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Abstract

The quantum dynamical semigroup formalism provides an appealing general framework for discussing factors that
affect pure vibrational dephasing rates in chemical systems. Within this framework, we formulate a Poisson model of
pure vibrational dephasing which is more generally applicable than the commonly employed stochastic Gaussian
dephasing model. In the limit of small and frequent phase changes, the Poisson model reduces to the stochastic
Gaussian form. We find that for certain vibrational states of the lithium dimer in argon, the stochastic Gaussian model
is valid, while for other states large and abrupt phase changes clearly require application of the Poisson model. In the
former case, dephasing rates increase with the difference in quantum number between constituent vibrational states,
while in the latter case, the dependence on quantum number difference or energy gap can become negligible. Recent
experimental advances described by Amitay and Leone are expected to permit experimental tests of our theoretical

predictions. © 2001 Elsevier Science B.V. All rights reserved.

1. Introduction

Fully quantum mechanical treatment of com-
plex chemical systems is generally computationally
intractable. However, one is often concerned only
with observables characterizing a subsystem of
interest. In this case, it is most appropriate and
convenient, when possible, to consider only the
effective (or “reduced”) dynamics governing the
evolution of these observables [1]. When the sub-
system is weakly coupled to the remaining
(“bath’) degrees of freedom, Redfield theory can
be used to incorporate important bath effects into
the reduced dynamics in an approximate way [1].

* Corresponding author. Fax: +972-2-6513742.
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This approach has been used by Mukamel, Fries-
ner, Nitzan and others [2-6] to address such issues
as bath effects on electron transfer rates and
mechanisms. However, the Redfield approach has
important disadvantages, including the fact that
one’s choice of subsystem bath boundary is con-
strained by the requirement of small coupling, and
the occurrence of unphysical “negative popula-
tions” as a result of approximations inherent in the
theory [7,8].

One promising alternative approach for mod-
eling the reduced dynamics of a subsystem inter-
acting with its environment was pioneered by
Lindblad in the 1970s [8,9]. Lindblad determined
the general form that all reduced dynamical
equations must take if the bath is Markovian and
the reduced density matrix retains certain required
attributes (such as positivity of state populations).
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Practical dynamical methods based on the Lind-
blad approach include semigroup methods and
stochastic (non-linear) Schrodinger equation meth-
ods [8,10,11]. The simplicity and generality of the
Lindblad approach are especially useful for cate-
gorizing and characterizing the different kinds of
reduced dynamical processes that can be observed,
as well as the experimental conditions that will
promote one process over another [§].

Vibrational dephasing experiments provide im-
portant opportunities to test reduced dynamical
methods in general. While vibrational dephasing
processes have long been the subject of intense
experimental and theoretical research [12], recent
experimental advances developed by Leone and
others have drastically increased both the range of
vibrational dephasing processes that can be stud-
ied experimentally and the accuracy with which
initial vibrational populations and phase rela-
tionships are known [13,14]. In addition to creat-
ing opportunities to test the applicability of
semigroup and other reduced dynamical methods,
these experimental methods also have potential
applications in the areas of quantum control and
quantum computing [13-17]. In these two devel-
oping areas, dephasing processes can be expected
to play a particularly important role.

One prediction that follows from the appli-
cation of the quantum dynamical semigroup
formalism is that under certain experimental
conditions the usual energy gap dependence of
vibrational dephasing rates will be modified. A
particularly promising system for testing this pre-
diction is that of a lithium dimer in argon [13].
This system, which has been studied extensively by
Leone and others, has a number of attractive
features. These include the high tunability of the
bath conditions and the great variability in the
properties of different vibrational states. But most
importantly, Leone and others [15] have demon-
strated that a wide range of different initial su-
perposition states can be created, and the resulting
dynamics observed experimentally. This measure-
ment capability provides a very attractive testing
area for dynamical theories.

The remainder of this paper is organized as
follows. In Section 2, pure vibrational dephasing
processes are described from a theoretical stand-

point. In Section 3, the transition to a region
of energy gap independence is discussed within
a semigroup framework. A “Poisson’” model of
dephasing is discussed which has more general
applicability than traditional “stochastic Gaussian”
models. In Section 4, we consider the specific case
of vibrational dephasing of a lithium dimer in ar-
gon, and make more explicit the conditions under
which energy gap independent dephasing rates are
expected to be observed experimentally. Section 5
discusses our conclusions.

2. Pure vibrational dephasing

For simplicity, we begin by considering the
subsystem space to contain only two orthogonal
vibrational states; the generalization to further
states is straightforward. In the energy eigenstate
representation the Hamiltonian of the subsystem
“S” is

Hs = [Dhon (1] + [2)hon (2| (1)

where 7w, and %w, are the energies of the two ei-
genstates |1) and |2). The reduced density operator
in this eigenstate representation will then at all
times take the form [18]

p(1) = [Dpn (1] + [2)(1 = pyy (1)) 2|
+ 1P (0)2] + [2)p1,(1)(1] (2a)

where p,; is a real number between 0 and 1, p, is
complex, and the following relation is always sat-
isfied

p%ngll(l -Pn) (2b)

We note that the energy of the subsystem depends
on the value of p,,, but is independent of the value
of py,.

Interaction with a bath will induce energy gap
fluctuations in the subsystem [1]. Dephasing as-
sociated with such energy gap fluctuations is
commonly referred to as “pure dephasing” [1,19].
At high temperatures, this is expected to be the
dominant dephasing process, and a classical de-
scription of the bath is expected to be valid. We
adopt such a classical description of the bath in
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this work, but note here that our primary con-
clusions in this study would be unaffected even if
the so-called “quantum decoherence” [20,21] '
associated with bath quantum effects played a non-
negligible role in the reduced dynamics. We also
note that the applicability of the classical bath
approach is well established for predicting line
shapes [12].

Evolution of p;; over typical vibrational deph-
asing times can be neglected [12,22]. As such, over
a time period on the order of the vibrational
dephasing time, the subsystem may be taken to
interact with the environment nearly elastically,
such that only the value of p,, evolves in time. As a
result, over the time scale of dephasing, the re-
duced dynamics may be taken to be determined by
an approximately diagonal Hamiltonian. In the
classical bath approximation, the short time re-
duced dynamics for a given classical bath trajec-
tory is then determined by an approximate
Hamiltonian of the form

H ~ Hs+ 1)V (0] + 2)7(0) 2] (3)

where V;(¢) is the time dependent interaction en-
ergy between the bath (evaluated along a specific
classical bath nuclear trajectory) and the system
(in a specific vibrational state |i)). The separation
of time scales for dephasing and relaxation is the
sole justification for consideration of the elastic
effects in isolation, according to the short-time
effectively diagonal Hamiltonian of Eq. (3): at
longer times, off-diagonal terms in the Hamilto-
nian become important, and result in population
relaxation (evolution of p;;).

Expressed in the interaction representation [18],
the evolution of the reduced density matrix over

' We follow Refs. [19-21] in our use of the terms “quantum
decoherence” and “pure dephasing.” Specifically, dephasing
due to decay in the magnitude of overlap between bath wave
functions reacting to different subsystem states is referred to as
quantum decoherence. And dephasing due to changes in
relative phase between subsystem states, as a result of bath-
induced subsystem energy gap fluctuations, is referred to as
pure dephasing. Quantum decoherence is expected to become
more important under conditions of increasing density and
decreasing temperature.

the time scale of dephasing (according to the
Hamiltonian of Eq. (3)) is then given by

plt) = 20 exp{ = i/
< gdt’[sz(f')—Vn(t’)}}>B (4)

pu(t) = p11(0) (4b)

where the “tildes” denote the interaction repre-
sentation, the angular brackets denote averaging
over initial bath states, and we have employed the
fact that Hy commutes with V;; and V5, for an
elastic process. So the effect of a given classical
bath trajectory is to induce a phase change in p,,.
Each possible initial classical bath state determines
a different phase change, and the average over
different evolving phases in Eq. (4a) leads to the
loss of phase coherence usually referred to as pure
dephasing [12,19,22].

In the simplest (low density and low tempera-
ture) case, pure vibrational dephasing is the result
of isolated gas phase binary collisions which indi-
vidually result in small phase changes in p,,. We
denote the characteristic dephasing time (which is
to say the time it characteristically takes for the
probability distribution of p,, phases to approach
uniformity) by t,n. If the probability distribution
for the single (isolated) collision-induced phase
changes is given by a Gaussian function about an
average (thermal) value, and the decay of the
vibrational correlation function is assumed to be
single exponential [12,22,24] then the dephasing
rate 7y, is related to the collision rate ;' by [12,22]

T 2T, (07)p/2 (5)

where ¢ is the phase change during an isolated
collision, and the angular brackets denote a ther-
mal average over possible initial trajectories for the
individual bath molecule involved in the collision.
In general, the assumptions of small phase changes
and single exponential decay are not always justi-
fied [23,24]. In Section 3, we discuss the condi-
tions under which a stochastic model in which
phase changes are small and Gaussian distributed
is valid.



58 D.M. Lockwood et al. | Chemical Physics 268 (2001) 55—64

3. Semigroup methodology

In this section, we show that Eq. (4) is consis-
tent with the Lindblad approach, and further that
a simpler semigroup form for the dynamics can be
employed which emphasizes the physical content
and facilitates generalization beyond the stochas-
tic Gaussian dephasing model. According to the
Lindblad equation [8,9], any reduced dynamical
process in which the bath is Markovian must take
the form

aﬁmn =T R
o= Dl mlEE ) — [(m|F Fipln)

+ (mlpE Fln)]/2} (6)

where F, is an operator of the subsystem variables,
each vy, denotes a constant, and we have dropped
the operator caret from p for notational conve-
nience. Eq. (4) can be expressed in the form of Eq.
(6) by letting vy, denotes the probability of a given
initial bath state i, in which case an appropriate
finite difference expression for F, (for the case of
pure dephasing between two vibrational energy
eigenstates |1) and |2)) is:

Fi= 2 {mexn (i [ o )
seo(0m [(aew)al o)

where 7 is an appropriate finite duration of time,
and the time dependent interaction energies V;
and 75, are a function of the initial bath state i. At
low densities, when an isolated binary collision
model is valid and the collision duration times can
be neglected, a simple approximate Markovian
form for F; can be employed within the semigroup
approach, which elucidates the physical content:

Fi =178, (8)

Here (as in Eq. (5)) 7_! is the collision rate, and
the operation of the single-collision scattering op-
erator S; results in a phase change in the off-
diagonal elements of the reduced density matrix
due to a single collision. The primary approxima-
tions in Eq. (8) are that (a) exactly one collision
usually takes place during the collision time and

(b) correlations between collisions, which can be
included in Eq. (7), are neglected (Markovian ap-
proximation). In Section 4, we investigate vibra-
tional dephasing of the lithium dimer in argon
using a simple linear classical collision model. It is
important to note here that Eq. (8) is much more
general than these considerations might suggest,
and is applicable for any scattering operator in-
ducing changes in phase relationships between
subsystem states. As such, the formalism is general
enough to accommodate more detailed treatment
of the scattering process. It is also important to
note that an isolated binary collision model of
dephasing has been successful, at least qualita-
tively, in explaining dephasing in liquids [22]. This
provides encouraging evidence that the semigroup
approach may find application in cases where the
Markovian bath assumption is difficult to justify,
but explicit treatment of all degrees of freedom is
not convenient, as is the case for instance in con-
densed phase electron transfer [25].

If one assumes single exponential decay of the
vibrational correlation function, and small isolated
phase changes, then the vibrational dephasing rate
r;,f for a harmonic oscillator depends quadrati-
cally on the difference in vibrational quantum
number (and correspondingly on the energy gap)
[12,22]. As noted previously, the assumptions of
small phase changes and single exponential decay
are not always justified [23,24]. However, for no-
tational convenience we assume this quadratic
dependence for the case of small collision-induced
phase changes; the discussion is easily extended to
more general energy gap dependence. For this
quadratic case, we find that S; may be written in
the form

S; = exp[—i(Hs/hwn1) ] ©)

where @y = w,; — wy, the operation of the sub-
system Hamiltonian Hy insures that the scattering
operator will commute with the Hamiltonian (so
that the process will be elastic), and ¢ contains
the dependence of the phase change on the bath
variables, in particular on the velocity of a bath
molecule prior to collision. (Other constant
quantities, such as molecule masses and the sub-
system electronic surface curvature, also affect ¢y,
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but do not result in any variability in the phase
changes.)

If the probability distribution of phase changes
is given by P(¢y), then the evolution of the density
matrix according to the scattering operator of Eq.
(9) is given by

o5
<paW;n>B = T;1<ﬁ/nn>B/d¢BP(¢B>

x [exp (—i(@m/@u)¢p) — 1] (10)

where the sum over possible initial bath states i has
been replaced by an integral over possible bath-
induced phase changes ¢g. For the case of a
Gaussian distribution (i.e. P(¢g) = [1/2n6%]"* x
exp[—¢3/20%]) this becomes

Py _ —1 (Do)l = XD (= (@ /01)*6%/2)]

ot
(11)

where w,,, = w,, — w,. In the limit of large isolated
phase changes in Eq. (11), complete randomiza-
tion of phase is obtained after the average collision
time, and the appropriate reduced dynamical
equation is

Owln _ 1,
“Bonls — (50 (12)

in which case there is no dependence on the energy
gap. Sensibly, the upper limit of the dephasing rate
is seen here to be equal to the collision rate, as
discussed in earlier work by Yamaguchi [23].

For small average squared phase changes, on
the other hand, the dephasing rate indeed goes as
the square of the energy gap, or quantum number
difference:

WPl — e 17, )l ' 2 + (0]

ot
(13)

This energy gap dependence is a signature of a
“stochastic Gaussian” process. Stochastic pro-
cesses are commonly modeled using the semigroup
method, though the result given as Eq. (13) is
usually obtained by employing a Hermitian oper-
ator for F which commutes with the Hamiltonian,
as discussed in Ref. [8]; the simplest (linear in H )

such operator, F =kH, leads to agreement with
Eq. (13) if k = 1726/ (hon ).

Formulation of the dephasing process in terms
of the unitary scattering operator S rather than the
Hermitian operator F =kH is advantageous not
only because the physical content is elucidated. The
primary advantage is that formulation in terms of S
yields a “Poisson” model of dephasing (as de-
scribed by Eq. (10)) which is more generally appli-
cable than the ‘“stochastic Gaussian” model (as
described by Eq. (13)) in two important respects.
First, the Poisson model does not require that col-
lision-induced phase changes be small. This aspect
is the primary focus of this paper, and in the next
section we consider a physical system in which the
Poisson model is required due to large and abrupt
phase changes. But it is also the case that Eq. (10)
allows for non-Gaussian distributions of phases.

Consideration of physical systems that may re-
quire non-Gaussian phase change distributions is
an ongoing subject of study in our research group.
Here we simply note that if, for example, the
probability distribution is exponential (i.e. P(¢p) =
(2/2)e sl in Eq. (10)) then the density matrix
evolves according to

Wbonls 213, (ma 02/ + (@ f02)")

ot
(14)

In the limit of limit of small o (large (|¢g|)), the
same gap independent upper bound of the depha-
sing rate is obtained as in the case of Gaussian
distribution (see Eq. (12)). And in the opposite limit
of large o (small phase changes), the dependence on
the energy gap is quadratic, as in the case of the
stochastic Gaussian model of Eq. (13). So if one
assumes that phase changes are small and frequent,
the Poisson model in any case reduces to the sto-
chastic Gaussian model, illustrating the generality.

To underscore the potential importance of dif-
ferent dephasing mechanisms, we illustrate in Fig.
1 the evolution of a wavepacket in a harmonic
potential. Initially, the wavepacket is in the co-
herent state with average excitation level (n) = 14.
Snapshots of the density operator p(v,v’) are
shown, with the colors representing different pha-
ses. For both the Poisson dephasing model with
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Initial coherent state

Poisson

A%

- Gaussian
After one period

v

v

Fig. 1. Dephasing of an initially prepared coherent state on a harmonic surface. The two limits shown are the Poisson process with
exponential distribution (Eq. (14)) and the stochastic Gaussian model of Eq. (13). After 10 periods, the dephasing is essentially
complete in both models. Colors show phase behavior. See text for parameters.

exponential phase distribution (Eq. (14)) and the
stochastic Gaussian dephasing model (Eq. (13)),
the dephasing time constant is 5 periods (1/7, =
0.2ey;). For the Poisson model, « = 2, an appre-
ciable difference in dynamical behavior is evident,
showing the dynamical effects of relaxing the sto-
chastic Gaussian assumption.

For the case of vibrational dephasing between
two states, the most immediate conclusions one
can draw from consideration of the Poisson model
are the conditions under which phase changes will
be large and abrupt, and a stochastic Gaussian

model of dephasing is consequently inappropriate.
In the next section, we discuss the experimental
conditions under which energy gap independence
and Poisson dephasing behavior are expected to be
realized for the specific case of vibrational depha-
sing of a lithium dimer in argon.

4. Lithium dimer in argon gas

To construct a simple model of head-on colli-
sions, we take the interaction potential between
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the lithium dimer and argon atoms to be of the
form employed by Fischer and Laubereau [22]

V="Vexp[-(R—0/2)/L]
= W[l + /2L + Q*/8L* + 9(Q’)] exp[—R/L]
(15)

where Q is the lithium dimer bond displacement
from its equilibrium value, and R — Q/2L is the
distance between the colliding argon atom and the
closest lithium atom. We will see that for large
vibrational quantum numbers on the E 12; Li,
electronic surface, the polarizability of argon gives
rise to an important additional interaction term
(the contribution of lithium dimer polarizability,
which varies with bond length, is less important),
but we begin by considering only the potential
described by Eq. (15).

During a head-on collision, the expectation
value of this potential as a function of time for the
vibrational state |i), evaluated along the classical
trajectory of the colliding argon atom, is then
given to second order in Q by [22]

Via(t) = Eo[1 +(0);i/2L + (0%);/8L’]

x sech®[(Eo/2M)"*t/L] (16a)
where E, is the initial relative kinetic energy, t = 0
is taken to be the time at which the classical

turning point is reached, and M is defined in terms
of the atomic masses of lithium and argon as

M = 2magmyi/ (mar + 2myi) = 10.3m, (16b)

where m, is the mass of a proton. The phase
change in p,,, during the collision is therefore

b = (/1) [ &0 Van(t) = Vo)

= (2ML*Eo/1*) (g /2L + ¢, /8L7] (17a)

Where q”"l = <Q>mm - <Q>nn and q%nn = <Q2>mm -
(0%),,- Correspondingly, if all collisions were

head-on, then the average (thermal) squared phase
change would be [22]

(¢2,) = ML*KT /1*) (g /2L + ¢2,,/8L*]  (17b)

where the thermal averaging over possible phase
changes is analogous to the averaging described by
Eq. (10). However, since not all collisions are
head-on, a more accurate value is obtained by
replacing ¢,,, by the average component of the
bond length displacement in the direction of the
colliding argon atom’s trajectory. Specifically, we
assume a nearly uniform distribution of incident
angles 0 (where 0 = 0 is a head-on collision), and
take the limit of large R (i.e. we replace Q/2 by
(Q/2) cos® in Eq. (15)), and obtain the modified
expression

($2.) = MLKT /1) [qun /AL + 62, /247 (18)

where the ¢2, term is similarly modified. The
modified quantity in square brackets is of the same
order as in the case of strictly head-on collisions,
but is reduced due to the fact that typical collisions
are less efficient than head-on collisions in induc-
ing dephasing.

The configurational energy of Li, in the E'E]
electronic state, as a function of bond length, is
shown in Fig. 2. This figure is based on a spline fit

viem™ 2.00

bondlength / A

Fig. 2. The potential energy surface as a function of bond
length is shown for the E ‘2; electronic surface of Li, . Also
shown are the vibrational energy levels.
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[26] of data taken from Refs. [13,27]. Also shown
are the vibrational energy levels. For each vibra-
tional state, we approximate the values of (Q) and
(Q?) by the corresponding values for harmonic
oscillator stationary states with the same classical
turning points. Specifically, if x_ and x, represent
the two classical turning points (where the con-
figurational energy is equal to the vibrational state
energy), we approximate (Q) and (Q?) as [28]

(0) = (x, +¥.)/2 (19)
(0% = (x, —x)*/8 (190)

The results are shown in Table 1.

The difference in mean bond length (g19) be-
tween the first two vibrational states for the lith-
ium dimer on the “E” state is found to be 0.0352

Table 1

For the vibrational states on the £ Z; electronic surface of Li,,
the mean bond lengths and mean squared displacements are
shown

Quantum  (Q) (A) (@) (A (i) (d10)
# (n)

0 3.102226 0.019708 1.00
1 3.137425 0.061089 1.20
2 3.176163 0.106102 1.44
3 3.218571 0.155605 1.71

4 3.265321 0.208894 1.92
5 3.314362 0.265895 2.03
6 3.361128 0.3284436 2.11

7 3.404157 0.3974126 2.32
8 3.456402 0.4619106 2.55
9 3.512644 0.5279626 2.94
10 3.572362 0.5996726 3.75
11 3.638311 0.6821576 5.34
12 3.714781 0.7831026 12.2
13 3.823014 0.943125 214

14 4.221533 1.672770 9.79*
15 4.305327 1.830655 10.4*
16 4.388464 1.994790 3.10*
17 4.432983 2.086438 9.71*
18 4.510632 2.250013

Also shown are the mean squared, collision-induced changes in
phase between neighboring vibrational states, neglecting polar-
izability, under experimental argon bath conditions described in
the text. An asterisk is used to denote values which, due to error
in the fit to the potential surface, may not be accurate beyond
the first digit.

A, while the difference in mean square bond dis-
placement (g7,) is found to be 0.0414 A". We note
by way of comparison that g3, is quite similar for
the ground electronic state for Li,, but that ¢3, for
the ground electronic surface of the commonly
studied nitrogen dimer [12] is 0.00207 A2, which is
significantly smaller. This is because the vibra-
tional frequency of the weakly bound lithium di-
mer is much lower than triple-bonded N,. The
result is that dephasing rates for the lithium dimer
can be expected to be exceptionally high.

L is expected to be about 0.18 A for lithium—
argon collisions [22,29]. At a temperature of 1073
K, evaluation of Eq. (18) for the case of the first
two vibrational states then indicates an average
squared phase change of 0.15. By way of compar-
ison, the typical average squared phase change for
the two lowest vibrational states in liquid nitrogen
is of order 1072 [22]. We note that in the stochastic
Gaussian model, the ratio of the dephasing rate to
the collision rate is (¢*)/2, while in the Poisson
model with a Gaussian distribution, the ratio is 1—
exp[—(¢?)/2]. Since 1 —e "'5/2 =0.072, the sto-
chastic Gaussian and Poisson dephasing models
are in reasonable agreement for this case, and a
stochastic Gaussian description of the dephasing
process would seem to be acceptable.

The average squared phase changes for other
initial vibrational superposition states are readily
evaluated in the same manner, based on the ap-
propriate values of g,, and ¢? . As indicated in
Table 1, (¢.,,,) reaches a maximum for the states
13 and 14, since one is above the potential energy
shelf on the “E” surface and the other is below.
(While there is some uncertainty over whether the
maximum may in fact occur between the states
with quantum numbers 12 and 13 [27], these con-
siderations are not crucial with respect to our goals
in this work.) In particular, evaluation of this
maximum average squared phase change to second
order in Q gives 32.0, which is quite large. Higher
order terms in Q in Eq. (15) can serve to increase
this value even further in this case of significantly
different vibrational state properties. But the exact
value of (¢2 ) is not required to ascertain the fact

max

that the limit (¢2, ) > 1 is obtained. It is clear
that in this case a stochastic Gaussian description

of the dephasing process is inappropriate. The
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dephasing rate is not only at a maximum for these
two states, but is expected to be nearly equivalent
to its upper bound, the collision rate.

An additional cause of increased average
squared phase changes is the effect of an argon
atom’s polarizability on its interaction with lith-
ium dimer states above the shelf region, where the
vibrations have a strongly ionic character. We
crudely approximate the ‘“‘effective” dipole mo-
ment of the lithium dimer, in a given vibrational
state with average bond length /, interacting with
an argon atom as follows. Supposing that the av-
erage bond lengths of the vibrational states, as
shown in Table 1, are an indication of the ionic
character according to

I = Cizon liOH + cgov ZCOV (20)

where /.oy, is equal to the bond length in the lowest
energy vibrational state (3.1 A), /i, is equal to the
maximum average bond length (4.7 A), and the
effective dipole moment is

U= fcizonelion (21)

then the maximum phase change due to this effect
is seen for the states 13 and 14 (where the differ-
ence in ¢ is 0.23). Following Ref. [30], we note
that the “polarizability volume™ of argon (i.e. the
product of the polarizability and (47o)~") is about
1.66 A%, and so this maximum phase change if all

collisions were head-on would be about
¢ = ().23[/12&2“/7:1580]/ dr [R(¢)]°
— 0.23[(4.7 Ae)2(1.66 A') /riieo] / dr [R()]

= 0.23[3535.07aSEy /1) / dr' [R(¢)]

— 0.23[2.04 x 10° A KJ/AN,] / dr [R(£)]"°

—00

(22)

where R(¢) for an initial relative velocity equal to
the root mean square relative velocity is approxi-
mately [31]

R(t)= (3 A) — (0.18 A)
x In{sech®[(9.31 A/ps)1/0.18 A]} (23)

assuming that the collision trajectories are similar
to those determined prior to consideration of the
ionic character of the lithium dimer vibrational
states. Substituting Eq. (23) into Eq. (22) would
give an average square phase change of about
1400. The correct value would be smaller due to
the fact that not all collisions are head-on. How-
ever, it is clear that the argon polarizability alone
would cause the dephasing rate to be nearly
equal to the collision rate, a conclusion that would
be unaltered by a more careful treatment of ei-
ther the collision trajectories or the extent of
ionic character of the lithium dimer vibrational
states.

To get a collision rate in dilute argon gas (ne-
glecting the difference in lithium dimer and argon
atom scattering cross-sections and thermal veloci-
ties), we note that for hard spheres with diameters
of about 4 A, the collision time (at a temperature T
and density p) is given by [32]:

1o = (ma./TkT)"? J4pd?
— [40my /mkT]"2/[(64 A”)(p)] (24)

such that if, for example, the temperature is 1073
K and therg is an a density of 1 argon atom per
2.7 x 107 A", the collision time is 50,000 ps. This is
in on the order of 100,000 times as infrequent as in
liquid argon, where the collision rate is about
2.3 ps~! [32].

For the case of two vibrational states, one above
and one below the potential “shelf,” the dephasing
rate is expected to be nearly equal to the collision
rate, as noted above. Lower average squared phase
changes correspond to lower dephasing rates ac-
cording to the factor 1 — exp[—(¢?)/2]. Ongoing
experiments performed by Zohar Amitay and
others are expected to permit experimental tests of
our theoretical conclusions. Here we note only that
based on preliminary experiments with Li, in a
noble gas buffer, Amitay has estimated that the
dephasing time scale for a wavepacket with average
excitation level (n) = 14 is close to 7 ns.
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5. Conclusions

We find that a Poisson model of pure vibra-
tional dephasing can be formulated within a
semigroup framework which has a number of im-
portant advantages over traditional stochastic
Gaussian treatments. Both models are consistent
with the quantum dynamical semigroup approach
to reduced dynamics, an approach that is widely
used because of its generality and straightforward
implementation. But the stochastic Gaussian
treatment is only correct when collision-induced
changes in the phase relationship between vibra-
tional states are small and Gaussian distributed.
The Poisson model reduces to the Gaussian model
in this limit, but can also be applied for a larger
range of distributions and magnitudes of phase
changes. The Poisson model also clarifies the na-
ture of the physical processes responsible for
dephasing. We find that for certain vibrational
states of the lithium dimer in argon, large phase
changes clearly require application of the Poisson
model. Exploration of the range of phase distri-
butions observed in chemical systems is an im-
portant direction for future study.
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