
Citation: Shafir, U.; Kosloff, R. Wave

Function Realization of a Thermal

Collision Model. Entropy 2022, 24,

1808. https://doi.org/10.3390/

e24121808

Academic Editor: Sebastian Deffner

Received: 7 November 2022

Accepted: 7 December 2022

Published: 12 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Wave Function Realization of a Thermal Collision Model
Uriel Shafir *,† and Ronnie Kosloff †

The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
* Correspondence: uriel.shafir@mail.huji.ac.il
† These authors contributed equally to this work.

Abstract: An efficient algorithm to simulate dynamics of open quantum system is presented. The
method describes the dynamics by unraveling stochastic wave functions converging to a density
operator description. The stochastic techniques are based on the quantum collision model. Modeling
systems dynamics with wave functions and modeling the interaction with the environment with a
collision sequence reduces the scale of the complexity significantly. The algorithm developed can
be implemented on quantum computers. We introduce stochastic methods that exploit statistical
characteristics of the model such as Markovianity, Brownian motion, and binary distribution. The
central limit theorem is employed to study the convergence of distributions of stochastic dynamics
of pure quantum states represented by wave vectors. By averaging a sample of functions in the
distribution we prove and demonstrate the convergence of the dynamics to the mixed quantum state
described by a density operator.

Keywords: open quantum systems; quantum; stochastic; central limit theorem; collision model;
master equation; Markovianity

1. Introduction

In reality, every quantum system is open, while an isolated system is an exception.
Therefore, the main setback in simulating and modeling a real-life quantum system is the
high computational cost. To analyze the cost, we will first provide a generic description
of an open quantum system, dive into the details of the dynamics, and finally observe
the computational problem. After reviewing the current methods and their cost, we will
demonstrate a scheme able to lower the computation complexity.

An open quantum system is generically described by the system’s Hamiltonian Ĥs
and its density operator ρ̂s. The system is monitored by the measuring apparatus M. The
environment is described by the Hamiltonian ĤB and the interaction between the system
and the environment is described by the Hamiltonian ĤSB. Contemporary open quantum
systems include the IBM and Google quantum machines, constituting the nascent steps
toward quantum computing [1]. If these devices are left alone, the quantum system ρ̂s will
reach thermal equilibrium with the extremely cold environment with a temperature TB.
The device is assembled from quantum circuits, which are constantly cooled. The compu-
tation output is measured by a measurement apparatus M. Another example of an open
quantum system is the NV center in diamond [2,3]. These systems are constructed from
a nitrogen impurity adjacent to a negative vacancy in a diamond. The primary quantum
system Hamiltonian Hs describes a spin triplet. The neighboring environment is com-
posed of spins, such as other nitrogen impurities or carbon isotopes with a nuclear spin
(13C). An additional environment is composed of lattice phonons. An optical measuring
apparatus is coupled to the NV center able to measure changes in population, i.e., the
measurement apparatus M [4].

Open system dynamics address a system interacting with the environment from the
system’s perspective. Different approaches have been employed to construct reduced
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descriptions in terms of the system’s observable features. Starting with Bloch, a dynam-
ical derivation based on the weak system bath coupling has led to the quantum master
equation [5,6]. An alternative mathematical formulation employing quantum dynamical
semigroups has yielded to a general structure termed the Gorini–Kossakowski–Lindblad–
Sudarshan (GKLS) Equation [7,8]. Davis has linked the perturbation derivation to the
general structure [9,10]. Non-Markovian formulations, including memory effects, have also
been suggested [11].

Our mission is to develop a simulation algorithm for the dynamics of an open quan-
tum system. In this approach, a system is viewed from a thermodynamic perspective.
Recent studies by Dann et al. [12] have provided the conditions for obtaining consistency
between Markovian dynamics and thermodynamic principles in open quantum systems.
The consistency conditions are formulated by a set of axioms which can be applied to the
present study.

Our desired quantum simulation allows implementation on both classical and quan-
tum processors. Quantum processors are designed on a wave function’s formulation.
In classical computers, the wave function description is computationally preferable to a
density operator formalism.

The scale of computational resources for simulating quantum dynamics is at least
polynomial with the size of the Hilbert space. In addition, every degree of freedom in
the system increases the size of the Hilbert space exponentially. For example, in a system
composed of spin particles, the size of the Hilbert space scales as 2n, where n is the number
of particles. Describing the system with a density matrix squares the memory resources of
the computation.

The computational resources for solving the dynamics and counting the number of
operations scales with the product of the Hilbert space size multiplied by the product
of propagation time and energy range [13]. The energy range is also doubled in the
density operator description [14]. Another advantage in a wavefunction formulation is
a pedagogical one. Describing the dynamics of a single pure state provides an intuitive
sense of the process termed the quantum trajectory [15]. For these reasons, we have
developed a simulation method describing the dynamics of open quantum systems in a
wavefunction formulation.

The starting point for establishing the dynamics of an open quantum system is a global
approach incorporating the system and the environment. Typically, one constructs a global
Hamiltonian-Ĥ, composed of the system (S), bath (B), and interaction (HB) Hamiltonians:

Ĥ = ĤS + ĤB + ĤSB. (1)

Solving the Schrödinger equation for the combined system is computationally prohibited
due to the enormous number of degrees of freedom. To overcome this obstacle, the entire
setup is partitioned between the system and the environment. It is customary to diagonalize
the bath Hamiltonian to orthogonal modes either harmonic or composed of an ensemble of
spins [11,16]. The next step is obtaining effective reduced equations of motion for the system
in which the bath enters implicitly. If the system–bath interaction induces entanglement
necessarily the reduced description of the system will be described by a mixed state ρ̂s [17].

Assuming an initial uncorrelated system and bath ρ̂ = ρS ⊗ ρ̂B, the system propagation
becomes a completely positive trace-preserving dynamical map (CPTP) ρ̂S(t) = Λtρ̂S(0) [18].
Additionally, imposing the condition of Markovianity, Gorini, Kossakowski, Sudarshan
and Lindblad derived the general form of the master equation [7,8]. The GKLS has become
one of the cornerstones of the theory of open quantum systems.

Solving the master equation is a difficult computational problem. The state is described
by density matrices resulting in a computational scaling of at least O(N2), where N is the
size of the Hilbert space.

To reduce the computational complexity, a wavefunction method is desirable. The
algorithm involves a stochastic unraveling of wavefunctions. Stochastic approaches are
currently in use in many fields of quantum dynamics, such as thermal averaging [19,20]
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and electronic structure methods [21]. A stochastic approach has been suggested by
Percival and Gisin [22–27] for unraveling the GKLS equation. In their approach, the GKLS
equation was transformed into stochastic differential equations. This unraveling procedure
is non-unique. It also has the benefit of the freedom to use the most mathematically
convenient choice. A drawback is that the stochastic wavefunction is not associated with
a physical description. An additional problem of this method is that the dynamics are
formulated by a non-linear differential equation. This enhances the difficulty of finding a
solution approaching a computational scaling of the Hilbert space size squared. A different
unraveling approach was developed by Katz, Torrontegui and Kosloff [28,29]. The method
partitions the environment to primary and secondary baths. The primary bath, termed the
surrogate Hamiltonian, is weakly coupled to the system [30,31]. Stochastically, the spins of
the primary bath are refreshed from the secondary bath.

We now advance toward complexity reduction and focus on a method for unravel-
ing wavefunctions using stochastic variables modeled on the collision model (CM). The
quantum CM first appeared in 1948 in a paper by Karplus and Schwinger [32], followed by
the work of J. Rau [33]. In the 1960s, and later on in the 1980s, CMs appeared in studies on
weak measurements by C. M. Caves and G. J. Milburn [34,35]. In recent years, CMs have
become more popular due to their simplicity, consistency with thermodynamics [36–42],
and low computational effort in the bath description [43].

The collision model decomposes the bath to an ensemble of ancilla sub-units with which
the system interacts. Consequently, there is one basic assumption in the general CM:

• The system interaction with the bath is described as an interaction between the system
with and a single ancilla from the environment.

We develop a simple collision model with two additional assumptions regarding
the bath:

1. Ancillas do not interact with each other.
2. Ancillas are initially uncorrelated.

The collision model can directly simulate real physical scenarios, such as collision with
a diluted gas as well as an NV center interacting with a spin bath [29]. In addition, one can
imagine a virtual collision. For example, an interaction with an electron–hole pair.

This general description of CM requires addressing two major complexity problems:

1. In order to describe a system’s interaction with the ancilla, we must solve the inter-
action dynamics according to some physical model. This will require solving the
time-dependent Schrödinger or Liouville equation, which is generally a very hard
task that scales unfavorably for large systems.

2. The density matrix size of a multi-particle system grows exponentially with the
number of particles.

A significant simplification of the model is achieved by adding the assumption that
the time period of interaction between the system and the bath ancilla is much faster than
the typical free dynamics timescale of the system. This enables splitting of the propagation
into the internal system propagation and dissipation emerging from the interaction with
the bath.

The complexity is further reduced by an implicit treatment of the bath. We choose to
describe the primary system as a system of coupled spins.

This representation is employed for three main reasons:

1. It is computationally inexpensive.
2. A system composed of qubits is universal and can therefore simulate other physical

systems [44].
3. Such a system can be implemented on a quantum computer.

The collision model generates a completely positive trace-preserving map. This process
leads to a fixed point of the map which is associated with an equilibrium state in a physical
system. In the CM, an implicit treatment of the bath is obtained by tracing the Hilbert
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space of the ancilla after interacting with the system. Thus, a crucial tool for simulation is a
partial trace algorithm implemented in a wave functions formalism.

We have developed a stochastic algorithm implemented in a wave function formu-
lation. The setup is based on the partial trace implementation. In addition, we obtain an
intuitive description of the process as an average of partial measurements of the system.
The methods presented in this paper can be implemented in any case of a collision model
where the environment is composed of qubits, as in [45,46]. We stress that any open system
represented by a collision model can be described by the method presented in this paper
including the studies [40,47,48].

The stochastic wave function algorithm developed here is especially useful for multi-
particle systems, which require significant resources to compute [49].

2. Implementation
2.1. Setup Description

The outline of the derivation assumes a unitary evolution generated by the total
Hamiltonian:

Ĥ = ĤS + ĤB + ĤSB, (2)

composed of the system Hamiltonian ĤS, environmental Hamiltonian ĤB, and interaction
ĤSB. We assume h̄ = 1 throughout the paper.

2.2. Representation of the Spinor

The studied model is composed of a system of qubits. For such a system, the wave
function has dimensions of 1× 2N , where N is the number of qubits. The density matrix
representing the system has the dimensions of 2N × 2N . To expand the wave function, we
choose a local expansion constructed by the basis of individual components. The natural
choice for qubits is to construct the wave function in a computational basis as a linear tensor
product of the computation base spanning each qubit space [50]. Each qubit is represented
in the computational basis, where |0〉 = |↓〉 and |1〉 = |↑〉. The complete basis on which we
will represent the system is:

{ΠN
i=1 ⊗ |δi〉} (3)

where δi = 0, 1

{ΠN
i=1 ⊗ |δi〉} = {|00 . . . 0〉, |00 . . . 1〉, . . . , |01 . . . 0〉, |01 . . . 1〉, |10 . . . 0〉, |10 . . . 1〉, |11 . . . 0〉, |11 . . . 1〉} (4)

The basis is ordered in a raising order of the binary basis.

2.3. System and Baths

The multi-qubit system Hamiltonian ĤS is given as:

ĤS = ∑
k

Ĥk + ∑
i,j

εi,j(σ̂+i,j + σ̂−i,j), (5)

where Ĥk is the free k’th particle Hamiltonian, εi,j is the interaction coefficient between the
i and j qubits, i.e, the interaction between the i and j particles in the system.

Where N is the number of particles and

σ̂+i,j = Î2i−1 ⊗ |0〉 〈1| ⊗ Î2j−i−1 ⊗ |1〉 〈0| ⊗ Î2N−j

σ̂−i,j = Î2i−1 ⊗ |1〉 〈0| ⊗ Î2j−i−1 ⊗ |0〉 〈1| ⊗ Î2N−j

σ̂±i,j are operators connecting the i’th and j’th particles. We represent the state of the system
as the density operator ρ̂S.

The density matrix of the bath ρB is composed of uncorrelated ancilla qubits: ρb.

ρ̂B = ρ̂b1 ⊗ ρ̂b2 ⊗ . . .⊗ ρ̂bn = Πi ⊗ ρ̂bi
= Πi ⊗

e−βĤbi

Z
(6)
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where Ĥb is the Hamiltonian of the individual ancilla qubit and β is the inverse temperature
times the Boltzman factor β = 1

kBT . The fact that the bath is uncorrelated with the system
initially is in consent with the second postulate of Dann and Kosloff [12].

Observables

An observable 〈O〉 is defined as tr{Ôρ̂} in the density matrix formalism. For a pure
state described by a wavefunction, it is also defined as 〈ψ| Ô|ψ〉. Therefore, in a pure state,
the two definitions are equivalent. Let {|ψi〉} be an orthonormal basis with |ψk〉 = |ψ〉 then

tr{Ôρ̂} =
n

∑
i
〈ψi| Ô|ψ〉 〈ψ| |ψi〉 = 〈ψ| Ô|ψ〉 (7)

2.4. System Ancilla Interaction

The interaction between the system and the environment is represented as a repeated
interaction between the system and a subsystem of the environment, typically a thermal
qubit. A general unitary interaction is employed. Therefore, the interaction can be expressed
by its generator, the interaction Hamiltonian:

Ûint = e−iĤintθ (8)

where the phase angle θ has units of time. Because we can express an exponent as a
polynomial sum of powers of Hint, we obtain

[Ûint, Ĥint] = 0. (9)

2.5. Dynamics

In the collision model, we assume that the uncorrelated thermal qubit is employed
only once. After an interaction, we trace out the Hilbert space of the ancilla qubit ρb. It is
thus assumed that the bath’s state is unchanged. This assumption is with accordance with
an uncorrelated infinitely large bath and imposes that the system’s state depends entirely
on its previous state. The last remark is a definition of Markovianity and is in accordance
with postulate 4 of Dan and Kosloff [12]

Λt = Λt−sΛs (10)

The dynamical map Λ propagates density operators. A reduced map, generated by a global
Hamiltonian in Equation (2), from an initial uncorrelated state defines a Kraus map [18].
Such a map Λ is a completely positive trace-preserving (CPTP) map on the system [12].
The generator of the dynamics is defined as:

L = lim
t→0

Λ(t)− Î
dt

(11)

Under the assumption that the collision period is much shorter than the interval between
collisions, we can write the generator as follows:

L = −i[Ĥ, •] + γ(trb{Ûint • ⊗ρ̂bÛ†
int} − Î•) , (12)

where γ is the collision rate, Equation (12). The reduced description will have the form

d
dt

ρ̂S = L(ρ̂S) = −i[ĤS, ρ̂S] + γ(trb{Ûintρ̂S ⊗ ρ̂bÛ†
int} − ρ̂S) (13)

This structure is known as the Poissonian GKLS form [7]. Assuming the interaction is
instantaneous, we adopt a discrete form of the propagator where a repeated sequence of
instantaneous collision following a free propagation, of the system is implemented. This
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integrated form of the dynamics breaks up the evolution to a sequence of collision events,
where γ is the collision rate per unit time. A single collision event can be described by the
super-operatorM acting on the density operator ρ̂s.

M(ĤS, γ, θ, β)ρ̂S = (Û(ĤS, dt))trb{Ûint(θ)ρ̂S ⊗ ρ̂bÛint(θ)
†)}(Û†(ĤS, dt)) (14)

Equation (14) describes a scheme of operation. An interaction Ûint is acting on the combined
uncorrelated system and ancilla particle ρ̂S ⊗ ρ̂b. Following this, a reduced description
of the system alone is generated by the partial trace operation and as a last step, a free
propagation Û(ĤS, dt)). When k-consecutive collisions are implemented, it results in the
production of k super operators

Λs =
k

∏
i=1
Mi(ĤS, γ, θ, β) . (15)

2.6. Unraveling of the Density Operator

The density operator ρ̂ completely describes the state of a quantum system. Any
observable is determined by the relationship: 〈O〉 = tr{ρ̂O}. The density operator was
introduced by von Neuman to describe statistical phenomena in quantum mechanics [17].
Von Neuman observed that a pure state in an entangled composite system is reduced
to a mixed state when a local observation of a subsystem is performed. This statistical
characteristic of the mixed state cannot be presented by a wave function formalization.
The thermal state, by construction, is a statistical mixture and is thus also not describable
by a single wavefunction. To overcome this issue, the open quantum system state and
its dynamics are obtained by unraveling the density operator employing many quantum
wavefunctions.

The statistical character of the density operator is reflected by unraveling to an average
of an outer product of wave functions:

ρ̂ = ∑
k

pk|ψk〉〈ψk| (16)

where {|ψk〉} is the set of unraveling wavefunctions (not necessarily orthogonal).
The unraveling set {|ψ〉} is not unique, allowing freedom that we will exploit. A

straightforward unraveling is obtained by diagonalizing the density matrix ρ̂:

ρ̂ =
N

∑
n=1

pi|n〉 〈n| (17)

where |n〉 are the orthogonal eigenfunctions and pi are positive coefficients with ∑i pi = 1
and thus can be interpreted as a probability set of a complete measurement of Ô which
commutes with ρ̂.

2.7. Stochastic Unraveling

The present study employs a stochastic unraveling scheme based on the flowing
lemma: let θ be a random phase wavefunction then

lim
K→∞

1
K

K

∑
j,k=1

ei(θj−θk) = δj,k (18)

where K is the number of random phases.
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Let |ψθ〉 be a wave function composed of an equal superposition of an arbitrary
orthonormal basis {|n〉} of size N with random phase θ

|ψθ〉 =
1√
N

N−1

∑
n=0

eiθn |n〉 (19)

From Lemma (18) the identity operator ÎN can be resolved by an infinite sum of random
wave functions.

lim
K→∞

N
K

K

∑
i=1

∣∣ψθi

〉
〈ψθi | = ÎN (20)

This allows unraveling of the density operator with stochastic wave functions. We
will prove that for the basis {|n〉} that diagonalizes ρ̂, we can use Equation (19) to create a
set of stochastic wave functions that unravel ρ̂.

|φ〉 =
√

N
N

∑
n=1

√
pn |n〉 〈n| |ψθ〉 (21)

|φ〉 is a normalized wave function:

〈φ|φ〉 =
√

N
N

∑
n=1

√
pn 〈ψθ | |n〉 〈n|

√
N

N

∑
n=1

√
pn |n〉 〈n| |ψθ〉 = 1 (22)

The density operator ρ̂ converges to an average over the outer product of |φ〉 under the
condition that it is a stochastic wave function.

ρ̂ =
N

∑
n=1

pn |n〉 〈n| =
N

∑
n=1

√
pn |n〉 〈n|

N

∑
n=1

√
pn |n〉 〈n| =

N

∑
n=1

√
pn |n〉 〈n| Î

N

∑
n=1

√
pn |n〉 〈n| =

N−1

∑
n=0

√
pn |n〉 〈n| lim

K→∞

N
K

K

∑
i=1

∣∣ψθi

〉
〈ψθi |

N−1

∑
n=0

√
pn |n〉 〈n| =

lim
K→∞

K

∑
i=1

1
K

√
N

N−1

∑
n=0

√
pn |n〉 〈n|

∣∣ψθi

〉√
N

N−1

∑
n=0

√
pn 〈ψθi | |n〉 〈n| =

lim
K→∞

1
K

K

∑
i=1
|φi〉 〈φi| �

(23)

As we previously mentioned, a single wavefunction is a pure state and therefore
cannot describe a statistical distribution. In particular, a thermal state is never pure. To
overcome this issue, a stochastic unraveling method is employed to represent the thermal
ancilla qubits that collide with the system in accordance with Equation (21):

∣∣β j
〉
=

1

∑
i=0

√
N

e−βωi

Z
|ωi〉 〈ωi|

∣∣∣ψθj

〉
=

1

∑
i=0

√
Ne−

β
2 ωi

√
Z

|ωi〉 〈ωi|
∣∣∣ψθj

〉
(24)

where the amplitudes are weighted by square roots of Boltzmann factors. Then, according
to Equation (23), an average of infinite

∣∣β j
〉

unraveling wavefunctions will converge to a
thermal qubit:

ρ̂b = lim
K→∞

1
K

K

∑
j=1
|β j〉 〈β j| =

e−βĤ

Z
. (25)

From here and throughout the paper we will use
∣∣β j
〉

to describe a stochastic thermal wave
function to represent the ancilla. The unraveling of the bath state allows for the unraveling
of the collision event. By describing the system as a wavefunction |ψs〉, an ensemble average
of interactions - described as Ûint Equation (8), between the system and K stochastic thermal
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wave functions(
∣∣β j
〉
’s) will converge to an interaction between the system in a density

matrix representation |ψs〉 〈ψs| and a thermal qubit state ρ̂b:

lim
K→∞

1
K

K

∑
j=1

Ûint|ψs〉 ⊗
∣∣β j
〉
〈ψs| ⊗ 〈β j| Û†

int =

Ûint|ψ〉 〈ψ| ⊗
(

lim
K→∞

1
K

n

∑
j=1

∣∣β j
〉
〈β j|

)
Û†

int = Ûintρ̂s ⊗ ρ̂bÛ†
int

(26)

This method enables the description of an interaction with a thermal qubit in the language
of wave functions. In order to completely restore Equation (15), we need to translate the
partial trace operation into wave function terminology.

2.8. Partial Trace in a Wave Function Description

Partial trace is an essential operation in obtaining the state of a subsystem from a
composite state. When the subsystem is entangled with its complementary system, the
partial trace operation will lead to a mixed state.

Representing such a state with a single wave function is impossible. Therefore,
a stochastic unraveling will be employed. The algorithm is designed to incorporate the
correct probabilities in the wave functions such that an average of their outer product will
reproduce the reduced subsystem state, i.e., the system after the partial trace operation.

Even though the algorithm presented can be generalized for the tracing out of any
number of qubits, in this paper, we present the algorithm of tracing out a single qubit.
Specifically, we assume a system of n spins and we trace out the kth spin.

For b ∈ [0, 2k−1 − 1], a ∈ [0, 2n−k−1] and i ∈ [0, 1].
We define |φ〉i

|φ〉ib·2n−k+a =
|ψ〉(2b+i)·2n−k+a

Ni
(27)

The indexes are adopted from a computational basis where b and a are natural numbers, n
is the number of particles in the system, k is the particle that is traced out, 2(b + 0) · 2n−k + a
are the indexes of |ψ〉 where the k’th particle is in state 0, and 2(b + 1) · 2n−k + a are the
indexes of |ψ〉 where the k’th particle is in state 1. N is the normalization factor as well as
the square root of the classical probability of this state.
|φ〉i can be interpreted as a wavefunction reduction caused by the measurement of the
environment.
|φ〉0 is a normalized vector of all the elements in |ψ〉, conditioned on the state of traced-out
particle |0〉.
|φ〉1 is a normalized vector of all the elements in |ψ〉 conditioned on the state of the traced-
out particle |1〉.
The wavefunction unraveling of the trace becomes:

trk{|ψ〉 〈ψ|} =
1

∑
i=0

N2
i |φ〉

i 〈φ|i . (28)

The proof is described in Appendix A.3.
The formulation of Equation (28) underlines the measurement postulate in quantum

mechanics and the equivalence between the partial trace and partial measurement. The
partial trace is a sum of a system’s possible states after the traced out particle has “collapsed”
to its possible components with the suitable probability.

2.9. Stochastic Partial Trace

The main result of Section 2.8 is Equation (28), developing an unraveling scheme of the
mixed state. The dynamical evolution breaks up into separate wavefunctions composing
the unraveled mixed state presented in Figure 1. As will be described, the probabilistic
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nature of the mixed state enables the employment of a Monte Carlo algorithm to randomly
choose only one of the unraveling wavefunctions:

trbxr
|ψ〉 =

{
|φ〉0 if xr < N2

0

|φ〉1 if xr ≥ N2
0

. (29)

N2
0 is the classical probability to find the system in quantum state |φ〉0 and N1

2 = 1− N2
0

is the classical probability to find the system in quantum state |φ〉1. Thus, for xr ∈ [0, 1]
if N2

0 ≥ xr, the Monte Carlo algorithm will induce |φ〉0. Otherwise, it will induce |φ〉1.
integrating over xr will result in the partial trace trb{|ψ〉 〈ψ|}:∫ 1

0
trbxr
{|ψ〉}trbxr

{〈ψ|}dxr = trb{|ψ〉 〈ψ|} . (30)

Equation (29) is also a stochastic unraveling, and together with Equation (26) in Section 2.7,
the branching process unraveling is complete.

The branching process described in Figure 1 is a sequence of free dynamics following
a unitary collision (see Section 2.5). This process is described in the language of wave func-
tions, allowing an efficient algorithm using wave functions propagation. By unraveling,
the algorithm converges to the density operator dynamical representation. By combining
the stochastic unraveling and partial trace presented in (21) and (27), we can construct
Equation (15), that represent the consecutive collisions of the density matrix with a ther-
mal particle :

Specifically, every wave function |ψ〉 will undergo three consecutive operations:

1. Interaction with a thermal wave function—Ûint(|ψ〉 ⊗ |β〉).
2. Stochastic partial trace—trN+1xr

{Ûint|ψ〉 ⊗ |β〉}.
3. Free dynamic of the system—ÛtrN+1xr

{Ûint|ψ〉 ⊗ |β〉}.
To accurately restore Equation (31), |ψ〉 will accumulate K thermal wave functions

|β〉 (K → ∞). The partial trace will yield two different wave functions with different
probabilities. Consequently, we will have to average the outer product of all the outcomes
with the correct weights. This procedure corresponds to a single collision.

lim
K→∞

1
K

K

∑
j=1

∫ 1

xr=0
ÛtrN+1xr

{Ûint|ψ〉 ⊗
∣∣β j
〉
}trN+1xr

{〈ψ| ⊗ 〈β j| Û†
int}Û†dxr =

lim
K→∞

ÛtrN+1{Ûint|ψ〉 〈ψ| ⊗
1
K

K

∑
j=1

∣∣β j
〉
〈β j| Ûint}Û† =

Û(trN+1{Ûint(ρ̂s ⊗ ρ̂B)Û†
int})Û†

(31)

For repeated collisions, this process will recur for every outcome, as shown in Figure 1.
Equation (15) is restored by consecutively employing Equation (31) n times. To describe
this state-to-state map, we define the super-operator:

Ĝ(ψ, dt, φ, xr, β) = ÛtrN+1xr
{Ûint|ψ〉 ⊗

∣∣β j
〉
} (32)

A full reconstruction of the process described by Equation (15) is therefore obtained:

lim
K→∞

1
K

K

∑
j=1

∫ 1

xr=0
Ĝn(ψ, dt, φ, xr, β)Ĝ†n(ψ, dt, φ, xr, β)dxr = ρ̂n (33)
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|ψ〉

Utrb{Uint|ψ〉 ⊗ |βθ〉}

(1− p)
∣∣ψ32

〉
(1− p)Utrb{Uint(

∣∣ψ32

〉
⊗ |βθ〉)}

(1− p)Utrb{Uint(
∣∣ψ32

〉
⊗ |βθ〉)}

(1− p)Utrb{Uint(
∣∣ψ32

〉
⊗ |βθ〉)}

p
∣∣ψ31

〉
(p)Utrb{Uint(

∣∣ψ31

〉
⊗ |βθ〉)}

(p)Utrb{Uint(
∣∣ψ31

〉
⊗ |βθ〉)}

(p)Utrb{Uint(
∣∣ψ31

〉
⊗ |βθ〉)}

Utrb{Uint|ψ〉 ⊗ |βθ〉}

(1− p)
∣∣ψ22

〉
(1− p)Utrb{Uint(

∣∣ψ22

〉
⊗ |βθ〉)}

(1− p)Utrb{Uint(
∣∣ψ22

〉
⊗ |βθ〉)}

(1− p)Utrb{Uint(
∣∣ψ22

〉
⊗ |βθ〉)}

p
∣∣ψ21

〉
(p)Utrb{Uint(

∣∣ψ21

〉
⊗ |βθ〉)}

(p)Utrb{Uint(
∣∣ψ21

〉
⊗ |βθ〉)}

(p)Utrb{Uint(
∣∣ψ21

〉
⊗ |βθ〉)}

Utrb{Uint|ψ〉 ⊗ |βθ〉}

(1− p)
∣∣ψ12

〉
(1− p)Utrb{Uint(

∣∣ψ12

〉
⊗ |βθ〉)}

(1− p)Utrb{Uint(
∣∣ψ12

〉
⊗ |βθ〉)}

(1− p)Utrb{Uint(
∣∣ψ12

〉
⊗ |βθ〉)}

p
∣∣ψ11

〉
(p)Utrb{Uint(

∣∣ψ11

〉
⊗ |βθ〉)}

(p)Utrb{Uint(
∣∣ψ11

〉
⊗ |βθ〉)}

(p)Utrb{Uint(
∣∣ψ11

〉
⊗ |βθ〉)}

Figure 1. The unraveling tree. The time evolution of the system’s wave function |ψ〉. Three different
interactions with an ancilla |βθ〉 are presented. Each interaction spawns two wave functions with
different weights. This process is repeated with each ancilla interaction. The Gaussian distribution
demonstrates that the process asymptotically obeys the central limit theorem.

2.10. Stochastic Convergence

The direct unraveling process is extremely computationally expensive, because it
grows exponentially with each collision as O(2nk), where n is the number of collisions and
k is the number of thermal wave functions interacting with each possible system state. This
unraveling scheme is described by a branching tree illustrated in Figure 1.
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A more efficient computational scheme exploits the stochastic nature of the process in
three ways:

1. Reduction to a binary tree due to a Wiener process. On the path of a single wavefunc-
tion (single branch in the tree in Figure 1), we observe that the system’s wave function
interacts at every collision with a stochastic thermal wave function. The process
satisfies the conditions of a Wiener process: it has a fixed initial condition and the
stochastic part of the bath particle in every collision has a mean 0 and a variance σ2 [51].
Therefore, for a sufficiently long process, where each collision Uint(|ψk〉 〈ψk| ⊗ ρb)U†

int
is represented as the average of the outer product of K collisions, Uint(|ψk〉 ⊗

∣∣β j
〉
),

and thus is split into K branches. This process can be sampled by only a single
∣∣β j
〉
. By

accumulating many collisions, it will follow the Wiener process, undergo Brownian
motion, and the process will converge to a consecutive interaction with a Boltzmann-
distributed thermal qubit. As a result, the unraveling of the tree in Figure 2 will
converge to the unraveling of the larger tree in Figure 1.
As can be seen in Figure 2, this method will generate a properly weighted sample of
the binomial distribution around the most probable state.

2. The process of tracing out a single bath qubit leads to a mixed state composed of two
pure states (see Equation (28)). Using the property of the Wiener process, the com-
putation of all possibilities with the correct weights will be resolved in a binary tree
with changing probability weights. We use a Monte Carlo stochastic partial trace
algorithm (Section 2.8) in order to stochastically choose one of the two wave functions
composing the mixed state imposed by the partial trace in every step.

3. Based on the central limit theorem, the average of a sequence of independent and
identically distributed random variables drawn from a distribution of expectation
values µ and finite variance σ2, will converge in probability to a normal distribution.
The multidimensional central limit theorem generalizes the theory and states that a
random vector (satisfying the vector space axioms) will converge in probability to a
multi-variant Gaussian. Mathematically,

√
n(X̂n − µ)→d N (0, Σ) (34)

where Σ is the covariance matrix.

Employing Equation (33), the average of the outer product of all wave function pos-
sibilities with the adequate probabilities represented by the tree in Figure 1 converges
to the density matrix ρn, satisfying the collision model in Section 2.5. Thus, a sample of
the outer products of K identical wave functions undergoing n consecutive collisions by
Equation (33): Gn(ψ, dt, φ, xr, β)Gn†(ψ, dt, φ, xr, β) is a sequence of independent and ran-
dom variables drawn from a distribution of expected value ρn and a finite variance. Thus,

lim
K→∞

1
K

K

∑
i=1
Gn(ψ, dt, φ, xr, β)Gn†(ψ, dt, φ, xr, β) = ρ̂n . (35)

Moreover, with the number n of collisions increasing, we expect a convergence in probabil-
ity if K is finite.

1
K

K

∑
i=1
Gn(ψ, dt, φ, xr, β)Gn†(ψ, dt, φ, xr, β)− ρ̂n →d N (0,

Σ
K
) (36)

The central limit theorem is redundant with the mathematical description of Brownian
motion. Yet, we have found it useful for physical insight into the process.
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|ψ〉 Utrb{Uint|ψ〉 ⊗ |βθ〉}

(1− p)Utrb{Uint(|ψ1〉 ⊗ |βθ〉)}

(1− p)Utrb{Uint(
∣∣ψ11

〉
⊗ |βθ〉)}

(p)Utrb{Uint(
∣∣ψ12

〉
⊗ |βθ〉)}

(p)Utrb{Uint(|ψ2〉 ⊗ |βθ〉)}

(1− p)Utrb{Uint(
∣∣ψ21

〉
⊗ |βθ〉)}

(p)Utrb{Uint(
∣∣ψ22

〉
⊗ |βθ〉)}

Figure 2. The reduced unraveling tree. Interaction with a thermal qubit is in agreement with the
definitions of Wiener process. Thus, the tree can be reduced to a binary tree form.

3. Results
3.1. Convergence

To illustrate the unraveling approach in accordance with Section 2.10, a specific exam-
ple of a unitary interaction is explored. An interaction leading to a partial swap between
the last particle in a system of qubits and an uncorrelated thermal qubit are specifically
chosen. This type of interaction has been addressed in the collision model reviewed by
Ciccarello, Lorenzo, Giovannetti, and Palma [52].

In a two-qubit system, the swap algorithm becomes the swap gate:

Ŝ = |0〉 〈0| ⊗ |0〉 〈0|+ |1〉 〈1| ⊗ |1〉 〈1|+ |1〉 〈0| ⊗ |0〉 〈1|+ |0〉 〈1| ⊗ |1〉 〈0| =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 (37)

In a larger system composed of N qubits, an operation that swaps between the i th and j th
qubits, the swap algorithm is similar:

Let
i−1

∏
k=0
⊗I2k ⊗ |δ〉 ⊗

N

∏
k=i+1

⊗I2k = |δi〉 (38)

i−1

∏
k=0
⊗I2k ⊗ 〈δ| ⊗

N

∏
k=i+1

⊗I2k = 〈δi| . (39)

A swap operation between particles i and j can be described as:

Ŝi,j = |0i〉 〈0i|
∣∣0j
〉
〈0j|+ |1i〉 〈1i|

∣∣1j
〉
〈1j|+ |0i〉 〈1i|

∣∣1j
〉
〈0j|+ |1i〉 〈0i|

∣∣0j
〉
〈1j| . (40)
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The Swap is a unitary operation—see Appendix A.1:

ŜŜ† = Ŝk,mŜ†
k,m = Î2n (41)

Ŝ is unitary and real, therefore, Ŝ = Ŝ†.
The unitarity of the swap operator renders it a preferable candidate for simulating

interactions. Its advantage lies in its ability to be realized on a quantum computer.
A partial swap is defined as:

Ŝp = cos(θ) Î2n + i sin(θ)Ŝ , (42)

where θ defines the degree of mixing. The partial swap is also a unitary operation ŜpŜ†
p = Î

(see Appendix A.2). Unlike the full swap, the partial swap induces a spectrum of interaction
strengths and maintains a correlation between all particles in the system after a reduced
description of the setup, as we have seen in Section 2.4. For this reason, we have chosen it
to be a preferable candidate for the interaction between the ancilla and the system.
Because Sp is unitary, by definition, we can write:

Ŝp = e−iĤintθ (43)

θ can be either a phase or angle of interaction with units of time. Because we can write an
exponent as a polynomial sum of powers of Ĥint, we obtain

[Ŝp, Ĥint] = 0 . (44)

We now define the map generated by the unraveling of K processes acting on a state
|ψ〉 using the super operator G defined in Equation (32):

1
K

K

∑ Gn(|ψ〉)Gn†(〈ψ|) = ΘKn(|ψ〉 〈ψ|) (45)

When ρ0 = |ψ0〉 〈ψ0| and ρn is the density matrix ρ0 undergoing dynamics according
to the map in Equation (15). We expect the distance

D = ||ΘKn(ρ0)− ρn|| (46)

to converge in probability to N (0, Σ
K ): a normal distribution around zero. In order to

examine the convergence rate of our model, we choose to observe the variance of the
distance distribution and expect it to converge to 1

K . The chosen distance function is the
variance between each element of the unraveling and the density matrix ρs of the system
undergoing the same dynamics in the density matrix form of Equation (15) and in the
wavefunction unraveling Equation (36). N2 is the dimension of the system, K is the number
of realizations, and n the number of collisions.

D(G, ρ, n, N, K) =
1

N2

N2

∑
i,j=1
|ρni,j −ΘKni,j

(ρ0)|2 (47)

According to the multidimensional central limit theorem, we expect a convergence
of the covariance matrix to 1

K , and thus the variance of every element |Θi,j − ρi,j| to σ2
i,j.

Because each element of Θ has the same dependency on the stochastic variable, we expect
σi,j = σk,l . Thus, we expect D to approximate the average of all element variances.

D(G, ρ, n, N, K) =
1

N2

N

∑
i,j=1
|ρni,j −ΘKni,j

(ρ0)|2 ≈
1

N2

N

∑
i,j

1
K

K

∑
k
|ρni,j −ΘKni,jk

(ρ0)|2. (48)
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From the central limit theorem, we expect that the sum of all element variances will decay
as 1

K with K as the number of realizations:

N2

∑
i,j

1
K

K

∑
k
|ρni,jk

−ΘKni,jk
(ρ0)|2 ∼

1
K

. (49)

Thus
D(G, ρ, n, N, K) ∼ 1

K
(50)

As we can see in Figure 3, we observe that D indeed converges as expected.

Figure 3. The distance function D is the normalized sum of the absolute value squared of the
Euclidean distance between the same elements of ρn, and ΘKn (ρ0). D is defined as D(G, ρ, n, N) =

1
N2 ∑N2

i=1 |ρni,j − ΘKni,j
(ρ0)|2. We expect that D will converge as 1

K . Because the variance should

converge as 1
K , we expect the variance of each element also to converge as 1

K . Therefore, D, that is,
the sum of variance element of each matrix element, will also converge as 1

K . Figure 3 exhibits the
D function for three systems undergoing 600 collisions. We can observe a decay to zero as 1

K for a
system composed of 5, 8, and 10 particles, as expected.

4. Conclusions

In this paper, we developed the basic tools for unraveling open system dynamics with
wavefunctions based on a collision model. The stochastic averaging of these wavefunctions
converges for all expectation values to those obtained by the density operator formalism.
The basic algorithm can be divided into three steps:

1. Implementing a Monte Carlo stochastic partial trace algorithm (Sections 2.8 and 2.9).
2. Restoring a mixed state by unraveling of stochastic wave functions. This was achieved

for the bath particle colliding with the system and for the system itself after averaging
many stochastic system wave functions undergoing dynamics (Section 2.7).

3. Using statistical properties, such as the central limit theorem, we observed conver-
gence to the dynamics represented by a density matrix. The convergence was achieved
with a relatively small number of realizations. This property resulted in high compu-
tational efficiency.

An illustration of the algorithm was provided in Section 3.1.
The algorithm developed contains a non-linear component. In the implementation

of the Monte Carlo algorithm in Section 2.9, one of the wave functions composing the
mixed state was selected by a partial trace. The probability of choosing each of the states
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was calculated from the normalization factor of one of the states. This required first to
calculate one possible outcome, which might not be used in the following step. If the
selected wavefunction was not the one that was calculated, the other wavefunction had to
be recalculated. Thus, the non-linearity resulted from renormalizing the wavefunction and
the possibility of computing an additional wavefunctions when it was absent in the Monte
Carlo lottery.

The modeling method addresses a major problem of the computation cost of sim-
ulating open quantum systems. The wavefunction representation reduces the memory
requirement, and as the system becomes larger, the speed of convergence to the full simula-
tion also increases. We therefore expect a reduction in computational cost of up to a factor
of N, where N is the size of Hilbert space. As a result, the possible simulations boundaries
are stretched.

In addition, the wavefunction method allows insight into the ongoing physical process
from a single-event or quantum trajectory viewpoint. [53]

Finally, the simulation can be implemented on existing quantum computers. These,
in turn, possess unitary operations performed on wavefunctions.
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Appendix A

Appendix A.1. Proof of Unitarity of Ŝ

Ŝi,jŜ†
i,j = (|0i〉

∣∣0j
〉
〈0j| 〈0i|+ |0i〉

∣∣1j
〉
〈1j| 〈0i|+ |1i〉

∣∣0j
〉
〈0j| 〈1i|+ |1i〉

∣∣1j
〉
〈1j| 〈1i|) (A1)

(
∣∣0j
〉
|0i〉 〈0i| 〈0j|+

∣∣0j
〉
|1i〉 〈1i| 〈0j|+

∣∣1j
〉
|0i〉 〈0i| 〈1j|+

∣∣1j
〉
|1i〉 〈1i| 〈1j|) =

|0i〉
∣∣0j
〉
〈0j| 〈0i|

∣∣0j
〉
|0i〉 〈0i| 〈0j|+ 0 + 0 + 0+

0 + 0 + |0i〉
∣∣1j
〉∣∣1j

〉
|0i〉 〈0i| 〈1j|+ 0+

0 + |1i〉
∣∣0j
〉
〈0j| 〈1i|

∣∣0j
〉
|1i〉 〈1i| 〈0j|+ 0 + 0+

0 + |1i〉
∣∣1j
〉
〈1j| 〈1i|

∣∣1j
〉
|1i〉 〈1i| 〈1j|) =

|0i〉
∣∣0j
〉
〈0i| 〈0j|+ |0i〉

∣∣1j
〉
〈0i| 〈1j|+ |1i〉

∣∣0j
〉
〈1i| 〈0j|+ |1i〉

∣∣1j
〉
〈1i| 〈1j| =

(|0i〉 〈0i|+ |1i〉 〈1i|)(
∣∣0j
〉
〈0j|+

∣∣1j
〉
〈1j|) = Î2N

Appendix A.2. Proof That the Partial Swap Is Unitary

Ŝp = cos(θ) Î2n + i sin(θ)Ŝ (A2)



Entropy 2022, 24, 1808 16 of 18

ŜpŜ†
p = (cos(θ) Î2n + i sin(θ)Ŝ)(cos(θ) ˆ̂I2n + i sin(θ)Ŝ)† =

cos2(θ) Î2n ∗ Î2n + sin2(θ)ŜŜ† + i sin(θ) cos(θ) Î2n Ŝ† − i sin(θ) cos(θ) Î2n =

Î2n(cos2(θ) + sin2(θ)) + Ŝ(i sin(θ) cos(θ)− i sin(θ) cos(θ)) = Î2n + 0 = Î2n

(A3)

Appendix A.3. Partial Trace of the Sum of System When Bath Is Measured in Different States

trk{|ψ〉 〈ψ|} =
1

∑
i=0

I2k−1 ⊗ 〈i| ⊗ I2N−k |ψ〉 〈ψ| I2k−1 ⊗ |i〉 ⊗ I2N−k (A4)

I2k−1 ⊗ |i〉 ⊗ I2N−k = Pi

I2k−1 ⊗ 〈i| ⊗ I2N−k = (Pi)† (A5)

trk{|ψ〉 〈ψ|} =
1

∑
i=0

Pi†|ψ〉 〈ψ| Pi (A6)

for b ∈ [0, 2k−1 − 1] and a ∈ [0, 2N−k − 1].

P̂i
[l,m] =

{
1 i f l = (2b + i) ∗ 2N−k + a, m = b ∗ 2N−k + a
0 else

(A7)

P̂i†
[l,m] =

{
1 i f l = b ∗ 2N−k + a, m = (2b + i) ∗ 2N−k + a
0 else

(A8)

l = r ∗ 2N−k + x j = y ∗ 2N−k + z f or y, r ∈ [0, k + 1] and x, z ∈ [0, 2N−k]

trk{|ψ〉 〈ψ|}l,j = ∑
i,d,e

P̂i†
l,d(|ψ〉 〈ψ|)d,e P̂i

e,j = (A9)

1

∑
i=0

P̂i†
[r∗2N−k+x,(2r+i)∗2N−k+x](|ψ〉 〈ψ|)[(2r+i)∗2N−k+x,(2y+i)∗2N−k+z] P̂

i
[2(y+i)∗2N−k+z,y∗2N−k+z] = (A10)

(
1

∑
i=0

(|ψ〉 〈ψ|)[(2r+i)∗2N−k+x,(2y+i)∗2N−k+z]) =
1

∑
i=0

Ni|φ〉ir∗2N−k+x Ni 〈φ|iy∗2N−k+z = (A11)

1

∑
i=0

N2
i |φ〉

i 〈φ|i[r∗2N−k+x,y∗2N−k+z] =
1

∑
i=0

N2
i |φ〉

l 〈φ|il,j � (A12)
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