950).

[17] RM. Hedges Jr1. and W.P. Reinhardt, Chem. Phys.
Letters 91 (1982) 241; 3, Chem, Phys, 78 (1983) 3964;
E. Thiele and D.J. Wilson, J. Chem. Phys. 35 (1961)
1256.

{18] 3. Manz and H.H.R. Schor,'Chem. Phys. Letters 107
(1984) 542,

{19] R.H. Bisseling, R. Kosloff and J. Manz, to be published.

[20] I. Benjamin, O.S. van Roosmalen and R.D. Levine, J.
Chem. Phys. 81 (1984) 3352.

[21] O.S. van Roosmalen, R.D. Levine and A_E.L. Dieperink,
Chem. Phys. Letters 101 (1983) 512.

[22] R.D. Levine, Chem. Phys. Letters 95 (1983) 87.

f23] Y. Alhassid, F. Tachello and R.D. Levine, Phys. Rev.
Letters, to be published.

[24] T. Matsushita and T. Terasaka, Chem. Phys. Letters 105
(1984) 511.

{25] G. Hose and H.S. Taylor, J. Chem. Phys. 76 (1982)
5356.

261



