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The applicability of the multiconfiguration time-dependent self-consistent field approximation (MCTDSCEF) for the dynamics
of curve crossing processes under the influence of “external” degrees of freedom is tested on a simple model. The fast Fourier
transform (FFT) algorithm for solving the time-dependent Schridinger equation is used to solve the exact equations of motion
and the corresponding approximate ones. Good agreement is obtained in adiabatic as well as in non-adiabatic situations.

1. Introduction

There have recently been several studies of the effect of coupling to a heat bath on curve crossing and other
non-adiabatic processes [1-3]. Viewed generally, the description of such processes is a multidimensional ex-
tension of familiar one-dimensional studies such as the Landau-Zener model and its generalizations. In many
situations it is advantageous to keep the simple one-dimensional picture of a (non-adiabatic) reaction coor-
dinate coupled to a heat bath.

In this paper we explore the applicability of a numerical approach based on the fast Fourier transform (FFT)
algorithm to solve the Schrodinger equation associated with the multiconfiguration time-dependent self-con-
sistent field (MCTDSCF) approximation to this problem. The FFT algorithm [4] is a very efficient way to
solve the time-dependent Schrédinger equation; however, it is limited to low-dimensional systems. For larger
systems the size of the numerical problem can be effectively reduced by applying the time-dependent self-con-
sistent field (TDSCF) approximation #'. Combination of the FFT algorithm and TDSCF approximation for
solving the multidimensional time-dependent Schrédinger equation has been successfully applied to several
systems [6,7].

The TDSCF approximation, written schematically for two subsystems 1 and 2 of the overall system
characterized by the Hamiltonian H(A, B)=H,+ Hy+ V,p, relics on the approximate representation of
Y(A, B, t) as a product ¥(A, B, t)=x(A, t) (B, t) leading to the TDSCF equations of motion:

X=—1A(Hs+ (Vi B)X» (la)
#i For molecular dynamics applications, see e.g. ref. [5].
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¢p=—i(Hp+<{Vap)a)0, (1b)
where e.g. (Vauda=<x(A, 1)1 Vas(A, B)|x(A, t)> is the partial average of V,, over the instantaneous dis-
tribution of subsystem A.

When the process of interest involves non-adiabatic transitions between different channels (e.g. electronic
states) of subsystem A (say), the time evolution of this system is described by a set of close coupled equations
for the components of the vector wavefunction which are associated with the motion on the different potential
surfaces. The diagonal elements of the matrix Hamiltonian H,, correspond to these surfaces while the non-
diagonal elements are associated with non-adiabatic transitions. In the presence of coupling to the system B
an equation analogous to (1) may still be derived from the general Hamiltonian by seeking a solution of the
form

Xi(A 1)
WA, B =x(A, 1) 8(B.1)=| x2(A, 1) | ¢(B, 1) . (2)

This leads to eq. (1) with (la) now describing a set of close coupled equations for the motion of system
A (y-yx, Hi—H, and, in principle, V15—V, are vector and matrix operators in the space of the electronic
states of system A) and where the motion of the “external” system B is described by (1b) with

Fasda= LY (A DIVERIX(A 1)) (3)

(the sums over ¢ and j are over the different electronic states or more generally the channels of system A).

This approximation works reasonably well only if the equilibrium configuration of system B (the “bath”)
is not very sensitive to transitions between states of system A. This may be the case when egs. (1)-(3) are
used to describe vibrational relaxation within a manifold of vibrational states of system A due to interaction
with the bath B. In many cases involving electronic transitions this is not the case. In particular, when the non-
adiabatic transitions within the molecular system involve charge transfer, the force on the bath B is strongly
state dependent. In this case eqgs. (1)—(3) will fail to yield the correction time evolution,

A similar situation occurs also when the dynamics of system A involves tunneling across an adiabatic po-
tential surface. Makri and Miller [8] have shown that a simple (single-configuration) TDSCF fails when the
bath responds differently to the system being on the different side of the barrier. On the other hand,
Wahnstrém, Carmeli, and Metiu [9] have calculated the tunneling rate in a model for H diffusion on Cu(001)
surface and using essentially a single-configuration TDSCF method have reported good agreement with an ex-
act calculation. These authors note, however, that the applicability of single-configuration TDSCF in their cal-
culation is due to the large Cu mass, which made the substrate only weakly sensitive to the position of the H.
Also, the flux-flux correlation function used in this work to calculate the hopping rate decays fast and is already
small at the time when the wavepacket splitting becomes important.

It has recently been proposed by Kosloff, Hammerlich and Ratner {7], and more recently by Makri and
Miller [8], that in situations characterized by a well-defined system configuration and strong coupling to the
bath (or other “irrelevant” coordinates) the use of a multiconfiguration TDSCF procedure can considerably
improve the results without substantially increasing the size of the calculation. Makri and Miller [8] have dem-
onstrated the usefulness of this scheme for the problem of tunneling across an adiabatic barrier in the presence
of coupling to “external” degrees of freedom. In this paper we apply a similar method to study the effect of
such external coordinates on the dynamics of curve crossing processes.

2. MCTDSCF for a simple curve crossing model

Our system consists of a two-level system (referred to as “‘electronic states”) and an oscillator S which rep-
resents the molecular nuclear motion. It is coupled to a bath, schematically represented below by the ¢coordinate
Q. The Hamiltonian is assumed to be of the form (see fig. 1)
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Fig. 1. The model system used in the calculation described in sec-
tions 2 and 3. U, and U4 are the potential surfaces associated
with the two channels (‘‘electronic states”) of the system.
Uip="Us, is the potential surface of the “bath™ oscillator taken
i 1o be the same in the two channels. ¥/(s) is the intra-systcm non-
Q adiabatic coupling and W (s, Q) is the system-bath coupling.
AP(S, Q. t i H,(S, H,, (S, S, Q. i
#_)z_ _( (S8, Q) 12( Q))(Wl( Q ))=—»H(S,Q)¥’(S,Q,t), (4)
dt h HZI(Sr Q) H2(S’ Q) WZ(S) Q7 t) ﬁ
where
HA(S, Q)=Hs(S)+H(Q)+Wi(S, D), i=1,2, (5a)
Hi(A)=T,+ U (4), i=1,2,4=8,0Q, (5b)
Hy(S,Q)=H3(5,Q)y=V(S,Q) . (5¢)

Here Tand U are kinetic and single particle potentials respectively, ¥ is the coupling between the two electronic
states and W is the “system”-*‘bath” coupling.
The MCTDSCF approximation consists of assuming separability in the components w; of ¥

wison= (150006 0)
which when used with eq. (4) yields

0o a0 =—G/R) (P Hist + 50 H g9+ Wi+ Viad.) (7a)
$202+ 1202 = — (i/A) (92 Hasiz + o Haor + Waiat: + Vi 61) - (7b)

In egs. (4)-(7) there is no formal distinction between the system coordinates S and the bath coordinates
Q. We make this distinction by choosing the molecular diabatic potential surfaces U, s(S) and U,s(S) to be
bound surfaces with their minimum positions displaced (see fig. 1). In the calculation reported below, the bath
potential surface U,,(Q) is assumed to be independent of the electronic state 7, and is taken to be quadratic
in Q (i.e. a bath of harmonic oscillators). These assumptions are not used in the formal derivation of the
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MCTDSCEF below. We also impose normalization conditions which correspond to the designation of ¢, and y;
as bath and system wavefunctions, respectively. We require that at all times

(Ol do={0:10:00=1, (8)
which implies (since {(¢-¢>=1) that
ladst(elxrs=l. (9)

Here { >pand {( )gdenote integrations over the Q and § coordinates, respectively. Multiplying eq. (7a)
by ¢1(Q) or xT(S) and integrating over () or S, respectively, and doing the same with eq. (7b) and the func-
tions ¢,(Q), x-(S) lead to

1+ {9 |¢1 Yoxi==(1/h)(His+ {91 |Hip|01 20+ | Wi |91 o)1 —{i/7) &, | VIga>oxa, (10a)
1+ <¢2l¢"2>al2= —(i/AY(Has+ (P2 | Hap |20 0+ (2 | Wa |92 D0 )0z — (/)2 | V|91 DoXy s (10b)
il dysbi==<nlin do = (/) ([ His x>+ <o L dHig+ Ca I W 0 ) s) 6,

— /R IV 592 (10c)
Q|22 ) s =~ |22 82— (1/0) (St | Has 1225 + {6 11 Y g+ G | Wa 120 ) ) 6

— (1) | V0 8 - (10d)

The terms containing (¢, | ¢, > and (¢, |#, ) in egs. (10a) and (10b) may be disregarded without loss of
generality: this may be seen by making the phase transformations

Xi—X exp( - jdt’ o (t )) and ¢, exp('[dt’ a; (1 )) ,

where «; (1) (i=1, 2) are the purely imaginary numbers (¢, | (f),- ». The fact that we eliminated terms containing
¢, from the equations for 7, has numerical advantages as discussed by Makri and Miller [8].

Another technical problem arises from the structure of eqs. (10c) and (10d): If at time =0 the system starts
in electronic state 1, we have (. (t=0)|x;(t=0)>5=0 and ¢,(¢=0) is not well defined in eq. (10d). A way
out of this problem is to use in egs. (10c) and (10d) not x|, and x, at 1=0 but x, (Ar) and x,(At) obtained
from the first time step integration of eqs. (10a) and (10b), i.e. replacing X,0=x (S, t=0) by xo+
X104t (ko is given by the ths of eq. (10a)) and taking x,0 =x,(S, {=0)=—(i/A) { b | V™| ¢10 Y oX10A¢ (With
¢0=0:(Q, t=0)). In the calculation reported below we have used this prescription for the initial ¥, and x,
functions, where the initial ¢, and ¢, functions were both taken to be the ground state of the bath oscillator.
A similar method has been used by Sawada and Metiu [10].

It should be noted that a more consistent choice of initial wavefunctions is possible. Using in eq. (10d), for
At-0,

==/ (S| V*|B10) X0+ O (AL), Xo=—(1/1) @20 | V*| %10 > 0X10 AL+ O(AL?) (11)
and keeping terms of order At we get
el 7(S) 121210 >s$20(Q) =< X0 7(S) V*(S, D) X0 s610(Q) (12)

where F(S)=<{d,0|V(S, Q) 610 o- Eq. (12) is a self-consistent equation for ¢, (Q, =0) given the initial x,o
and ¢,, wavefunctions. If ¢, is chosen according to eq. (12), eq. (10d) becomes (for Ar=0, and taking
(S, @)=V(3))

6= —(1/5) [Haq — {020 | Hao + W2(Q) 920> + W2 (2) 1020, (13)

where
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Wo(Q) =t lVIPW2 1210 s/ Qo VIZ 210 > s 5 (14)

We have tested the MCTDSCF equations of motion, egs. (10), for the following simple example involving
a single bath oscillator: U, and U, were taken to be two identical horizontally shifted harmonic potentials
(ﬁg’ 1 )9

Uys=imswz(S+d)?,  Uss=lmswi(S-d)’. (15)
The bath oscillator was taken harmonic with the same potential surface in the two electronic states

Uip(Q) =Uso(Q) = Up(Q) = 3muw( Q. (16)
The coupling V(S, Q) between the two electronic states was taken independent of @ and of the form

V(S Q)=V(S)=Voexp[ — (S/Ro)’] . (17)

The coupling between the two systems was taken to be the same in the two electronic states, W, (S, Q) =
W,(S, @)=W(S, Q). We have examined two forms,

W,.(S, Q) =AQexp(—BS?) (18)
and
WolS, Q)=CS5Q. (19)

Note that the form a is symmetric in S and (for a fixed Q) will not remove the degeneracy between the states
in the right and left wells, while the asymmetric form b will remove this degeneracy.

The initial nuclear wavefunction y,,(S) was taken to be the normalized ground state in the harmonic po-
tential U, 5(S) multiplied by exp (iPyS), so P, is the initial momentum. The initial wavefunction ¢,,(Q) and
¢0(Q) were both taken to be the ground states of the potential U, p(Q+4), where the shift due to the coupling
to the system oscillator is given by

A= {0 19W(S, @) /8Q 1110 s/ Mow} . (20)

A better choice of ¢,,((Q) is obtained in principle from eq. (12), however for the case V(S, Q)=V(S) one
gets again the choice ¢.,=¢,, used above.

3. Results and discussion

Our results are summarized in figs. 2-4. In all cases we have taken ms=mgy=1, ws=0.5, w,=0.8, d=5 and
R,=3. In fig. 2 we have used the S-symmetric form W, of the system - “bath™ interaction potential with 4=1.0,
B=0.05. The non-adiabatic coupling was taken to be };=0.5 and the initial momentum P,=2.0. In fig. 3 we
have used the S-asymmetric formm W}, of the system — *“bath” coupling with C=—0.1 and again V,=0.5, P,=2.0.
In fig. 4 we used W, (4=0.5, B=0.5) with ¥;,=2.0 and P,=1.0. All three figures show the time evolution of
the population P, in the right well (P, =<{x2]x:> ) obtained from an exact calculation (using two-dimensional
FFT algorithm on each potential surface) and from the TDSCF equations (10). Also shown in the time evo-
lution of P; for the case where the system and “bath” oscillator are uncoupled { W=0). Figs. 2 and 3 also show
the results of a single-configuration SCF calculation based on egs. (1)-(3).

The time evolutions displayed in figs. 2 and 3 correspond to a non-adiabatic situation where bursts of prob-
ability transfer occur in every transition across the potential intersection region. Fig. 4 shows the time evolution
in the adiabatic limit due essentially to tunneling across the adiabatic potential surface. In both cases the agree-
ment between the evolutions based on the MCTDSCF approximation and on the exact equations of motion
is very good. Interestingly, the single-configuration TDSCF results shown in figs. 2 and 3 remain close to the
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0.160 1 /4 Py ()= <15, 1) | 12(S, 1) > s obtained with and without coupling
to the “bath” coordinate. For the coupled case both the solution
of the exact equations of motion of the MCTDSCF equations (10)
0.000 b ; a 1'2 1.6 2'0 24 and egs. (1)-(3) are shown. The system “bath” coupling is the
. function W, (eq. (18)). Parameters (given in the text) corre-
Time

spond to the non-adiabatic limit.

exact solution during the first non-adiabatic transition event, and deviate strongly from it only after the second
transition event. The (double-configuration) MCTDSCEF result remains close to the exact solution for the du-
ration of our calculation which shows two such non-adiabatic transitions.

It should be noted that both the single- and the double-configuration SCF schemes work better than expected
(see figs. 2 and 3): The SCTDSCF approximation describes well the first non-adiabatic transition probably
due to the fact that in the transition region near the potential crossing point the two “systems” configurations
are close to each other. The success of the MCTDSCF approximation in describing the second crossing shown
in figs. 2 and 3 is remarkable because at the time of this second crossing the wavefunction has already split
once due to the first crossing of the non-adiabatic interaction region. This multiple splitting of the initial wave-
packet is expected to lead to deterioration of the approximate calculation at longer times.

Another interesting point associated with eqgs. (2) and (3) is the fact that the symmetric coupling W, to the
bath oscillator causes an increase in the transition probability while the asymmetric coupling W), has the op-
posite effect. This behavior is associated with the two-dimensional potential surface in the S-Q plane: A close
examination of this potential surface reveals that in the presence of the asymmetric coupling the two-dimen-
sional barrier is broader, and for the symmetrical coupling it is lower than in the uncoupled case.

In conclusion, we have demonstrated that the MCTDSCF approximation is a reliable tool for evaluating rates
associated with simple curve crossing processes. In conjunction with the FFT algorithm for solving time-de-
pendent Schrddinger equations it is expected to be a very valuable computational tool of chemical dynamics.
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Fig. 3. Same as fig. 2 with the system “bath” coupling given by
W, (eq.(19)). Parameters are given in the text, and except for
those describing W, are identical to those of fig. 1.
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Fig. 4. Same as fig. 2 with parameters (given in the text) corre-

sponding to the adiabatic limit.
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