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Abstract
A novel laser cooling mechanism based on many-body effects is presented. The method can be
applied to the cooling of a large class of atoms and molecules at a higher density than commonly
excepted by existing methods. The cooling mechanism relies on the collective encounter of
particles and light. Stochastic events between the particles and photons, as well as a collective
effect, give rise to energy transfer between these media. Such a mechanism relies on multiple
light–matter encounters, therefore requiring a sufficient particle density, ρ∼1014 cm−3. This is
an advantage for experiments where a high phase space density is required. A second tuning
laser can be added, increasing the applicability to many types of atoms and molecules. This
tuning laser changes the inter-particle potential by inducing an AC Stark effect. As a result, the
required trapping density can be reduced to ρ∼106 cm−3. Simulations of phase space
distributions were performed, comparing different particle densities, trap potentials and light
field intensity profiles. The modelling shows efficient cooling rates up to 10 2K s−1 for a dense
ensemble of 87Rb atoms, and cooling rates of up to 6·10 2 K s−1 when adding an additional
tuning source.

Keywords: laser, cooling, high-density gas

(Some figures may appear in colour only in the online journal)

1. Introduction

Atom–photon interactions have been a major research topic in
physics. The origins can be traced to Kepler, who as early as
1619, suggested that light may have a mechanical effect,
when observing that a cometʼs tail is always pointing away
from the Sun [1]. Later on, Maxwell suggested a phenomena
known as ‘light pressure’, pressure exerted on a surface when
exposed to electromagnetic radiation [2]. The topic was
revolutionized by two papers (1909 and 1916), when Ein-
stein, following Planckʼs law of black body radiation, showed
that light energy quanta must carry a momentum set by
=

l
p h [3–4].

Many experimental realizations exploiting photon
momentum have been performed [5]. In the present study, we
exploit this momentum transfer to cool an ensemble of col-
liding atoms. The frequency shift during the collision is a
source of momentum exchange between the particles and
light.

The first suggestion for cooling atoms via photon–atom
interactions was proposed by H E D Scovil in 1959 [6].
Scovil pioneered a quantum thermodynamic approach to laser
cooling, thus introducing the first quantum refrigerator. Fur-
ther advancement in laser cooling was not recorded until more
than a decade later. In 1975, simultaneously and indepen-
dently of Scovilʼs work, two groups, Wineland and Dehmelt,
[7] as well as Hansch and Schawlow [8], introduced new
theories for laser cooling. Wineland and Dehmeltʼs work
treats the cooling of ions in an ion trap, and Hansch and
Schawlowʼs theory concentrates on neutral atoms. The initial
theory proposed by Wineland and Dehmelt, known as Dop-
pler cooling, involves energy transfer from atomic media to
photons depending on the relative velocity of the atoms to the
light source. The Doppler cooling theory predicts a minimum
temperature known as the ‘Doppler limit’, which for sodium
and rubidium atoms amounts to 240 μK and 146 μK,
respectively [9, 10]. When experimental studies based on the
theory took place the cooling was unexpectedly efficient and
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led to temperatures below the Doppler limit, raising theor-
etical questions concerning the underlying mechanism.

Significant effort aimed at extending or replacing the
Doppler cooling theory has been made. Diverse theories were
developed such as Raman cooling, cavity mediated cooling
and Sisyphus cooling [11–21]. All the proposed theories
describe different mechanisms of energy transfer between
atomic and photon media, and take advantage of the global
character of electromagnetic waves, enabling the transport of
energy away from the atomic medium.

The Sisyphus cooling theory was proposed in 1989 by
Cohen Tannoudji and Jean Dalibard [15]. The theory involves
two interfering laser beams creating a standing wave with a
polarization gradient oscillating spatially between three
polarizations σ+, π and σ−. The periodic potential imposed on
the atoms affects the ground and excited states differently,
resulting in a varying energy gap alternating spatially. Such
spatial dependence of the energy gap allows an average
energy transfer from the moving atoms via repetitive excita-
tions. In conjunction with the theoretical work, experimental
research achieved nano Kelvin temperatures, setting the stage
for the materialization of Bose–Einstein condensates by
additional evaporative cooling [22–24].

In the present cooling theory, we change the focus from a
single atom picture to a collective many-body approach in a
dense particle medium. A new cooling mechanism is pro-
posed converting kinetic to optical energy, based on a sto-
chastic modulation of the emission frequency due to the
relative motion of the particles.

The present cooling theory is based on high particle
density when collisions occur. It differs from the well-estab-
lished laser cooling mechanism appropriate for a sparse
medium. The high density is advantageous for experiments
where a large phase space density is desired. It has been
claimed [25] that inter-atomic collisions at high densities will
lead to trap loss or heating. Nevertheless, the collective effects
of light trapped in the particle medium have been reported in
an ultracold medium [26–28], experimentally demonstrating
that dense cold samples are feasible. The trapped light gen-
erates an internal pressure, which leads to the expansion of
the atomic cloud [29–31]. More recent experiments [32] have
observed these collective effects in very large magnetic-
optical traps. In cooling, high-density effects should be our
ally and not our foe.

Theoretical approaches to modelling these phenomena
are based on continuum hydrodynamical theories [29, 33].
We will adopt such a hydrodynamic description for our
cooling theory in addition to absorption and emission prop-
erties, which depend on the atomic properties and density.

The theory is demonstrated on cooling rubidium 87
atoms. Rb has been the workhorse of ultracold atomic phy-
sics, due to favourable properties such as its convenient
vapour pressure at room temperature, large absorption cross
section and large scattering length for S-wave scattering. The
cooling scheme can also be applied to a variety of atomic and
molecular systems where an approximate closed cycle trans-
ition can be found and the particle density is dominated by
two-body collisions. To expand the possible cooling

candidates we suggest adding an additional tuning laser
which modifies the collision parameters. This laser also
enables us to reduce the inter-particle density. Sympathetic
cooling of a mixture of species can also become applicable.

The stochastic cooling theory is introduced at the
beginning of section 2, followed by an explanation of the
modelling technique, and a derivation of the different model
variables in section 3. Section 4 presents the results of the
stochastic laser cooling theory. An additional generalized
scheme, enhanced stochastic cooling theory, which allows the
efficient cooling of non-alkali atoms and molecules, is pre-
sented in section 5. Following the theoretical method is a
discussion and conclusions.

2. Stochastic cooling theory

2.1. Laser cooling scheme

The prerequisite of the scheme is a trapping potential that is
able to confine and isolate a dense ensemble of gas phase
atoms or molecules. The cooling is based on applying beams
of light to the interior of the trap detuned below the resonance
frequency. This light diffuses out, trapped by the absorption
and emission process. Such events also shift the lightʼs fre-
quency to blue on average. Eventually, the light is emitted
from the dilute exterior regions of the atomic cloud, figure 1.
If such a scenario can be maintained, it is obvious that on
average the energy consumed to generate the blue shift in the
radiation frequency will be extracted from the kinetic energy
of the atoms, leading to cooling.

The energy flow from a particle medium to an electro-
magnetic field will only occur if a single photon goes through
multiple excitation/dexcitation cycles. This imposes a

Figure 1. 87Rb atoms are confined by an MOT (green); a laser
source, detuned slightly from resonance (red), is applied to the
particle ensemble (represented in grey). The photons are confined to
the trap due to repeated absorption. They diffuse through the atomic
media until they escape the trap, blue detuned with respect to the
incident laser (shown in blue and purple arrows). Inter-particle
collisions modify the absorption cross section and locally equilibrate
the kinetic energy.
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restriction on the absorption cross section and the particle
density. The particles should be stratified in the trap such that
the high density is in the centre. Simultaneously, the particles
undergo diffusional dynamics as a result of repetitive inter-
particle collisions and interaction with light. Overall, under
these conditions, two different mediums—particle and pho-
tons—are captured in the trap interacting with each other by
energy transfer and influencing their respective motion. We
will refer to the photonic medium as the ‘light medium’ in the
following. The energy shift of the light is a stochastic many-
body effect incorporating multiple absorption emission
cycles. It combines the asymmetry in absorption and emission
line-shapes with the spectral dependence of the light trapping
in the medium; the mechanism is explained in detail in the
following.

The photons captured in the trap undergo repetitive
excitation cycles; for each cycle there is the probability of an
energy shift to the photon on account of the particleʼs kinetic
energy. Due to the asymmetry of the absorption probability
function (incident light is detuned below the atomic line) a
‘blue’ shifted photon will have a higher probability of being
reabsorbed, figures 4, 2. However, the ‘red’ detuned photon
probability of being reabsorbed is decreased, i.e. photons
which transfer energy to the particle medium will diffuse
faster through the particle medium until reaching low particle
densities on the edge of the trap and escaping. This causes an
effective cut-off for energy transfer from the light medium to
the particles. Alternatively, photons detuned to ‘blue’, which
reduce the energy of the particles, undergo more excitation
cycles, allowing further energy transfer from the particle
medium to the light, figure 2. The collective effect of dual
dependence induces a net energy transfer between the two
media and efficient cooling.

Another characteristic of dual dependence involves
pressure broadening [34]: when the density of an atomic
ensemble increases, a red shift to the atom transition fre-
quency occurs. This red shift is universal and is caused by the
larger polarizability of the excited state, which enhances the
long-range attractive van der Waals force. The particle

density profile can therefore induce a spatially varying opti-
mal absorption frequency. For a particle density which
decreases radially, the resonance frequency increases
accordingly. As a result, a photon starting in the centre when
shifted to the blue and propagating outward will be reab-
sorbed due to the new resonance conditions. This process will
be repeated until a blue photon escapes the trap at the low
density outer region.

An important issue is how to stratify the light in the
opaque particle medium. A few options can be envisioned.
When the trap forces are large, causing a large gradient in
density, far red detuned incident light will only be absorbed at
the centre. Once the light frequency is shifted to blue it
becomes trapped by the particles. The only escape route is
from the dilute outer boundary. Another option is to use
electromagnetic induced transparency EIT to inject the light
into the interior.

2.2. Energy transfer mechanism

For a homogeneous atomic gas with a typical S P trans-
ition, the excited inter-atomic van der Waals potential scales
as C3/r

3 compared to C6/r
6 for the ground state potential, see

figure 3 [35]. As a result, the absorption frequency varies with
the relative distance. Once a photon is absorbed, the atom
spends an average lifetime (27.7·10−8 s) in an excited state.
At this stage, the two neighbouring atoms will undergo ran-
dom relative motion, until their decay by photo-emission.
This random motion, accompanied by Doppler phenomena,
collisions, random electromagnetic fields and the natural
linewidth of the excited state, cause the energy shift of the
emitted photon. Summarizing the phenomena: for sufficient
density, the relative motion causes a change in the van der
Waals potential energy at the expense of the emitted photon
energy. Following the description, a random energy shift
requires random relative motion between neighbouring
atoms; this is indeed the case in the semiclassical limit, where
the relative motion is isotropic.

It is important to note that in the present modelling, we
neglected the elastic Rayleigh scattering, which occurs in

Figure 2. A photon of laser frequency, ωL, is absorbed by an 87Rb
atom. In a random process, the frequency of the emitted photon, ω, is
shifted with respect to ωL. For a positive energy shift (top part) the
probability of absorbing increases and conversely for a negative
energy shift (lower part).

Figure 3. 87Rb energy levels, lowest singlet ground state X1Σg and
a3Σg and one of the excited states -0u . The excitations occur in the
long- range part of the potential r≈103 Å (energy in units of
wavenumbers).
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addition to repeated absorption/emission events. In typical
cases, such as the propagation of light through biological
tissue or planetary atmosphere, [36, 37], elastic scattering
constitutes the main contribution, thus influencing photon
propagation. However, for photons near the atomic absorption
line propagating in a particle medium with a large absorption
cross section, the absorption phenomena is the major
contribution to light propagation, arising from a large differ-
ence in the typical lifetime of the two processes.

In the exposition, the inter-atomic interactions are
modelled by the four electronic energy states of the Rb2
molecules, the two ground states, the singlet and triplet,

S+X g
1 and S+a u

3 correspondingly, and the -0g and -1g excited
states [9]. The two ground states differ at close- range dis-
tances, but for large distances (r>100 Å), the singlet and
triplet of the ground states coalesce, scaling as van der Waals
interactions ∝−1/r6. The excited stateʼs long range poten-
tial scales as ∝−1/r3, due to a degeneracy of the P
state [35].

3. Modelling methods for the combined particle and
light media

3.1. Probabilistic analysis over phase space

The stochastic cooling theory was modelled by a probabilistic
simulation, where the physics is embedded in terms of the
dynamics of the continuous probability distribution functions
(PDFs) over the phase space. This is a suitable description for
diffusional behaviour and dominant collective effects. Both
the light and particles are confined in the trap, and are
described by the position and momentum in it. It is important
to note that for the particles the momentum is proportional to
the velocity, while for the photons it is linearly dependent on
the energy.

A full stochastic model involves a 12-dimensional
probability function, including all the particle and photon
degrees of freedom (DOF). Such a system is computationally
very demanding. However, if an isotropic environment is
assumed, all the axes are degenerate, and only four DOFs
(position and momentum DOF for particles and light) are
required. A 4D model is still computationally challenging
with respect to the desired accuracy. A solution to this pro-
blem is achieved by comparing typical time scales char-
acterizing both media. The particle diffusion and
thermalization rate is much faster than the resonant photon
diffusion rate. Such a separation of time scales effectively
decouples the two ensembles in a short time regime. This
assumption allows us to break down the general model to two
separate phase space distributions, namely, to the particle and
light media. This separation follows the mean field
approximation.

3.1.1. The Fokker–Planck equation particle ensemble
3.1.1.1. Initialization. In the initial stage, the particles,
described by the PDF, P, are confined in a trap with an

initial temperature Tinit. P is propagated in time by the
Smoluchowski equation [38–41] until a steady state is
reached
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where xpar and ppar are the particle position and velocity,
correspondingly; m is the particle mass; μpar is the drag
constant, calculated from the experimental relaxation time
[42]. m( )D T,par par init is the particle momentum diffusion
function, dependent on the drag constant and temperature.

The first term on the rhs describes the coupling between
the velocity and the location of the atoms. The collisions
between the atoms transfer momentum between the two
particles, creating an overall diffusion in momentum, which is
described by the last term. Balancing the diffusion is the
trapʼs potential, associated with the term ¢¶

¶
( ( ) )V x P

p h o par.
par

,

which is a mixed term coupling the confining force and the
momentum, and m¶

¶
( )v P

p par par
par

is the drag term originating

from the particle collisions. An additional term can be added
in extremely low temperatures, where the particle de Broglie
wavelength is on the order of the mean inter-atomic distance
and the scattering length of the particles should be considered.
A large scattering length should lead to an additional spatial
diffusion term. For the studied temperature regime this effect
is negligible. For particles in a harmonic trap potential, the
steady state distribution has been shown to be a Gaussian with
a variance dependent on the ratio between the diffusion
constant and the drag force, m=D k Tpar par B , where kB is the
Boltzmann constant [38, 43].

3.1.1.2. Coupling of the light to the particle medium. The
interacting particle light ensemble is modelled by the
diffusion function, Dpar coupled. The change in the diffusion
variable arises from an average energy flow from the
ensemble of the particles to the radiation field and
momentum alterations by photon absorption/emission
processes. The variable Dpar coupled is described in detail in
section 3.2.

The radiation characteristics are described in detail in
table A.3.

3.1.2. The Fokker–Planck equation for light. To describe the
light medium, we construct a second 2D probability
distribution function over the phase space. The function is
propagated in time with an FP equation derived from the
‘radiative transfer equation’ (RTE) [36], similar to the photon
diffusion equation [44, 45]; further details are given in the
appendix. These equations usually describe light propagation
in a scattering medium. However, in our study, we treat the

4
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excitation cycles as scattering events characterized by long
interaction times, resulting from the atomic decay time.

The dynamics of the light phase space are described by
the following equation:

f
r f
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where x and pl are the position and momentum of the photon
ensemble, Ephoton is the photon energy, and Tpar and ρpar are the
instantaneous particle temperature and density, respectively.

The equation has two diffusion terms, in space and
momentum, describing the diffusion in the particle medium
and energy transfer. This is a similar equation to the general
photon diffusion equation [44, 45], but lacks any source or
sink term, due to the fact that for atoms there are no clear
nonradiative processes. Loss mechanisms, such as photo-
association, are also negligible for this case.

3.1.2.1. Diffusion function explanation. r( ( ) )D x E,x par photonl

is the light position diffusion function; the propagation of the
photons in the particle medium is described by a diffusional
movement, caused by repeated absorption/emission cycles
and the isotropic nature of spontaneous emission. The particle
density sets the mean distance between consecutive
absorptions; the energy of the photons compared to the
transition line determines the probability of absorption, both
affecting the diffusion rate directly.

r( ( ) )D x E T, ,p par photon parl
is the light momentum diffu-

sion function: the diffusion rate is determined by atom–atom
interactions influenced by the atomic density and velocity at
temperature Tpar.

The physics and interaction between both media is
embedded in the properties of these variables as a function of
the different parameters. A complete analysis follows.

3.2. Derivation of the diffusion variables

The light–matter momentum diffusion function, D ;par coupled

m= +· ( · ) ( )D m k T E R 3par coupled B inter recoil

where Dpar coupled is determined by accounting for all the dif-
ferent effects influencing the energy or momentum of the par-
ticles, considering energy and momentum conservation. Each
term represents a different mechanism for the energy transfer.
The μ·Erecoil·R term arises from the condition of a pressure
balance between the radiation pressure and the momentum of
the particles, when the recoil temperature is achieved [26]. The
light medium exerts a constant radiation pressure on the parti-
cles by continuous absorption. The effect is insignificant when
the magnetic force of the trap is bigger than the radiation
pressure force, but should be considered when the particles are
cooled to a temperature where both forces are on the same scale.

Erecoil is the recoil energy and R is a constant dependent on the
ratio of photons to particles or the intensity of the light.

The energy conservation between the ensembles is
described by the drag constant times the typical kinetic energy
of a single particle, μ kbTint. The total energy of both media is
kept constant by adjusting the temperature variable, Tinter. The
local energy transfer between the particles to the radiation
field is calculated from the net energy change due to the
interactions, as well as the total energy change arising from
the photon flow in and out of the trap.

A further term -( )Dint can be added to the diffusion
coefficient. The added term relates the instantaneous
momentum transfer between the two media. However, the
additional term is negligible in the long range due to the
momentum transfer accounted for in the energy transfer term,
m·μ kBTinter.

The present description does not account for quantum
effects. At lower temperatures, the theory should be modified
by adjusting the modelling parameters, taking into account
the particle wave characteristics. This can be done by adding
a position diffusional term describing the weak localization
due to collision [46].

3.2.1. Spatial diffusion amplitude, Dxl ðρpar ðx Þ;Ephoton ðpl ÞÞ.
The RTE derivation for photon propagation in a highly
scattered medium predicts the value of =

m¢
Dx

v

3l
s

where

m m¢ = -( )g1s s , and m-
s

1 is the mean distance between
consecutive scattering events in the original derivation. In the
case above, where scattering events are neglected, m-

s
1 is the

mean distance between consecutive absorption events and g is
the scattering anisotropy constant qá ñ( )cos , which vanishes for
isotropic scattering [47]. Following the assumptions
mentioned, 3.1.2, we derive a similar expression for Dxl

d
= ( )D

l

t3
. 4x

2

l

For the range of densities common for an MOT, the
emission decay time, δt, is the relevant time scale between
adjacent excitations, and l is the mean distance between
consecutive absorptions. For near resonance light, δt is the
lifetime of the excited state, independent of the detuning
[31, 48, 49].

We assume a homogeneous medium for a small element
in space. In such a medium, the probability distribution for a
photon to cover a distance y without being absorbed by a
particle is:

s= r s-( ) ( )( )P y ne 5abs
x ypar abs

where s n( )abs is the absorption cross section, ν is the photon
frequency and x is the position in the MOT. The mean free
path is given by ò= á ñ = =

r s

¥
( )l y yP y dy

0

1

par abs
[50]. From

equations (4) and (5) we obtain:

r s n d= -[ ( ( ) ( )) ] ( )D x t3 . 6x par abs
2 1

l
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3.2.2. Momentum diffusion function, Dpl
ðρpar ðx Þ;Ephoton ;T par Þ.

The diffusion coefficient of light can be decomposed into a
product of two contributions: (1) The probability function of a
photon being absorbed by a pair of interacting atoms,

r n( )G ,abs par ; (2) the diffusion function describing the
diffusion rate in momentum (∝E), caused by the random
energy shift of the absorbed photon,  r( )T,par par .

Assuming the absorption and energy transfer mechan-
isms are independent, the diffusion function can be written
as:

r r n r=( ( ) ) ( ) · ( ) ( )D x E T G T, , , , . 7p par photon par abs par parl

3.2.2.1. Absorption probability function. Details of the derivation
of the absorption probability function, r n( )G ,abs par , are shown
in the appendix. Here, we present an overall description and the
results, figure 4.

The absorption probability is calculated, employing a
quantum description of the absorption and emission process.
For a low particle density, see table A.1, the analysis can be
restricted to a two particle interaction. The calculation is then
reduced to a three-body interaction, two neutral Rb87 atoms
and a light field characterizing a single photon. The
absorption cross section is solved, assuming a weak field by
the time-dependent perturbation theory. The free propagation
is obtained by solving the time-dependent (TD) Schrödinger
equation. The wave propagation is calculated using the
Chebychev polynomial expansion method with a Fourier grid,
together with a Gaussian random phase approach [51, 52].
Details of the propagation are described in appendix A.4.

3.2.2.2. Energy transfer between the atom and radiation
field. There are a number of processes which cause a
photonic energy shift: the natural line broadening due to
spontaneous emission [53, 54], and Doppler phenomena [55].
However, in a high density the most dominant phenomena is
pressure broadening and pressure shift [56, 57], which arise
from atom–atom interactions. The process is stochastic and
can be viewed as a 1D random walk on an energy axis. In
such a case the momentum diffusion amplitude is the squared
mean momentum related to the energy shift per unit time. The
function can be calculated as  D µ

d
D( ) ( ( ))p var F E

t
, where

D( ( ))var F E is the variance of a specific probability function,
D( )F E . D( )F E describes the probability for a certain energy

shift, between the emitted and absorbed photons. We show
here the main point of the derivation of D( )F E .

We begin with the change in energy due in a typical
excitation:

D =- + + - = -
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where ri and rf are the relative distance between a pair of
functions at absorption and excitation times respectively, and
C3, C6 are the van der Waals potential constants.

Transforming to the centre of mass and relative velocity
coordinates, the velocity distribution is a Maxwell–Boltz-
mann distribution of particles with a reduced mass μ=m/2

and kinetic energy of =
m

Ek
p

2
r
2
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k T

e
2

. 9
B

v
k T2 B

2

The initial relative density determines the average
distance, r= -( ( ))r xi

1 3 (x is the position in the trap), and
the final distance is written in terms of the decay time and the
initial distance, d= + ·r r v tf i , where d ·r v ti in the
relevant density and temperature range.

By expanding up to the first term in d·v t, we obtain a
relation between the energy transferred and the particleʼs
relative velocity. From this relation, the energy transfer
distribution function is obtained by a random variable
transformation for the Maxwell–Boltzmann distribution

r r d
r d r
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The distribution function of the change in energy for a
single excitation:

D =
m

-
D

( )
( )

F E N e .norm

E

C k T2 B

2

2

Figure 4. The normalized absorption probability of Rb87
2 as a

function of the shift from the atomic transition line, r n( )G ,abs par .

The details of the calculation can be found in appendix A.6. The
function is used as an input for the momentum diffusion function,
Dpl

, using the experimental cross section value to rescale the
probability function.
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Making an ansatz in equation (7), the radiation field
momentum diffusion amplitude can be written as:

r r n

r r d
m

=

-

( ( ) ) ( )

·
[ ( ( )) ( ( ) )] ·

·
( )

D x E T G

x C x C t k T

c

, , ,

3 2
11

p par photon par abs par

B par

par

4 3
3 6

2

2

l

where c is the speed of light.
The photon diffusion function is highly dependent on the

density of the particles and the spatial distribution of photons
in the trap. The linear temperature dependence demonstrates
the fact that when the particles cool it becomes harder to
extract the entropy.

3.3. Final modelling summary

The Fokker–Plank equation is propagated by a Chebychev
polynomial expansion method for the evolution operator

r+ D = - D( ) ( )ˆU t t e tG t , where r ( )t is the modelled dis-
tribution function at time t and the propagator, = r¶

¶
ˆ ( )G t

t
, is

the corresponding Fokker–Planck operator [58, 59]. A
Fourier method is used to calculate the derivative terms in
the Ĝ operation. This scheme is highly accurate and effi-
cient. The two-phase space distribution of light and particle
ensembles are propagated simultaneously for a small time
lapse, transferring information about energy, momentum
and density between the models, figure 5. Absorbing
boundary conditions are applied to the light density function
to account for the photons escaping the trap. In addition,
new photons are added with a frequency distribution
corresponding to the laser source. Such a scenario models a
constant laser incident intensity. See table A.2 for further
information.

4. Results A: probabilistic analysis of the stochastic
cooling

Following the evolution of the initial Gaussian distribution of
the particle after a transient time, its phase space distribution
is compressed. This is a signature of cooling. Figure 6, (A, B
plots) shows an increase of phase space density after 6 μs. On
the other hand, the light medium experiences a fast broad-
ening of the momentum distribution (time scale of 0.1 μs).
For a low momentum, the distribution reaches a threshold due
to a rapid decrease of the absorption probability and the fast
spatial diffusion of the low (red detuned) momentum photons
escaping the trap, while high momentum photons are confined
for longer periods of time in the particle medium. This occurs
until photons reach off-resonant frequencies, leading to a fast
diffusion for extremely high-frequency blue detuned photons.
The phenomena can be seen in figure 6 D as off-resonance
photons (large gaps between the resonant momentum,

-e8.334 901 ;28Kgm

s
bright horizontal strips in the figure) dif-

fuse rapidly. At this stage of the process, the cooling con-
tinues and approaches a constant rate (see figure 7), resulting
from continuous replacement of the diffused photons by laser
light absorbed by the particle medium.

The cooling rate is linear for the initial coupling with light,
but eventually saturates because the energy transfer depends on
the particle velocity, µD Tp parl

. The cooling rate slows down
for low temperatures until reaching the quantum regime, where
additional processes should be incorporated into the model. An
example of such an effect is a further contribution to the spatial
diffusion resulting from localization of the particle wave packet
due to collision with a neighbouring particle.

4.1. Comparison of different trap potentials

The trapʼs potential shape determines the particle density,
which in turn affects the probability of a photon being
absorbed by the particle medium. To test the cooling sensi-
tivity, a set of models was studied with different potentials:
harmonic, linear and quartic potentials. A comparison
between the different trap shapes was made while keeping the
potential energy at the positions = =x x,L L

4

3

4
, almost

identical. In addition, an equal amount of particles was used
for both simulations. The results are presented in figure 7. The
most efficient cooling rate is predicted by the harmonic trap,
1.45·10 2K s−1, which is almost 50% larger than the particle
cooling in a linear trap, 1.02·10 2K s−1. The quartic µ( )x4

potential shows a cooling rate of 37.1 K s−1. Due to the red
shift of absorption with density, the cooling is optimal when
there is a significant gradient in the particle density such as in
the harmonic trap.

4.2. Comparison of different densities

A direct connection between the average density in the trap
and the cooling rate was found. At a low density, a linear
increase in the cooling rate is observed, see figure 8. At higher
densities the cooling rate reduces. This is in a density range

Figure 5. A schematic flow chart of the modelling method, as
described in section 3.3.

7

J. Phys. B: At. Mol. Opt. Phys. 51 (2018) 135002 R Dann and R Kosloff



which is considerably lower in comparison with the quantum
regime. In such a regime, the basic many-body cooling phe-
nomena should still be valid but complimented by quantum
corrections to the model.

An estimation of the maximum cooling rate is obtained
by considering a sphere filled with a uniform gas of atoms
with density ρ, and a typical spontaneous emission lifetime of
τ. The bound for the cooling rate can be calculated by noti-
cing that only the atoms at the outer boundary of the sphere
effectively emit energy. The number of atoms per unit area
occupying the outer shell is Nsurf∼ρ2/3. On average, the
excited atoms out of Nsurf will emit a blue-shifted photon
giving an energy difference of ÿΔω, with a rate of = w

t
DQ̇ .

Furthermore, if 1% of the atoms on the surface are excited at a
certain instant, the upper bound to the cooling rate can be
estimated as:

 w
t

~ =
D· ˙ ( )R Q

k
0.01 0.01 . 12

B

Inserting in equation (12) the data for 87Rb: r = -10 cm 3,13

w tD =10 rad s, 27.7 nsd
7 gives R∼106 K s−1, where

theΔω was estimated from figure 8 considering the stochastic
nature of the process. Note that this is an upper bound, not
taking into account the stochastic nature of the cooling and
possible heating sources. Compared to the current modelling,
a smaller cooling rate on the order of R∼103 K s−1 is
predicted.

The geometrical arguments can explain the dependence
of the cooling rate on the density. At low density, the whole

Figure 6. The particle phase space on the left (A, B) before coupling to the radiation field (A), and after at a time *» -t 6 10 s6 at T=10−4 K
(B). The right-hand side represents the light phase space before coupling (C) and at time t (D). The vertical axis of all the figures describes the
momentum, and the relevant scaling of the units is presented on the left of the axis.

Figure 7. The particle temperature as a function of time, for different
potentials. For a density of ρ=1014 cm−3; the trap potential:

=V kxharmonic
1
2

2; = =∣ ∣V k x V kx;linear quadratic
1
2

4.

Figure 8. The cooling rate in absolute value as a function of the
initial average particle density.
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volume emits, therefore a linear scaling is expected, as seen in
figure 8. For high density, the asymptotic cooling rate should
scale as of ρ2/3. For the data of the asymptotic cooling rate
(figure 8), we obtain the scaling of R∼ρ0.67, in accordance
with the geometrical analysis.

5. Enhanced stochastic cooling—an extension of the
stochastic cooling method

The stochastic cooling of 87Rb atoms, described in section 2,
utilizes the energy gap dependence on the inter-atomic dis-
tance. To generalize this mechanism, we propose a method
applicable to different types of constituents. The main idea
incorporates the additional control of the energy gap between
the ground and the first excited potential energy surface.

The stochastic cooling method (sections 2 and 3),
requires the spatial dependence on the energy gap between the
ground and excited states. 87Rb is a unique case, and the
ground and excited energy states scale differently with the
relative distance between the atoms, see figure 3, resulting in
an energy gap with a sufficient spatial gradient. In the general
case, both energy states scale similarly, and the spatial gra-
dient may not be sufficient to achieve efficient cooling.

Enhancement of the spatial gradient between the energy
states can be induced by employing a second CW field with a
frequency, ω1, in resonance with the transition line between
the excited state, Ee, to a higher excited state, denoted by Ef

(see figure 9). It is crucial that the frequency ω1 should be
different from the atomic transition, not affecting the excita-
tion process from the ground state.

Derivation: the atomic energy gap between subsequent

levels roughly scales as µ -
+( )( )n n

1 1

12 2 , demonstrating that

the first energy gap is much bigger than the other gaps. The
big difference between the energy gaps allows the explicit
treatment of a two-level system coupled to an oscillating

classical field [53]. The solution is given in terms of the Rabi
frequency, Ω, which is linearly dependent on the vector
electric field amplitude of the laser, 


E .

We will focus on two energy levels of the excited state,
ñ∣e1 and the level of a higher excited state, ñ∣e2 . The classical

radiation field induces an energy shift to the bare Hamiltonian
levels, and the new shifted states are given by


= 

W + D


∣ ∣
( )E

2
13

2 2

where w w wD = - -( )L f h can be neglected for a resonant
radiation, ω1≡ωf−ωe?Δ


= 

W
 ( )E

2
. 14

For a classical radiation field, of frequency ω1 with a
spatial dependence, the intensity varies in the trap. For
example, a high-intensity light focused at the centre of the
trap will have a gradient toward lower intensities at the edge
of it. The intensity gradient results in a spatial dependent Rabi
frequency, W( )x , where x is the trapʼs radial coordinate.
Concentrating on a pair of atoms in the trap, the Rabi fre-
quency can be written as a function of the inter-atomic dis-
tance, r. This leads to an excited state Ee which varies
spatially as well, while the ground state stays unperturbed by
the classical EM field. This phenomena induces a spatial
energy-dependent gap between the ground and excited states,
with a gradient depending on the EM intensity.

Once an energy gap is controlled by a tuning laser of
frequency ω1, a second laser of frequency ω0=ωe−ωg is
applied to the particle medium. As in the Stochastic cooling
method, the laser of frequency ω0 induces excitations between
the ground and excited states. The relative random motion of
the atoms in the excited state will induce average energy
transfer and cooling. This process is controlled by the electric
field amplitude 


E with a frequency ω1.

The energy level configuration and the addition of a
second tuning laser is similar to the scenario utilized for
electromagnetic induced transparency (EIT). In EIT, com-
bined AC Stark splitting and quantum interference results in a
transparency at a frequency of the probe (cooling) laser.
Similar applications have been achieved for Rb and Pb. Such
phenomena, under favourable circumstances, will allow easy
penetration of the photons to a partly opaque particle med-
ium [60, 61].

The control of the energy gap gradient enables the
enhanced stochastic cooling to operate at lower densities
relative to the densities required for the stochastic cooling of
rubidium. For the stochastic cooling of 87Rb, high densities
are required because of the small dependence of the energy
gap on the inter-atomic distance. Once the gradient is engi-
neered with an external field, the energy gap can be shifted to
longer inter-atomic distances. For this method, the required
density is bounded only by densities where the photons are
characterized by diffusional motion.

We present in table A.4 the sufficient densities when
applying enhanced stochastic cooling for different alkali
atoms.

Figure 9. The excited state, ñ∣e1 , and the next energy state, ñ∣e2 , are
coupled by a tuning laser of frequency ω1 generating a Stark shift,
which is intensity dependent. The Stark shift is enhanced at
resonance conditions occurring at specific inter-atomic distances. As
a result, the potential ñ∣e1 is modified and with it the resonance

conditions of the cooling laser


w =
-E E

0
e g . By varying the intensity

of the tuning laser in the trap we obtain a gradient in the absorption
probability of the cooling laser.
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Constituent Required density -[ ]cm 3

Rubidium 1.47·106

Sodium 2.85·106

Caesium 1.04·106

5.1. Optimization of the tuning radiation field

In the following section we discuss how the optimization of
tuning laser intensity and frequency affects the cooling.

5.1.1. Intensity variations of the tuning radiation field. The
question arises of what the optimal field profile is. The laser
frequency is determined by the gap ω1=ωf−ωe, but
different intensity profiles can be realized. Modern-day
optics allows the creation of many intensity profiles,
utilizing optical holographic lenses and state-of-the-art
optical devices. An optimization including all possible
scenarios can be complicated. However, we notice that by a
similar derivation to that in section 3.2.2 the diffusion
constant Dpl is proportionate to the square of the tuning
laserʼs electric field gradient. Proportionality suggests that a
greatly varying field in the trap region will result in increased
cooling of the particle media, see figure 11.

5.1.2. Frequency variation of the classical radiation field. The
frequency of the second laser source can be tuned to induce
cooling for a specific atomic density. In the last section, we
consider a classical radiation field, applied to the trap, with
the resonance frequency ω1 matching the asymptotic
transition ñ  ñ∣ ∣e e1 2 . However, the energy gap in
resonance to the transition changes along the inter-atomic
distance, r. Modern experimental techniques allow accurate
control of the laser frequency and spatial intensity. This
enables the control of the exact region of the inter-atomic
distances, which are coupled to the cooling field. A laser with
a frequency of w ( )ri1 will couple between the ground and
excited states in a region near ri, inducing a gradient in the
energy gap between the states. The gradient will induce
cooling, originating from a pair of atoms with a certain inter-
atomic distance. Alternately, when averaging over the inter-
atomic distances, the laser frequency, w ( )ri1 , will match the
atomic medium of a density r ( )r x,i , (where x is the radial
component of the trap).

6. Results B: enhanced stochastic cooling

Enhanced stochastic cooling was modelled on 87Rb atoms, in
a similar method as that described in section 3. A second
tuning laser in conjunction with the cooling laser is employed
with a wavelength of 1 475.6 nm ( P D2

1 2
2

3 2). Once
the light and particle media are coupled, the two-phase spaces
are propagated in time, while synchronizing the parameters
after each time step. The energy transfer is assumed to ori-
ginate solely from the coupling of the external field. The

diffusion functions are recalculated based on the derivation
presented in section 5.

A number of different intensity profiles were studied, E1

∝ x2, E2 ∝ x4, and also a highly oscillating profile E2, see
figures 10, 11. The sinusoidal profile shows the fastest cool-
ing rate, 6.85·10 2K s−1 as a result of the large gradient. The
other profiles E2 and E1 have an inferior cooling rate of
1.33·10 2K s−1 and 40 K s−1 correspondingly.

7. Discussion

The cooling of neutral atoms via collective many-body
interactions is an efficient universal cooling scheme, applic-
able as a complementary method to prior cooling methods
[62, 63], or independently.

At sufficient particle density and large absorption cross
sections, photons are trapped in the particle media. In such

Figure 10. The profiles of the tuning light intensity: black dashed
E1=2·1014x2/2, red dash-dot E2=5·1012x4, solid blue
E3=4.96, 1013sin(200x)/200 (MKS). The field profiles are
adjusted so that the maximum intensity in the trap is equal.

Figure 11. Particle temperature as a function of time for different
external field profiles corresponding to figure 10.
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density regimes, photon propagation in the trap is character-
ized by diffusion. A single photon exhibits a large number of
excitation cycles, allowing energy and entropy transfer
between particles and photons. The mechanism proposed
depends on the collective behaviour of the particles and light
media, giving rise to coordinated dynamics. The cooling rate
depends on the particle density, on the density gradient and
the asymmetry in the spectrum between absorption and
emission. On average, an absorbed red photon will be emitted
as a blue photon. The density of similar values used in the
demonstration has been achieved experimentally [32, 64, 65],

- -( )10 10 cm13 15 3 . A simple experimental setup for sto-
chastic laser cooling requires the ability to change the trap
potential and with it the density. This will also allow the
validity of the theory to be checked.

The main thermodynamic principle unifying all cooling
methods is an increase of the total entropy of the joint particle
and light ensembles. The energy transfer from the particle
medium to the light medium decreases the entropy of the
particle ensemble. This comes at the expense of light entropy,
where the constant radiation loss from the trap is the entropy-
generating mechanism.

Our modelling for Rubidium demonstrates that cooling
can be achieved by the ‘stochastic cooling method’. A single
‘cooling laser’, coupling the ground and the lowest excited
state ( ñ = S+∣g X g

1 , S+a u
3 ; ñ = - -∣e 0 , 1g g ) is sufficient. Mod-

elling predicts efficient cooling for a density range of
- -( ) ·1 7 10 cm14 3, and cooling rates ranging between

100–800 K s−1. Furthermore, the model predicts that the
asymptotic cooling rate for a fixed trap volume will scale with
the density as ρ2/3 and be linear at low density. This is in
accordance with a simple geometrical model.

This scheme can be extended to cool other constituents
by adding a second ‘tuning laser’ coupling the first state and
a higher excited state. The generalized cooling method,
‘enhanced stochastic cooling’, allows the universal exten-
sion of cooling for different types of neutral atoms as well as
molecules. The experimental requirement is an additional
CW laser. The rate of cooling can be controlled by deter-
mining the values of the gradient of the intensity of the

tuning laser, ¶
¶
E

x
tune , [66]. The generalized scheme predicts

efficient cooling rates that can be maximized by choosing an
intensity profile with a large spatial gradient in the trap, see
figure 11.

The phenomena, enabling the cooling of rubidium (sto-
chastic cooling), is related to the pressure line shift and
pressure broadening, which arises at sufficiently high den-
sities [67]. The pressure shift and inter-atomic interactions
allow energy transfer between particle translational degrees of
freedom to internal degrees of freedom and to the photonic
medium. The magnitude of the pressure shift influences the
cooling rate directly. Similar effects, arising for increased
densities, can be seen in other condensed matter phenomena,
such as the charge transfer to a solvent and modifications to
the absorption/emission spectra for the liquid phase relative
to the gas phase spectrum. For cooling, higher particle den-
sities increase the pressure shift and, in turn, the gradient of

the energy gap between the ground and excited states. As a
result of the stochastic nature of the process, a larger gradient
leads to faster cooling.

The mechanisms described, responsible for energy
transfer from the particle to the light medium, are valid for the
semiclassical regime. At low temperatures, the present theory
should be modified by quantum theory. The crossover
temperature is when the de Broglie thermal wavelength is in

the range of the mean particle distance > r
p( )T h

mk2 B

2 2 3

. For
87Rb, this temperature is ∼10−6 K for a density of
ρ=1014 cm−3. At low temperatures the asymmetry between
red and blue shift emission is larger. The reason for this is that
the ground state density is peaked at the attractive region
of the van der Waals potential, and the emission is biased
toward the outer turning point of the vibration of the excited
potential, which is larger. Near the BEC limit, additional
corrections can be made based on the particle wave char-
acteristics. These are out of the scope of this paper. The
enhanced stochastic cooling method is applicable to low
densities and lower temperature regimes. The details are
presented in table A.4.

The manipulation of cold molecules and cooling mole-
cules to extremely low temperatures has been one of the main
focal points of the atomic molecular optical research field
[68–74]. The method proposed is applicable to molecular
cooling experiments. For sufficient densities, light can be
trapped for long time periods in the molecular medium, and
an energy transfer is predicted.

In contrast to the general simplicity of laser cooling
atoms, the higher number of degrees of freedom in the
molecules induces a complex internal energy structure. These
features complicate the cooling process due to additional
relaxation channels, which leads to induced heating. For
efficient cooling, the molecules need to have large diagonal
Franck–Condon factors. This will allow repeated electronic
excitations while minimizing the excitation of the vibrational
states. Low inelastic rates are favourable and result in heating
and a fast molecular loss rate. In addition, the energy transi-
tions should match the available laser cooling frequencies. A
number of different constituents qualify for efficient sto-
chastic cooling or enhanced stochastic cooling, OH, CaF
and YO.

CaF has been cooled to velocities of ≈10±4 m s−1,
which is below the capture velocity of a molecular MOT
[75], and has suitable electronic transitions. The cooling
laser can be applied, detuned slightly below the

S = = -+X v N, 0, 12
1 2 , P = = +A v J, 0, 3 22

1 2 trans-
ition of 606 nm, while the coupling laser couples between
the A2Π1/2, v=0, J=+3/2 and C2Π 1/2, v=0,J=
−1/2 states of 729.5 nm. Additional lasers and a magnetic
field may be required in order to bring back dark magnetic
sub-states to the optical cycle and reduce population loss to
excited vibrational states. Such a scheme is envisaged to
induce enhanced stochastic cooling. A spatial gradient in the
energy gap between the ground state and excited state allows
efficient cooling. The gradient is created by the polariz-
ability difference between the two states. This means that a
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dense ensemble of CaF trapped in an MOT could be cooled
further, towards sub-millikelvin temperatures.

Other molecular candidates are the OH radical and YO,
which have been confined in a trap [69, 76, 77] and studied
in context with optical cooling [70, 78, 79]. They have a
suitable internal energy structure with convenient optical
transitions in visible light. Both show similarities to CaF,
allowing the application of stochastic cooling methods.
Similarly to the case of CaF, additional pumping lasers
and a magnetic field may be needed to ensure a closed
cooling cycle. These additional lasers prevent population
trapping in dark states by re-pumping back to the cooling
cycle.

Almost all molecules are more polarizable in the excited
state. As a result, a gradient in the energy gap will arise and
the stochastic cooling method is therefore applicable, since it
is based on van der Waals forces. Molecules with higher
polarizability can be cooled more efficiently. The molecular
density should be in the range where two-body elastic colli-
sions are dominant over three-body inelastic ones. To con-
clude, ‘enhanced stochastic cooling’ can greatly increase the
class of atoms and molecules that can be cooled to sub-Kelvin
temperatures.
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Appendix

A.1. Rubidium data table

D1 ( )S Ptransition 5 52
1 2

2
1 2 [9]

Wavelength (vacuum) 794.979 nm
Lifetime 27.7 ns
Recoil energy 22.823 6kHz
Effective far-detuned saturation intensity -4.484 mW cm 2

Effective far-detuned resonant cross
section

1.082·10−9 cm2

A.2. Model parameters

Density range 1013−1014 cm−3

Trap length 1 mm
Cooling laser frequency 3.771 1·1014s −1

Particle photon ratio in the trap 1
Initial temperature 0.01 K

A.3. Pulse parameters, see section 3.2.2

Variance -10 s16 2

Amplitude Normalized so the cross section will fit the experimental
value

A.4. Numerical methods

The dynamical equations to be solved for the particles and
light equations (1) and (2) have the structure:

¶
¶

=( ) ( ) ( )
t
F x p t F x p tO, , , , 15

where F(x, p, t) is the probability function in phase space and
O is a differential operator defined in equations (1) and (2).
We can write a formal solution for a short time step Δt:

+ D » D( ) ( ) ( )F x p t t e F x p t, , , , . 16tO

The exponent in equation (16) is expanded by a Chebychev
polynomial of order N [58]:

å» DD

=

( ) ( ) ( )e C t T O 17t

k

N

k k
O

0

where Ck are expansion coefficients (Bessel functions) and
Tk(x) is the Chebychev polynomial of order k.

The following table presents the details of the Fourier
−Chebychev numerical scheme for solving coupled Fokker
−Planck equations:

Grid size 10−3 m
Number of spatial grid points in
position

250

Number of spatial grid points in
momentum

500

Grid spacing Δr=4·10−6 m
Grid spacing Δp=4.8491·10−27 kgm s−1

Order of Chebychev polynomial
(light)

45

Grid size 2·10−3 m
Grid points of light medium
position

500

Grid points of light medium
momentum

100

Grid spacing (light) Δr=4·10−6 m
Grid spacing (light) Δp=4.8395·10−36 kgm s−1

Typical time step (light) 10−9 s
Number of time steps 6000
Order of Chebychev polynomial
(light)

271

A.5. Estimate the number of excitations for a single photon

The photon propagation through the atomic medium can be
modelled as a 3D random walk, resulting from repeated
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absorption/emission cycles. The square of the distance that a
photon reaches after N steps, or variance is:

e= ( )var N 18d3
2

where N is the number of absorption/emission cycles and ε is
the length of each step between consecutive absorption
events. Assuming a spherical trap with a uniform density:

e r= - -· ( )P 19abs
1 1

3

where r s=Pabs
2
3 is the absorption probability. (For r s 1

2
3

the equality holds.)
To escape the trap, the photon has to reach a distance of

R (trap radius) from the centre of the trap

r
r s= =

- -
- -

( · )
( )N

R

P
R 20

abs

2

1 2
2 2 2

1
3

r s= - -( ) ( ) ( )N NR . 212 2 1
2

A.6. Absorption probability function

We solve the transition probability between the ground and
excited state of a quantum system of two 87Rb atoms and a
light field characterizing a single photon.

The original Hamiltonian, with no coupling to a radiation
field is:

= + = +ˆ ˆ ˆ ˆ
( ) ( )H T V

P

m
V r

2
. 22g e g e g e

In the presence of an electromagnetic field, the two surfaces
of the ground and excited states are coupled by the interaction
of the field and the dipole momentum operator. The new
Hamiltonian is written as:

*

e m e m

e m

e m

= Ä + Ä + Ä + Ä

=

- + + -

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

ˆ ˆ ˆ ˆ ˆ ( ) ˆ ˆ ( ) ˆ ˆ

ˆ ( ) ˆ
( ) ˆ ˆ

( )

H H P H P t S t S

H t

t H
.

23

g e

e

g

The electromagnetic field is given by:

e e e= + *w w-( ) ¯ ( ) ¯ ( ) ( )t t e t e 24i t i tL L

where ωL is the laser carrier frequency and ē( )t is the
envelope of the pulse. After the rotating wave approximation,
the Hamiltonian reduces to:





w e m

e m w
=

-

+

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

ˆ
ˆ ¯ ( ) ˆ

¯ ( ) ˆ ˆ ( )H
H t

t H

2

2
. 25S

e L

g L

The amplitude of absorption of a photon is calculated con-
sidering a system following the dynamics governed by ĤS.
For the basis states y({ })k of ĤS, the amplitude transfer from
the eigenstate y ñ∣ i to eigenstate y ñ∣ n , after time t, is given by
the time-dependent perturbation theory. Assuming a weak
field, the amplitude, to a good approximation, is given by the
first order term:

 ò= - ¢w( ) ˆ ( ) ( )( )b t
i

e W t dt 26n

t
i t

ni
1

0

ni

where ˆ ( )W tni is the time perturbation term


w = -
ni

E En i .
Defining

= -( ) ( ) ( )c t b t e . 27n n
iE tn

With the help of equation (26)


 ò t= - ¢t t- - -( ) ˆ ( ) ( )( )c t

i
d e W t e . 28n

t
iE t

ni
iE

0

n i

For a perturbation e m¢ =ˆ ( ) ¯ ( ) ˆW t tni , and the following identity
 y yñ = ñt t- - - -∣ ∣( ) ˆ ( )e eiE t

n
iH t

n
n n


 ò t e m= - ¢t t- - -( ) ¯ ( ) ˆ ( ) ( )( )c t

i
d e t t e . 29n

t
iE t iE

0

n i

Similarly, for an excited state, using equation (25)







 

òy t

me t y

ñ =-

´ ñ

w t

w t t

- -

- -

∣ ( )

ˆ ¯ ( ) ∣ ( ) ( )

( ˆ ) ˆ

ˆ

t
i

e d e

e e 0 . 30

e
i H t t i H

i i H
g

2
0

e L e

L g

Assuming a narrow Gaussian pulse, which is centred at t=0
far away from the source, the integral boundaries can be taken
to infinity

e t
ps

=
t
s

-
¯ ( ) ( )B

e
2

31
t
2

2 t

2

2

where B is an amplitude constant. Using the identity [80]
(section 3)


òs w y y m t mµ á ñ  = w t

-¥

¥
- -( ) ∣ ˆ ∣ ˆ ˆ ˆ

( )

( ˆ ˆ )A A d e .

32

A L i i
i H He g L

Assuming the system is in the ground state at the initial time,
the propagator is given by




òm te t m= w t t

-¥

¥
- -ˆ ˆ ¯ ( ) ˆ ( )( ˆ )A d e e . 33

i H i Ee L g

When the transition dipole moment is constant in position and
momentum, the solution of the integral gives

m=
s

-
Dˆ ˆ ( )A Be 342 2

t
2 2

where


w wD = - -Ĥe g L
1 , defining a = s

2
t
2

as well as
emitting the global phase from the expression, and defining

w w= +( )c g L and decomposing the Hamiltonian to the
kinetic and potential terms, = +ˆ ˆH T Ve e. The expression for
the propagator is given by:

s y yµ á ñ
s

- + +∣ ∣ ( )( ˆ ˆ ˆ )e 35A g
G F K

g2
t
2

where:

= -ˆ ˆ ˆ ( )G T cT2 362

= -ˆ ˆ ˆ ( )F V cV2 37e e
2

= +ˆ ˆ ˆ ˆ ˆ ( )K TV V T. 38e e
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Using the Zassenhaus formula to expand the exponent,
we find that the high order commutators can be neglec-
ted [81].

Taking the first term in the expansion, the cross section
can be summarized by the expression:

s y yµ á ñ
s s s

- - -∣ ∣ ( )ˆ ˆ ˆ
e e e 39A g

G K F
g2 2 2

t t t
2 2 2

where Ĝ and F̂ are the kinetic and potential energy terms
correspondingly, and K̂ is a correlation term.

The solution is a Gaussian function with a variance of
2.89 ( )nHz 2, see table A.3, centred around -( )V Ve g ; for
large r the contribution of the van der Waals interactions to
the probability of being absorbed is negligible. However, for a
short range the interaction will shift the resonance frequency
towards lower frequencies in comparison with the atomic
transition line, influencing the optimized detuning from
resonance, Δωoptimise, used for optimal cooling.

A.6.1. Direct cross section calculation.
We can decompose the initial thermal state to random phase
Gaussian wave functions, when assuming the contribution of
the kinetic term only. The approximation is valid for the
density and temperature regime in our experiment, see
table A.1, where the ground state potential has a minor effect
on the wave function of the ground state

»- - ( )
ˆ

e e . 40
H

k T
p

mk T2B B

2

Each thermal Gaussian wave function, in the momentum
representation, has a temperature-dependent standard devia-
tion s = mk TB , and an added random phase =( )G p
- +e ipRp

mkBT

2

2 0.
In the position representation this amounts to an

ensemble of Gaussians centred at different locations {R0}. In
the final stage of the calculation, all Gaussians are summed
and averaged, and the random phases cancel one another
constructing an asymptotic thermal state propagated in time.

The overall effect of the described calculation is
equivalent to the following process: each Gaussian, centred at
a different location, is coupled to an electric field at time τ,
the EM field couples the ground and excited states resulting in
a population transfer to the excited state. The excited state is
then propagated until time t to achieve a single realization.
The overall excited state is then achieved by integrating on all
possible transition times, τ. The calculation converges to the
first order time perturbation term assuming a weak pulse.

This process is repeated for different laser frequency
shifts, Δω, and an absorption probability distribution function
dependent on the laser frequency shift is achieved.

A.7. Relation between the cross section and the matrix
element

Deriving the proportionality s w y yµ á ñ( ) ∣ ˆ ∣AA L i i , the power
can be written as

= = ( )P
dE

dt

dH

dt
. 41

Making an ansatz of equation (23)

*

*

e
m

e
m

e
m y y

e
m y y

= Ä + Ä

= Ä ñá + Ä ñá

+ -
( ) ˆ ˆ ( ) ˆ ˆ

( ) ˆ ∣ ∣ ( ) ˆ ∣ ∣ ( )

P
d t

dt
S

d t

dt
S

d t

dt

d t

dt
. 42e g g e

Inserting the density matrix expression, r y y= ñá +(∣ ∣g g
1

2
y yñá∣ ∣)e e , the state is written as:

*e
y m y

e
y m y

e
y m y

e
m

á ñ + á Ä ñ

= - á ñ = - á Ä ñ+⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( ) ∣ ˆ ∣ ( ) ∣ ˆ ∣

( ) ∣ ˆ ∣ ( ) ˆ ˆ

d t

dt

d t

dt
d t

dt

d t

dt
S2Real 2Real .

e g g e

e g

The power at time t


ò

e
y m y

y m t m y

=- á ñ

µ á ñw t
-¥

¥ - -

⎜ ⎟⎛
⎝

⎞
⎠( ) ( ) ( )∣ ˆ ∣ ( )

( )∣ ˆ ˆ ∣ ( ) ( )( ˆ ˆ )

P t
d t

dt
t t

t d e t

2Real

. 43

e g

g
i H H

g
e g L

The power is proportionate to the population change which
has a linear dependency on the cross section

w s w= µ ( ) ( )P
dN

dt
. 44e

L0

Combining equations (43) and (44) we get the desired rela-
tion:


òs w y m t m y

y y

µ á ñ

= á ñ

w t
-¥

¥ - -( ) ( )∣ ˆ ˆ ∣ ( )

( )∣ ˆ ∣ ( ) ( )

( ˆ ˆ )t d e t

t A t . 45

A L g
i H H

g

g g

e g L

A.8. Energy transfer between the atom and radiation field and
calculation of ðρpar ;T par Þ

The energy change due to a typical excitation is:

D =- + + -

= - + -
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( )

E
C

r

C

r

C

r

C

r

C
r r

C
r r

1 1 1 1
46

f f i i

i f f i

3
3

6
6

3
3

6
6

3 3 3 6 6 6

where ri is the inter-atomic distance for time t when the
photon is absorbed, and rf is the relative distance at time
t+δt, when the photon is emitted, and where δt is the typical
decay time for the rubidium 87 D1 transition.

Transforming to the centre of mass and the relative
velocity coordinates, the velocity distribution is a Maxwell–
Boltzmann distribution of particles with a reduced mass

μ=m/2, a kinetic energy of =
m

á ñ


Ek
p

2
r
2

, momentum

m=
 ·p vr , and relative velocity


v . The velocity distribution

for the relative particle,

m
p

=
m

-( ) ( )f v
k T

e
2

. 47
B

v
k T2 B

2

The initial relative distance is assumed to be the mean dis-
tance for a density r ( )x , where x is the spatial position
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in the trap

r= -( ( )) ( )r x . 48i
1 3

The final relative atomic distance, rf, can be written in terms
of the relative velocity v; rf=ri+v·δt. Making an ansatz of
equation (48)

r
d

d
r

D = -
+

+
+

-

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( )
( · )

( · )
( ) ( )

E C x
r v t

C
r v t

x

1

1
. 49

i

i

3 3

6 6
2

Since ri?v·δt (in the density range discussed) we can
expand in a Taylor series up to the first term

d
d

+
» -

⎛
⎝⎜

⎞
⎠⎟( · )

· · ( )
r v t r

n
v t

r

1 1
1 . 50

i
n

i
n

i

The energy gap is reduced to

r d rD = - =( ( )) · ( ( ) ) · ( )E x v t C x C C v3 2 514 3
3 6

r d r= -( ( )) ( ( ) ) ( )C x t C x C3 2 . 524 3
3 6

In the first order approximation, the energy change and the
relative velocity are linearly dependent. The distribution
function in velocity translates to an energy distribution
function, for  w w= -( )E f i




w= =
m w w

-
-

( ) ( )
( )

f E N e 53f norm C k T2
f i

B

2 2

2

p
m

= ( )N
C k T

1

2
. 54norm

B
2

The variance of the function w( )f f can be used to calculate
the light phase space diffusion variable of the energy transfer,
 r =

d
( ) ( ( ))T,E par par

var f E

t
, arising from the interaction of the

particle and photons, including only photons which are
absorbed

m
=( ( )) ( )Var f E

C k T
55B

2

r d r= -( ( )) ( ( ) ) ( )C x t C x C3 2 564 3
3 6

 r
r r d

m
=

-( ) [ ( ( )) ( ( ) )] · ( )T
x C x C t k T

,
3 2

. 57E
B

4 3
3 6

2

For the diffusion in momentum using the photon energy
relation, E=p·c, the diffusion variable in momentum is
given by  =

c E
1
2 .

A.9. Random phase approach for calculating the absorption
probability function

We use the random phase approach as an efficient scheme for
propagating a thermal state r̂. A thermal state is an incoherent
state which undergoes coherent time evolution. In this case a
direct approach is a full solution of the Liouville von Neu-
mann equation in the Schrödinger picture,


r

r
¶
¶

= [ ] ( )i
t

H, . 58

For a time evolution operator = -ˆ ( ) ˆU t e Hti
, the dynamics can

be captured by the equation r r=( ) ˆ ( ) ( ) ˆ ( )†t U t U t, 0 0 , 0 .
When a wide range of energy states are populated, the direct
solution of the initial state can be difficult and time con-
suming. An alternative approach decomposes the initial
thermal state to random phase Gaussian wave functions. The
time evolution can be calculated on each realization and
averaged to assemble the thermal state at time t. A detailed
description follows. For a high number of realizations the
random phases cancel each other leaving no effect on the
the desired calculation. This is the underlying principle of
the method. For a general random phase qaei where N?1 we
can write the Cronicer delta function as:

å d=q q
ab

=

-a b ( )( )
N

e
1

59
k

N
i

1

k k

where k labels a set random angle, each angle given for each
basis state, α and β. If α=β, kα=kβ for all k, we get unity;
for any other case the equality converges to zero as

N

1 . This

characteristic allows the operator to be composed with an
arbitrary complete orthonormal basis añ{∣ } and the random
phases qa{ }ei k

. We define a thermal random wave function
y añ = ña

qa∣ ∣ek i k
and an accumulated wave function Y ñ =∣ k

y aå ñ = å ña a a
qa∣ ∣ek i k

å å å

åå

a b

y y

= Y ñáY = ñá

= ñá

a b

q q

a b
a b

= =

-

=

a bˆ ∣ ∣ ∣ ∣
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N N

e

N

1
1 1

1
. 60

k

N
k k

k

N
i
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N
k k

1 , 1

1 ,

k k

Therefore the thermal state at time t=0 is

å å

åå

å

r r a b

a b

j j

= = ñá

= ñá
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b b

a b

q q
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q
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2 2

1

k k

while the thermal random wave functions are
j añ = å ña

q- +ab
a∣ ∣ek iE k

2 , and the temperature dependence is

given by b =
k T

1

B
.

The thermally averaged time-dependent states, r̂ ( )t , can
be calculated by the same process, decomposed to time-
dependent thermal random wave functions j ñ∣ ( )tk . We obtain
the thermal state r̂ ( )t by propagating the N accumulated
thermal random function, j jñ = ñ∣ ( ) ˆ ( )∣t U t, 0k k , and taking
an average defined by equation (A.9). Taking a closer look at
a single thermal random wave function j añ = ña

q- +ab
a∣ ∣ek iE k

2 ,
añ{∣ } is chosen to be the momentum state basis. For small

potential energy the state can be written as

ñ » ñ = ñ
b q

b
q- + - + - +∣ ∣ ∣ ( )

ˆ
e p e p e p 61

H
i

p
m

i
p

mk T
ipR

2 2 2p
k

p
k

B

2 2

0

having defined q = pRp
k

0 in the second equalization.
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The thermal random state, for the range of high kinetic
energy or weak interactions, is a thermal Gaussian with a
variance mk TB and an additional random phase. In the posi-
tion representation, the wave function has the form of a
Gaussian displaced by j ñ = - -∣ ( )R e, r

k mk T r R
0 B

1
2 0

2. In the
position representation, the random phase approach leads to a
decomposition of the initial thermal state to many thermal
Gaussian wave functions centred randomly in space. The
validity of such an approximation for a two-body interaction
only holds for large r where the potential is weak.
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