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An inversion scheme to obtain excited-state potential energy surfaces from experimental absorption spectra is presented. The 
scheme is based on simulating the quantum dynamical processes with high accuracy. A modification of the simulation enables 
analysis of regions in the potential which the absorption spectrum is sensitive to. These sensitivity regions are then used to con- 
struct a Hilbert space which becomes the functional base for the inversion procedure. In this Hilbert space an iterative scheme 
converges an initial model to a new potential which will reproduce the spectra. The scheme is illustrated for the ICN molecule. 

I. Introduction 

Spectroscopic measurements have been extremely 
important in probing the structure and dynamics of 
molecules. The concepts elucidating the dynamics are 
based on the adiabatic theorem where the nuclear 
motion is slow compared to the motion of the un- 
derlying electrons. In the resulting picture, the adi- 
abatic eigenvalues of the electronic wavefunction 
construct the potential energy surface (PES) on 
which nuclear motion takes place [ 11. The different 
bands in the absorption spectra can be assigned to 
transitions from the ground surface to different ex- 
cited potential energy surfaces. One step further in 
the analysis is to obtain the form of the excited PES 
which is responsible for the shape of the absorption 
band. The task is a classical example of an inversion 
procedure from which the form of the potential in- 
fluencing the measurement is to be inferred. 

The weakness of the inversion process is that more 
than one possible potential can faithfully reproduce 
the measurement so that additional assumptions have 
to be added. In the theory of mathematical inversion 
these assumptions usually impose analytic proper- 
ties on the potential as well as an asymptotic van- 

Correspondence to: R. KoslofT, Department of Physical 
Chemistry, The Hebrew University, Jerusalem 9 1904, Israel. 

ishing of the potential and its derivatives for large 
internuclear distances R. Even under such stringent 
conditions mathematical inversion procedures are 
limited to one effective dimension, because the large 
degree of over-determination in higher dimensions. 
A good summary of inversion of scattering data is 
found in the book by Newton [ 21. 

The semiclassical RKR method is most widely used 
to invert spectroscopic data [ 3,4]. The method is 
based on locating the distance between the inner and 
outer classical turning points of the potential. The 
inversion demonstrates the principle that there are 
infinitely many potentials which are able to recon- 
struct the experiment, since a mapping of the poten- 
tial that preserves the action between the two turning 
points will produce the same observed spectrum [ 51. 
An exception to the one-dimensional inversion pro- 
cedures has been developed by Gerber and Ratner 
[ 6,7], The main idea is to use a self-consistent field 
(SCF) procedure to break the multidimensional 
space into a set of one-dimensional coupled systems. 
They are then inverted by the RKR method sequen- 
tially and an iterative procedure is used to solve the 
self-consistent set of coupled equations. 

The difficulty in direct inversion procedures has 
led to the use of heuristic indirect procedures. They 
are based on solving the dynamics by using a model 
potential. The outcome of the modeling is first com- 
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pared to the measurement. Then the potential is al- 
tered and the modeling run again until a satisfactory 
comparison between the model and the experimen- 
tal data is obtained. One drawback of the heuristic 
approach is that it is arbitrary-dependent on the 
functional form of the potential chosen for the mod- 
eling. Another drawback is that the heuristic ap- 
proach does not have systematic convergence 
properties. 

This Letter presents an iterative procedure for po- 
tential inversion from absorption spectra. In order 
to overcome the arbitrariness of the procedure, all 
available information as well as intuition on the form 
of the excited-state potential is utilized to construct 
an initial guess. The iterative procedure alters nu- 
merically the initial guess of the potential until the 
experiment measurements are reconstructed. In this 
way the inverted potential is as close as possible to 
the initial assumptions circumventing therefore, the 
nonuniqueness of the inversion procedure. For ex- 
ample, the initial guess can be an ab initio calculated 
potential. 

Starting from the initial guess for the potential, the 
first step is to map out the regions of the potential 
to which the measurements are sensitive. The basic 
tools are high quality quantum mechanical methods 
for simulating the experiment. For dynamical mo- 
lecular processes, the combination of the Fourier 
grid representation of the wavefunction with the 
Chebychev polynomial expansion of the evolution 
operator, have been shown to provide extremely ao 
curate and stable results [ 8-12 1. In particular, these 
methods can be extended to calculate directly the ab- 
sorption [ lo] or Raman spectra [ 9 ] of weak field 
excitation. 

Based on ,high quality simulations, the sensitivity 
of the observation to a small variation in the poten- 
tial can be studied. These sensitivity functions are 
the starting point of the inversion procedure. Small 
variations in the potential suggest that a perturbative 
approach based on a zero-order Hamiltonian can be 
used. A perturbation based inversion scheme for 
spectroscopic measurements has been worked out by 
Kosman and Hinze [ 13 1. Sensitivity analysis of dy- 
namical processes has been extensively studied by 
Rabitz and co-workers [ 15 1. Based on their analysis 
Ho and Rabitz have developed a potential inversion 
scheme for inelastic scattering experiments [ 161 and 
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for vibration-rotational line spectra [ 171. The in- 
version schemes in this paper are based on high qual- 
ity quantum simulations which are able to simulate 
faithfully the experiment and obtain the sensitivity 
functions. Based on these sensitivity functions an or- 
thogonal functional space is constructed which is the 
main tool of the inversion process. 

The method used in the present work is closely re- 
lated to the approach of Ho and Rabitz [ 15- 17 1. The 
high quality simulations which are obtained from the 
time-dependent quantum mechanical approach en- 
able inversion of a large body of experimental data. 
The original motivation was to construct a time-de- 
pendent quantum mechanical inversion scheme to 
replace the classically based inversion scheme for a 
pump-probe photodissociation experiment sug- 
gested by Bernstein and Zewail [ 18 1. Although such 
a classical inversion scheme has been criticized by 
Krause et al. [ 191 preliminary studies have shown 
that a full quantum potential inversion of pump- 
probe experiments is possible [ 201. Since it was 
found that the pump-probe experiment has extreme 
sensitivity to the Frank-Condon region of the po- 
tential, this region has to be determined from other 
experiments. For this reason the time-dependent in- 
version scheme from absorption spectra of photo- 
dissociating molecules was developed. 

2. Weak field absorption spectra 

The simplest electronic absorption dynamics in- 
volving two surfaces can be followed by solving the 
time-dependent Schrtiinger equation for two cou- 
pled electronic surfaces and by a semiclassical de- 
scription of the electromagnetic field: 

ifi$)=( _-* Z)(E) 7 (1) 

where 

& fi2P - T +6(F) . (2) 

The index i is the molecular ground/upper surface 
field-free Hamiltonian, jl( r) is the dipole operator, 
and e(t) is the radiation field. A semiclassical PE field 
interaction is used. In the spectroscopic measure- 
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ment the Schriidinger equation is subject to the con- 
dition in which all of the initial amplitude is in the 
ground surface: 

F(O)= “Ip’ . ( 1 
The absorption spectra measurement is based on de- 
termining the balance of energy absorbed from the 
electromagnetic field and dissipated by the mole- 
cule. From eq. ( 1) the power or the rate of energy 
change at time t is calculated: 

The first equality is the result of the commutation of 
the Hamiltonian with itself while the second equality 
exists because the only part of the Hamiltonian which 
is time dependent is the field E ( t ) . In a common type 
absorption experiment the field can be described by 
the rotating frame wave form: 

C(t)=fA(t)e’“t, (5) 

where A(t) is a slowly varying envelope function 
turned on at t=O. For this pulse the instantaneous 
power becomes 

-2R 

The measured quantity is the average power, and 
therefore eq. (6) has to be averaged for the duration 
of the pulse, 

AE 
&t_~,t)=~ dzdt s 

0 

I 

=2yRe A(~)(Wg(7)IFIVle(7))eiOrd7, 
s (7) 
0 

where, because A is a slowly varying envelope func- 
tion, &A<<w, which leads to neglecting the term 
proportional to k in eq. (6). Eq. (7) is correct for 
all field strengths, and can be used as the starting 
point for the inversion since it constitutes an explicit 
relation between the dynamics of the system and the 
averaged power which is an observed quantity. Eq. 

(7) can be used directly although what is more com- 
mon is to extend the integration to t-m, and to nor- 
malize to the total energy carried by the light pulse. 

In weak field conditions, the expression for the 
power can be simplified by using the assumption that 
the evolution of the wavefunction on the ground sur- 
face is not altered by the field, leading to 

V,(r) =v,(O)e-‘“4’, (8) 

where Awe is the ground state energy. The excited 
state wavefunction can be obtained by integrating 
equation ( 1): 

xP~“(wg(e . (9) 

With the use of the time-dependent first-order per- 
turbation theory, one obtains 

xflc*(r)~g(0)e-iwo'. (10) 

Assuming that the envelope function is almost time 
independent and proportional to E,, the average field 
intensity, and taking into account eqs. ( 8 ) and ( lo), 
one obtains a steady state expression for the power 
absorbed [ 2 1 ] : 

&C-II, t)=wB drexp[i(o+Wo)r] s 
-t 

X($lexp -f&r I$>, 
(' ) 

(11) 

where the following symbols are used: 

00 =Pw,(O) 3 (12) 

and B= IEo ( ‘/4h. Eq. ( 12) is interpreted as if the 
dynamics of a new wavefunction $ is generated by 
the excited state Hamiltonian &,. This expression, 
which is the starting point of the weak field inver- 
sion, since it relates the observation to the dynamics, 
has been obtained by Heller [22]. 
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3. Sensitivity of the absorption spectrum to the 
molecular potential surface 

The first step in the inversion is to study the ob- 
servation sensitivity to the excited surface potential 
contained in H, (the standard form is assumed 
H, = T+ V,). Calculating the first-order variation of 
the excited state evolution operator to a variation in 
the potential one obtains 

i6*exp(-i&f)=iexp(-iH.(i-i)) 

x SPe exp (13) 

From eq. ( 13) the sensitivity of the absorption 
spectrum to a variation in the excited state potential 
can be obtained: 

ifi@(w, t)=M drexp[i(w+oO)r] 
I --r 

7 

x 
s 

dt’(8,lexp 
0 

X6Vc exp (14) 

On changing to coordinate representation 

I 

ifi 6&w, t)=wB 
s dzexp[i(w+wo)r] 
--I 

x 
I s 

dt’ dRe*(t’-r, R) SF’,(R) t’(t’, R) (15) 
0 

(where 6(t) = Ci(t, O)$). The functional derivative 
describing the sensitivity becomes 

6P(o, t) COB I 
m-x 5 drexp[i(o+w,)r] 

--t 

x dt’e*(t’-r, R)e(t',R) . (16) 
0 

This is the desired expression for the sensitivity of 
the absorption rate to the excited-state potential V,. 
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To numerically evaluate eq. ( 16) the wavefunc- 
tion is propagated by using the Chebychev expan- 
sion of the evolution operator I?( t, 0) [ 91: 

(17) 

Here, an= (2 - &c)J,, where J,, are the Bessel func- 
tions, @,, is the result of operating with the Cheby- 
chev polynomial operator Tn(&) on So and fin is 
the normalized Hamiltonian & = ( 2fi- 8 ) lv, 
where 

y_ &,a -&in E. 
212 

( fikv+=, 
A 

(18) 

and 4, are calculated by the recursion relation of the 
Chebychev polynomial: ~9~ = 0,, 4, = - i&do and 
&+,= -2i.QNQ,+~,_1. Inserting eq. (17) into 
equation ( 16) leads to a double sum of a product of 
terms which can be evaluated using the following 
identities for the Bessel functions: 

dt'J,(T-t')J,(t') 
0 

co 

=2 c (-1)“Jn+m+zK+1(7) 
K-0 

and 

J!l(-t)=(-l)“J,(t), 

with the result 

(19) 

@(w, t) 2wB N N 
-=if21r,~o~~o(-~)~(2-~~,o)(2-~~,o) 
W(R) 

xcn+,(~+~o+Q, v, W@Mrn(R) 9 

where 

(20) 

t 

s=O, . . . . 2N. 

Caution should be taken in making use of the limit 
l+w in eq. (20) because the finite Chebychev ex- 
pansion applies only to finite times since the integral 
in eq. (20) diverges as t approaches infinity. This is 
in accordance with the observation that any speo 
troscopic measurement is completed in finite time, 
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either because of a finite pulse length, or because of 
fluctuations in the light source which effectively limit 
the observation time. 

4. Inversion in sensitivity space 

Practically, a measurement of the absorption spec- 
trum consists of a series of N measurements where 
the frequency Wi is varied and the power absorbed 
P(Wi, t) is registered. This measured value as dis- 
cussed in section 3, is a functional of the true excited 
state potential: P[ PY], Assuming a model poten- 
tial Pt is a good approximation to the true potential 
such that the difference 

gp= pt=- I?” (21) 

is small, the experimental results are used to im- 
prove the approximation iteratively. The deviation 
SV from the true potential introduces a variation in 
the absorption spectrum 6F(W, t) of the ith exper- 
iment with central frequency Oi. This is given up to 
first order by 

= 5 Ui(R) SV(R) dR= (Ui, SV) 3 (22) 
R 

where oi is the sensitivity Of P(Oi, t) to the potential 
VA. Since only the coordinate representation of the 
potential is considered its operator notation has been 
omitted. At this point the sensitivity HiIbert space is 
defined by the inner product: 

R 

The integration domain is chosen so that the mea- 
sured value is insensitive to the variation of V out- 
side of this domain and ui (R) = 0 for R outside the 
domain. 

To avoid problems of overdetermination, the set 
of sensitivity functions [ 0~1: 1 is orthonormalized 
with respect to the inner product Ct; g). The pro- 
cedure creates N new observables: 

I#= f CijP(U,, t) 3 

j=l 

and their sensitivity functions 

Sj= f CjjOj 
j=l 

(23) 

so that the inner product (S,, Sj) = 8,. Because of the 
linearity of the inner product and the orthogonal 
relation, 

SZi=(Si,gV) * (24) 

This means that the orthogonal set of experimental 
sensitivity functions {Si} can be used to expand the 
variation 6V 

SV= i Si(Si, SV)+6Vofih”, (25) 
ill 

where 6 pltho is the part of SV which is orthogonal 
to the space spanned by Si. Using the definition of 
the deviation of the orthogonal set of observations 
in eq. (24) 

SV= f Sj SZi t SVoRho 
i-1 

(26) 

is obtained. The equation relates SV, the correction 
to the approximated potential VA, to SI, the devia- 
tion of the calculated onhonormal observations from 
their measured values. It is clear that once the ap- 
proximate potential VA (R ) and the observables have 
been given the solution is optimal since the ortho- 
gonal part cannot be controlled by the set of observ- 
ables. Eq. (26) is the base of the iterative procedure 
where the potential is systematically corrected until 
the deviations of the set of orthogonal observations 
is below a certain tolerance (usually related to the 
experimental error). 

5. Illustrative examples 

The absorption spectrum of ICN in the A band was 
chosen as an illustrative example of the inversion 
procedure. Reviewing the literature on the ICN sys- 
tem one finds that both the experimental and the- 
oretical interpretation of the absorption to the A band 
of ICN are under dispute [ 23-291. This is because 
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more than one excited potential energy surface can 
be involved in the absorption process. Also the con- 
tributions of the CN bend and stretch modes to the 
spectrum have been ignored. Since the purpose of 
this work is to demonstrate the inversion procedure 
it is assumed that the experimental absorption spec- 
trum is given by the data of Hess et al. [ 24 ] shown 
in fig. 1. It is also assumed that the transition takes 
place to predominantly one excited surface that is 
the target of the inversion. The asymmetrical exper- 
imental spectrum is poorly approximated by the 
semiclassical formula 

P(w)aexp( - (w,>2)2), (27) 

where a2=h/mo, and a= -h-‘dV(R) jdRI%. 
This means that a linear potential is not adequate. 
Two initial models for the excited state potential are 
considered. The first is the potential fitted by Gold- 
field et al. [26] and the second is the ab initio po- 
tential of Yabushita et al. [27]. The simulated ab- 
sorption spectra obtained from these two potentials 
are superimposed on the experimental spectrum 
shown in fig. 1. 

As discussed in section 3, the first step in the in- 
version is to calculate the sensitivity functions. To 

overcome experimental problems, the spectrum is 
normalized to its maximum. This means a slight 
modification in the observable used for the inver- 
sion which becomes e/p,, with its accompanying 
sensitivity: 

(28) 

where Ui is defined in eq. (22) and is calculated us- 
ing the model potentials of ref. [26] and eq. (20). 
The sensitivity functions are displayed in fg 2. The 
initial wavefunction v,(O) was calculated by prop- 
agating an initial guess on the ground surface in im- 
aginary time until convergence to the ground state 
was obtained [ 301. Note that the first peak of the 
sensitivity function is shifted to larger internuclear 
distances with decreasing frequency. This is in ac- 
cordance with the Frank-Condon principle. Notice 
that the sensitivity functions have a long oscillating 
tail downhill from the Frank-Condon point. After 
the raw sensitivity functions are calculated a Gramm- 
Schmidt orthogonalization procedure is used to ob- 
tain an orthogonal set. 

Once a base for the Hilbert space of the inversion 
domain has been constructed the iterative inversion 
procedure can proceed. Using eq. (25 ) a systematic 
improvement in the potential is obtained. A smooth- 
ing filter was applied to the correction which was 
gradually removed. Such a procedure is different 
from the regularization procedure used by Ho and 
Rabitz [ 161. Without the ftiter the converged po- 

0.04 I 

4.6 4.8 
I 1 I 

4.2 4.4 5.0 5.2 5.4 5.6 

Photodissociation energy [eV] 

Fig. 1. The absorption spectra of ICN by Hess et al. [ 241 (solid 
line), Pitts et al. [23] (dotted line). Superimposed are the sim- 
ulated absorption spectra using the potentials of Goldiield et al. 
[ 26 ] (broken line) and Yabushita et al. [ 27) (thin solid line). 

-I , / I ,, I 
5.0 5.2 5.4 5.6 5.8 6.0 6.2 

R [au1 
Fig. 2. Sensitivity functions of the absorption spectra as a func- 
tion of internuclear distance R for different excitation frequencies. 
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tential was found to have oscillations. Fig. 3 shows 
a series of potentials where the last converged po- 
tential reconstructs the experimental spectra within 
a tolerance of lo- ” (20 sampling points from the 
absorption spectra were used for the inversion). The 
procedure was applied to the two model potentials 
until convergence was obtained. The results are dis- 
played in fig. 3. The converged potentials are not af- 
fected outside the Frank-Condon region and have 
different asymptotic behavior. The potential of 
Yabushita et al. has a lower dissociation energy and 
is less steep for small R. 

The converged results can shed some light on the 
form of the excited surface. Although the calcula- 

R MuI 
6.01 I 

R [au1 
Fig. 3. (a) Convergence of the ICN potentials starting from the 
potential of Goldfield et al. [28] (dotted line). The dashed line 
is the second iteration with a significant smoothing filter on the 
corrections. The solid line is the converged result where the filter 
is absent. (b) The same as (a) for the potential of Yabushita et 
al. [27]. 

tions are one dimensional the calculated spectrum 
fits quite well to the two-dimensional results of Lee 
[ 291. This is because the bending degree of freedom 
does not have enough time to develop before the de- 
cay of the autocorrelation function (x 2 fs). It is 
clear that both model potentials are shifted to the 
blue. Also the converged potential has become steeper 
in the Frank-Condon region. 

6. Discussion and summary 

The nonuniqueness of the inversion process is 
clearly demonstrated in fig. 4, where starting from 
two different models two final converged potentials 
reconstruct faithfully the absorption spectra. Be- 
cause of this nonuniqueness results can be obtained 
only within a specific model of the dynamical pro- 
cess. Since intuitively smooth potentials are prefer- 
able, the method incorporates a bias toward smooth 
potentials. Even this bias does not overcome the 
uniqueness problem. Does this mean that the inver- 
sion effort is meaningless? The real benefit of pro- 
cedure are the guidelines set by the sensitivity func- 
tions on the amount of useful information which can 
be gained by present and future experiments. Sum- 
marizing, it should be emphasized that the potential 
that reproduces the experiment is only one out of in- 
finitely many possibilities. Additional experiments 

R [au1 
Fig. 4. The converged potentials starting from two different ini- 
tial guesses. The dashed line started from the potential of Gold- 
field et al. [ 26 1 and the dotted line started from the potential of 
Yabushita et al. [ 271. 
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of the same type will not help since the sensitivity 
analysis determines the number of really indepen- 
dent experimental points. To nail down further the 
potential a different type of experimental observa- 
tion should be employed for which the sensitivity 
functions are orthogonal to the previous set of ex- 
periments. For example, a Raman experiment. For 
the Raman cross section 

Ci,=ACtIie 

m 

X 
Is 

2 

dt (fli(t)) exp[i(e+ai)t] 
0 

=A&oLFFS (29) 

the sensitivity function becomes 

(30) 

where 

6F 1’ 
6V(R)=g 5 drexp[i(qtWJz] 

0 

r 

x 
I 

fY(t’-.5, R)i(t’, R) dt’ 
0 

and i(0) and f(0) are the initial and final eigen- 
functions respectively. This equation can be evalu- 
ated by using the Chebychev expansion of the evo- 
lution operator leading to 

x (2-&,o)r,+,(o+oo +Q, v> #ZXR)y,(R)F* 

tc.c. , (31) 

where 

~0, . . . . 2N, 

andy,=T,(&)f(O) and@,=T,(&)i(O).Thesen- 
sitivity function of the Raman process is shifted to 
larger internuclear distances thus increasing the ob- 
servation window on the excited potential energy 
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surface. The pump-probe experiment [ 181 in- 
creases the observation window even further. 

The approach presented in this work is part of a 
larger effort to establish iterative schemes for infer- 
ring potential energy surfaces from experimental ob- 
servations. The idea is to guide the experimentalist 
by setting experiments which have maximum infor- 
mation content with minimum overlap between 
them. This can be done because the sensitivity space 
is common to all experiments. The procedure is then 
refined with the guidance of the new experimental 
data and iteratively continued until convergence. 
Such an approach was suggested also by Wilson in a 
sketch of a controlled spectrometer [ 3 11. 
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