
scientific communities that previously
have not been exposed to the subject.
Traditional teaching methods have re-
lied heavily on a profound knowledge
of the mathematical structure; students
are usually able to incorporate quantum
mechanics principles only when they
are at such an advanced stage of study
that the mathematical basis makes
sense to them. Unfortunately, many
beneficiaries of quantum theory—such
as chemists, engineers, biologists, and
computer scientists, who traditionally
lack a more rigorous mathematical
foundation—have been left behind. 

New Teaching Methods
The emerging challenge, then, is to
develop new teaching methods for
quantum mechanics that address its
principles in students’ early stages of
study without compromising a more
advanced approach at later stages. At
present, it is natural to partially base
such an approach on the use of com-
puters because of their great ability to
simulate and animate. This task seems
straightforward because it relies on the
fact that potential students have be-
come accustomed to using advanced
graphical and computational tools that
apply to their field. 

Simulations and visualization of mi-

croscopic encounters are commonly
used in teaching molecular dynamics
science. Because most people find the
motion of solid bodies intuitive, they
can follow complex chemical events by
visually observing the atoms’ classical
motion. Examples of this approach
range from simple inorganic gas phase
reactions to complex systems such as
enzymatic reactions. However, quan-
tum mechanics lacks such an intuitive
basis. Its basic entity—the wavefunc-
tion—is complex; therefore, it excludes
even a direct connection to physical
wave motion. Faced with these diffi-
culties, we must devote considerable
attention to developing and applying a
visual language for teaching quantum
mechanics. In this article, we address
the design principles employed in the
visualization of quantum wavefunc-
tions, and their application in teaching
the superposition principle.

The tools we describe here are only
part of a larger set used to teach ele-
mentary quantum mechanics to chem-
istry and physics students for the last six
years at the Hebrew University. Teach-
ing experience supports the assumption
that visualization enhances students’
understanding of basic principles with-
out compromising their mathematical
rigor. Due to the tools’ dynamical char-

acter, full appreciation of the methods
requires online interaction. Readers
should try these tools for themselves—
students and interested parties can get
free access through standard Web tools,
such as those at www.fh.huji.ac.il/~guy/
ChemBond/.

In this article, we will discuss the
tools used to represent the quantum
state of a single particle, which is de-
scribed by a wavefunction. The wave-
function can be expressed as a sum of
other wavefunctions (the superposition
principle), each of which has a distinct
property (such as a specific energy or
momentum value). The composition
of the quantum state determines the
probability of measuring the specific
value of the distinct property. The
number and type of degrees of free-
dom a system possesses determines the
topology on which the wavefunction is
defined. For example, a wavefunction
can describe a system in a one-
dimensional (1D) open space, a system
residing on a closed 1D ring, or a sys-
tem on a 2D spherical surface. 

Linear 1D Wavefunctions 
and Their Superposition
Let’s start by visualizing a complex
function of a single variable x, which
represents a particle constrained to
move in one dimension—a particle on
a string, for instance. Popular examples
using this topology are a particle in a
1D box, scattering by a step potential,
and the harmonic oscillator. Think of a
1D complex function as a collection of
vectors perpendicular to the x-axis, each
one characterized by its length (magni-
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tude) and by its angle in the complex
plane (phase). This requires the ability
to visualize a 3D representation, which
is harder to interpret for people accus-
tomed to working with 2D graphs. To
reduce the representation’s dimension-
ality, the angle of the vectors in the
complex plane can be color-coded.

This approach is demonstrated for
the plane wave f (x) = A · e ikx, an eigen-
function of the free particle in a 1D
Hamiltonian. To simplify, the complex
function is first reduced to a discrete
matching rule between selected x val-
ues of the function’s 1D domain and
their complex f (x) values (see Figure
1a). Arrows that originate from the ap-
propriate x position represent the com-
plex values; their length represents the
complex value’s magnitude. Because all
the f (x) values have the same magni-
tude (= A), all the arrows are the same
length. The phase is represented in two

ways: first, the arrows are rotated in the
2D plane perpendicular to the x-axis
according to their phase value (zero
phase is straight up, and positive phase
change is counterclockwise); second,
the arrows are color-coded (red de-
notes zero phase value, pink is π/2, blue
is π, and violet is –π/2). 

We chose these colors carefully to
render this scheme more intuitive.
Red and blue are primary colors
widely associated with positive and
negative (for example, colors on hot-
and cold-water taps), so we chose
them to represent the positive real and
negative real phases. For the imagi-
nary phases, we used less saturated
(more “imaginary”) colors, which are
reminiscent of the primary colors:
pink or “quasi-red” for the positive
imaginary, and violet or “quasi-blue”
for the negative imaginary. To keep
the scale simple, other phase colors

are generated by a continuous gradu-
ation between these four colors. 

Because each value has a different
phase (= kx), the arrows form a spiral
with a wavelength of 2π/k. The next
step is to represent a continuous, rather
than a discrete, function. This is
achieved by connecting all the arrows
to form a 3D spiraling band (see Figure
1b). The band’s width at each x value
equals f (x)’s magnitude, and f (x)’s
phase value determines its direction
and color. Because there is redundancy
in having two kinds of phase represen-
tations, we can discard one without los-
ing any information. By unfolding the
spiraling band, the 3D representation
is reduced to a 2D representation, but
the phase information remains in the
band’s color (see Figure 1c). In the re-
gion where the band is colored red, the
arrows point upward (zero phase), in
the regions where it is pink, the arrows
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Figure 1. Coding phase by color. (a) A vector representation of complex numbers, (b) a 3D representation of a complex function,
(c) reducing the representation to 2D, and (d) using the 2D representation to visualize wave superposition. Educational Java
applets generated these graphical representations; they are available at www.fh.huji.ac.il/~guy/links/CISE2004.html.
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point perpendicular to the band (π/2
phase), and so on.

Another common method of color-
coding uses the entire color-wheel
spectrum and encodes the phase angle
as the hue component.1–3 We discov-
ered that our four-color representation
is easier to interpret than the full spec-
trum representation, especially when
dealing with wavefunctions’ superposi-
tion. Figure 1d illustrates the superpo-
sition of two plane waves with equal
weights: f (x) = A · eik

1
x + A · eik

2
x. The

two upper bands are the plane waves (as
can be seen from their constant magni-
tude and periodically changing phase),
and the lower band is the superposition.
It is easy to identify the regions of con-
structive and destructive interference.
At x values where the two phases match
(red with red or blue with blue), the su-
perposition exhibits constructive inter-
ference (the three maxima); where the
phases oppose (pink with violet), the su-
perposition exhibits destructive inter-
ference (the four nodes). The represen-
tation clearly shows the resulting
beat-pattern in the envelope (the height
of the band) and the harmonic carrier
wave in the phase (the periodic change
in color).

Angular Wavefunctions
and Their Superposition
The wavefunction representation we

introduced in the previous section is
easily extended into more complicated
topologies. A different possible topol-
ogy is encountered in particles that are
constrained to move in a circular or-
bit—a particle on a ring, for instance.
The most notable example of this
topology is the 2D rigid rotor. This sys-
tem is represented as a function of a sin-
gle angular variable, ϕ. The conven-
tional representation of an angular
function f(ϕ) is by using polar diagrams,
in which ϕ is the angle with the positive
x-axis in the xy plane, and |f(ϕ)| is the
distance from the origin to the point on
the graph. Figure 2 shows the polar di-
agram of the function f(ϕ) = sin(ϕ),
which is the angular part of a “p-type”
atomic orbital (py in this case). This type
of representation is very misleading for
many students, who misinterpret the
diagram’s shape as that of the orbital,
and believe the electron is orbiting the
nucleous in a figure-eight orbit or is
confined in the area of the two lobes.4

Both these misinterpretations include
an additional dimension of motion
(along the r polar coordinate) that the
diagram does not represent. The polar
diagram is also limited to representing
only real functions and requires addi-
tional captioning in case the function
has negative values (because it repre-
sents only the function’s absolute value).

To emphasize the 1D topology of
the wavefunction (a single variable ϕ),
we propose an alternative representa-
tion. This representation is obtained
from the linear color-coded represen-
tation by bending the x-axis in Figure
1c into a ring. The result is a colored
band wrapped around a ring, whose
width corresponds to the wavefunc-
tion’s amplitude (its color corresponds
to the phase).

This approach is demonstrated for
the wavefunction family f(ϕ) = eimϕ,
which are eigenfunctions of the free

particle on a ring Hamiltonian. We
can use these functions to study the
reason for quantization in angular
wavefunctions. Closing the string into
a ring imposes a constraint on the
wavefunction: because ϕ = 0 and ϕ =
2π represent the same point on the
ring, f(0) must equal f(2π). When m =
1/2 (see Figure 3a), the wavefunction
has different phase values at ϕ = 0 and
ϕ = 2π , as is apparent from the abrupt
color change at ϕ = 0. To obtain a con-
tinuous function, m must have an inte-
ger value, as Figure 3b shows. There-
fore, the quantization of the angular
wavefunctions (and consequently that
of angular momentum) is an outcome
of the ring’s topology.

When dealing with superposition of
angular wavefunctions, color-coding
helps distinguish between positive and
negative m values. When m is positive
(see Figure 3b), the order of the colors
for increasing ϕ is red → pink → blue
→ purple. When m is negative (see Fig-
ure 3c), the order of the imaginary
colors is reversed: red → purple → blue 
→ pink. When superimposing the two
wavefunctions by summing them to-
gether, the real parts interfere con-
structively, while the imaginary parts
interfere destructively (see Figure 3d).
This results in increasing amplitude
along the x-axis and a node along the
y-axis, which is the angular part of the
px atomic orbital. Because the energy
of free angular functions (with no an-
gular dependence in the potential) de-
pends only on |m|, px is also an eigen-
function of the Hamiltonian. In a
similar way, the two eigenfunctions
with m = ±1 can be subtracted, causing
the real parts to interfere destructively
and the imaginary parts to interfere
constructively (see Figure 3e). The re-
sulting wavefunction is pointing along
the y-axis and resembles the py orbital,
except that it is purely imaginary
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Figure 2. Polar diagram of the function
sin(ϕ) = 1/2i · (e iϕ – e–iϕ). ϕ is the angle
with the positive x-axis; the – sign on
the lower circle indicates that sin(ϕ) is
negative for π < ϕ < 2π.
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rather than real. By multiplying the
function by a constant phase of e–iπ/2

(see Figure 3f), we get the real func-
tion py. To show the similarity between
this representation and the conven-
tional polar diagram, we decreased the
ring’s radius in Figure 3f. As the ring’s
arbitrary radius approaches zero, the
new representation reduces to a polar
diagram with the added value of phase
color, which allows the presentation of
complex functions (compare Figure 3f
to Figure 2).

Spherical Harmonics
and Their Superposition
A closely related topology to the ring is
the sphere, which adds a second angu-
lar variable, θ, the angle with the posi-
tive z-axis. The most notable example
of this topology is the 3D rigid rotor,
which is part of the solution of all cen-
tral force systems, including the hy-
drogen atom. Again, to emphasize the

system’s 2D topology and avoid im-
proper inclusion of distance from the
origin as a variable (which often arises
when using polar diagrams), the wave-
function is drawn on a sphere’s surface.
The wavefunction’s phase is denoted
by color, as before, but the amplitude is
now encoded as opacity. The wave-
function is opaque at the maximum
amplitude, partially transparent at
medium amplitudes, and completely
transparent at the nodes. The physical
basis of this encoding comes from
viewing opacity as a measure of proba-
bility density.

We demonstrate this approach for the
three spherical harmonics with l = 1,
Y1

m(θ, ϕ), which are eigenfunctions of
the free particle on a sphere Hamilton-
ian. The spherical topology imposes two
constraints on the wavefunction. The
first concerns ϕ, and is the same as in the
case of the ring. The second constraint
concerns the poles (θ = 0 and 2π), in

which the function’s value must be the
same for all ϕ values. This can be
achieved either by setting m = 0 (see Fig-
ure 4a) or by having a node at the poles
(Figures 4b and 4c). It is instructive to
note the resemblance between Figures
3b and 3c and Figures 4b and 4c when
viewed from the direction of the z-axis.

Encoding the amplitude with opac-
ity does not provide a quantitative
measure of it. However, the important
features of the spherical wavefunc-
tions—the direction of maximum am-
plitude and the existence of nodal
planes—are easily observed. These fea-
tures are also sufficient for determining
the result of superposition of the
spherical wavefunctions. Using similar
arguments to those used in the previ-
ous section, it is easy to see that px
= Y1

+1 + Y1
–1 (see Figure 4d), and py

= (Y1
+1 – Y1

–1)/i (see Figures 4e and 4f).
The third orbital in this set, pz, is Y1

0

(see Figure 4a). All three orbitals have
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Figure 3. Wavefunctions on a ring. (a) f(ϕ) = eiϕ/2; (b) f(ϕ) = eiϕ; (c) f(ϕ) = e–iϕ; (d) f(ϕ) = eiϕ + e–iϕ; (e) f(ϕ) = eiϕ – e–iϕ; and 
(f) f(ϕ) = (eiϕ – e–iϕ)/i .
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maximum amplitude along the corre-
sponding axis and a perpendicular
nodal plane through the origin. These
manipulations relate the three possible
values for m (0 and ±1), when l = 1 in
the hydrogen atom solution, to the
three p orbitals used in chemistry in a
simple, graphical way. Many students,
who are never presented with images
of Y1

+1 and Y1
–1, fail to see the differ-

ence between the two sets.4

U sing advanced computer graph-
ics, we have demonstrated the

ability of a graphical applet to illustrate
the superposition principle in different
topologies. The interactive ability to
change parameters and follow their in-
fluence is a crucial aspect of the tool set
we’ve described. Time evolution and
its influence on the wavefunctions’ su-
perposition is an integral part of the
proposed approach. As a result, the

concept of unitary evolution becomes
intuitive and is employed as a base for
an axiomatic approach to quantum me-
chanics. Once the student masters the
elementary steps, we can extend the
wavefunction description to higher di-
mensions using the same principles and
visual language. Thus, we have devel-
oped a tool for illustrating the super-
position principle in the hydrogen
atom and the hydrogen molecular ion
in three dimensions as the natural next
step. The insight gained by visualizing
the same phenomena in different con-
texts contributes to the students’ abil-
ity to abstract, which is key to under-
standing quantum phenomena in
higher dimensions.
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Figure 4. Wavefunctions on a sphere. (a) Y1
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