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Abstract – Clausius statement of the second law of thermodynamics reads: Heat will flow spon-
taneously from a hot to cold reservoir. This statement should hold for transport of energy through
a quantum network composed of small subsystems each coupled to a heat reservoir. When the
coupling between nodes is small, it seems reasonable to construct a local master equation for each
node in contact with the local reservoir. The energy transport through the network is evaluated
by calculating the energy flux after the individual nodes are coupled. We show by analyzing the
most simple network composed of two quantum nodes coupled to a hot and cold reservoir, that
the local description can result in heat flowing from cold to hot reservoirs, even in the limit of
vanishing coupling between the nodes. A global derivation of the master equation which prediag-
onalizes the total network Hamiltonian and within this framework derives the master equation, is
always consistent with the second law of thermodynamics.

Copyright c© EPLA, 2014

Introduction. – Transport of energy in and out
of a quantum device is a key issue in emerging
technologies. Examples include molecular electronics,
photovoltaic devices, quantum refrigerators and quantum
heat engines [1–3]. A quantum network composed of
quantum nodes each coupled to local reservoir and to other
nodes constitutes the network. The framework for describ-
ing such devices is the theory of open quantum systems.
The dynamics is postulated employing completely posi-
tive quantum master equations [4,5]. Solving the dynam-
ics allows to calculate the steady-state transport of energy
through the network.

It is desirable to have the framework consistent with
thermodynamics. The first law of thermodynamics is a
conservation law of energy; the energy of an isolated sys-
tem is constant and can be divided into heat and work [6].
The dynamical version of the second law of thermodynam-
ics states that for an isolated system the rate of entropy
production is non-negative [7]. For a typical quantum de-
vice the second law can be expressed as

d
dt

ΔSu =
dSint

dt
+

dSm

dt
−

∑
i

Ji

Ti
≥ 0, (1)

where dSint
dt is the rate of entropy production due to in-

ternal processes, expressed by the von Neumann entropy.
dSm

dt is the entropy flow associated with matter entering

the system, and the last term is the contribution of heat
flux, Ji, from the reservoir i.

Microscopic derivation of a global Markovian mas-
ter equation (MME) of Linblad-Gorini-Kossakowski-
Sudarshan (LGKS) form [4,5], for the network is usually
intricate. The local approach simplifies this task [8–14].
It is commonly considered that if the different parts of the
network are weakly coupled to each other, a local master
equation is sufficient to describe all the properties of the
network. We will show that the local approach is only
valid for local observables such as the population of each
node, and is not valid for non-local observables describing
energy fluxes.

The network model. – The simplest network model
composed of two nodes shown in fig. 1 and is sufficient to
demonstrate the distinction between the local and global
approach. Heat is transported between two subsystems A
and B, where each is coupled to a single heat bath with
temperature Th and Tc. The two subsystems are weakly
coupled to each other. The global Hamiltonian is of the
form

Ĥ = ĤA + ĤB + ĤAB + Ĥh + Ĥc + ĤAh + ĤBc. (2)

The bare network Hamiltonian, is Ĥ0 = ĤA+ĤB where
the node Hamiltonians are ĤA = ωhâ†â and ĤB = ωcb̂†b̂,
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Fig. 1: (Colour on-line) The heat transfer network model; heat
is transferred from a hot bath at temperature Th to the a colder
bath at temperature Tc. The heat current is mediated by two
coupled subsystems A and B, where subsystem A is connected
to the hot bath and subsystem B is connected to the cold bath.

which are composed of either two harmonic oscillators
(HO) or of two two-level systems (TLS), depending on
the commutation relation.

ââ† + δâ†â = 1, ââ + δââ = 0,

b̂b̂† + δb̂†b̂ = 1, b̂b̂ + δb̂b̂ = 0 (3)

with δ = 1 for the TLS and δ = −1 for oscillators. The
interaction between the system A and B is described by
the swap Hamiltonian, ĤAB = ε(â†b̂ + âb̂†), with ε > 0.
The hot (cold) baths Hamiltonians are denoted Ĥh(c),
where Th > Tc. The system-bath interaction is given by,
ĤAh = gh(â + â†) ⊗ R̂h and ĤBc = gc(b̂ + b̂†) ⊗ R̂c,
with R̂h(c) operators belonging the hot (cold) bath Hilbert
space, and gh(c) are the system-baths coupling parameters.

The dynamics of the reduced system A + B is governed
by the Master equation,

d
dt

ρ̂s = −i[Ĥ0 + ĤAB, ρ̂s] + Lhρ̂s + Lcρ̂s. (4)

With the LGKS dissipative terms, Lh(c), which differ for
the local and global approaches. At steady state the heat
flow from the hot (cold) bath is given by

Jh(c) = Tr[(Lh(c)ρ̂s)(Ĥ0 + ĤAB)], (5)

where ρ̂s is the steady-state density operator.

Local approach. – In the local approach it is assumed
that the inter-system coupling does not affect the system
bath coupling. Therefore in the derivation of the MME
the Hamiltonian ĤAB is ignored and the dissipative terms
takes the form,

Lhρ̂s = γh

(
âρ̂sâ† − 1

2
{â†â, ρ̂s}

+ e−βhωh

(
â†ρ̂sâ − 1

2
{ââ†, ρ̂s}

))
, (6)

and

Lcρ̂s = γc

(
b̂ρ̂sb̂† − 1

2
{b̂†b̂, ρs}

+ e−βcωc

(
b̂†ρ̂sb̂ − 1

2
{b̂b̂†, ρ̂s}

))
. (7)

when the node-to-node coupling is zero, ĤAB = 0, each
of the local master equations, eq. (6) and eq. (7), drives

the local node to thermal equilibrium. The dynamics
of the network is completely characterized by the expec-
tation values of four operators: Two local observables
〈â†â〉, 〈b̂†b̂〉, and two AB correlations 〈X̂〉 ≡ 〈â†b̂ + âb̂†〉
and 〈Ŷ〉 ≡ i〈â†b̂ − âb̂†〉 with 〈 · 〉 ≡ Tr{ρ̂s·}. For the
dynamics we obtain

d
dt

〈â†â〉 = − γh(1 + δe−βhωh)〈â†â〉 + γhe−βhωh − ε〈Ŷ〉,
d
dt

〈b̂†b̂〉 = − γc(1 + δe−βcωc)〈b̂†b̂〉 + γce
−βcωc + ε〈Ŷ〉,

d
dt

〈X̂〉 = − 1
2

(
γh(1 + δe−βhωh) + γc(1 + δe−βcωc)

) 〈X̂〉
+ (ωh − ωc)〈Ŷ〉,

d
dt

〈Ŷ〉 = − 1
2

(
γh(1 + δe−βhωh) + γc(1 + δe−βcωc)

) 〈Ŷ〉
− (ωh − ωc)〈X̂〉 + 2ε(〈â†â〉 − 〈b̂†b̂〉).

(8)

The rates γh(c) > 0 depend on the specific properties of the
bath and its interaction with the system. Equations (8)
fulfill the dynamical version of the first law of thermody-
namics: The sum of all energy (heat) currents at steady
state is zero, Jh + Jc = 0. The heat flow from the hot
heat bath can be cast in the form (see [15] for details)

Jh = (eβcωc − eβhωh)F , (9)

where F is a function of all the parameters of the system,
which is always positive, and is different for the HO and
TLS medium. The Clausius statement for the second law
of thermodynamics implies that heat can not flow from
a cold body to a hot body without external work being
performed on the system. It is apparent from eq. (9), that
the direction of heat flow depends on the choice of pa-
rameters. For ωc

Tc
< ωh

Th
heat will flow from the cold bath

to the hot bath, thus the second law is violated even at
vanishing small AB coupling, cf. fig. 2. The breakdown
of the second law has been examined in several models,
see [16] and references therein. In [16] a Fermionic trans-
port model between two heat baths at the same temper-
ature was studied in the weak system-bath coupling limit
MME and was compared to a solution within the formal-
ism of nonequilibrium Green functions. At steady state,
the current between the baths according to the weak cou-
pling MME is nonzero, which implies a violation of the
second law in the sense that heat flows constantly between
two heat baths at the same temperature. This sort of vio-
lation can also be observed in eq. (9) when taking Th = Tc.
It was claimed in [16] that the violation of the second law
is a consequence of neglecting higher-order coherent pro-
cesses between the system and the baths due to the weak
coupling limit. In fact, the treatment introduced in [16]
corresponds to the local approach described above. Next,
we introduce a proper weak coupling MME, which always
obeys the second law of thermodynamics.

Global approach. – The global approach is based on
the holistic perception where the MME is derived in the
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Jh =

(
eβcω− − eβhω−

)
γ−

c γ−
h ω−

sin−2(θ)eβhω− (−1 + eβcω−) γ−
c + eβcω+ (−1 + eβhω−) cos−2(θ)γ−

h

+

(
eβcω+ − eβhω+

)
γ+

c γ+
h ω+

eβhω+ (−1 + eβcω+) cos−2(θ)γ+
c + sin−2(θ)eβcω+ (−1 + eβhω+) γ+

h

, (13)

Fig. 2: (Colour on-line) The rate of entropy production ΔSu in
the local description, as function of ωh and Th. The blue area
corresponds to negative entropy production rate, a clear viola-
tion of the second law. The borderline between the blue and
the red zones corresponds to ωh/Th = ωc/Tc. Here Tc = 10,
ωc = 5, ε = 10−4 and κ = 10−7.

eigen-space representation of the combined system A+B.
The reduced system, A+B, is first diagonalized, then the
new basis set is used to expand the system-bath interac-
tions. Finally, the standard weak system-bath coupling
procedure is introduced to derive the MME [17,18]. This
approach accounts for a shift in the spectrum of the sub-
systems A and B due to the coupling parameter ε. But
more importantly, it creates an effective coupling of the
system A with the cold bath and of the system B with
the hot bath. This indirect coupling absent in the local
approach is crucial, and essentially saves the second law
of thermodynamics. The global MME, by construction,
obeys Spohn’s inequality and therefore is consistent with
the second law of thermodynamics [19].

In it’s diagonal form the Hamiltonian Ĥ0+ĤAB is given
by

ĤS = ω+d̂†
+d̂+ + ω−d̂†

−d̂−. (10)

Where we have defined the operators d̂+ = â cos(θ) +
b̂ sin(θ) and d̂− = b̂ cos(θ) − â sin(θ), with cos2(θ) =
ωh−ω−
ω+−ω− and ω± = ωh+ωc

2 ±
√

(ωh−ωc

2 )2 + ε2. For Bosons,
the commutation relations of the operators are preserved,
i.e. [d̂±, d̂†

±] = 1, where all other combinations are zero.
For TLS nodes the expressions are more intricate and
therefore we restrict the analysis to the harmonic nodes.
Following the standard weak coupling limit, in the regime

where ω− > 0 the dissipative terms of the MME reads,

Lhρ̂s = γ+
h cos2(θ)

(
d̂+ρ̂sd̂

†
+ − 1

2
{d̂†

+d̂+, ρ̂s}

+ e−βhω+

(
d̂†

+ρ̂sd̂+ − 1
2
{d̂+d̂†

+, ρ̂s}
))

+ γ−
h sin2(θ)

(
d̂−ρ̂sd̂

†
− − 1

2
{d̂†

−d̂−, ρ̂s}

+ e−βhω−

(
d̂†

−ρ̂sd̂− − 1
2
{d̂−d̂†

−, ρ̂s}
))

(11)

and

Lcρ̂s = γ+
c sin2(θ)

(
d̂+ρ̂sd̂

†
+ − 1

2
{d̂†

+d̂+, ρ̂s}

+ e−βcω+

(
d̂†

+ρ̂sd̂+ − 1
2
{d̂+d̂†

+, ρ̂s}
))

+ γ−
c cos2(θ)

(
d̂−ρ̂sd̂

†
− − 1

2
{d̂†

−d̂−, ρ̂s}

+ e−βcω−

(
d̂†

−ρ̂sd̂− − 1
2
{d̂−d̂†

−, ρ̂s}
))

(12)

with γ±
h(c) = γh(c)(ω±). The calculated steady-state heat

flow from the hot bath is given by

see eq. (13) above

which is positive for all physical choice of parameters.
Rewriting eq. (11) and eq. (12) in the local basis, the ef-
fective coupling of subsystem A with the cold bath and of
subsystem B with the hot bath is immediately apparent
(see [15] for details). These equations converge to eq. (6)
and eq. (7) for ε = 0.

To further study the dynamics of A and B, the explicit
form of heat baths is specified, characterizing the rates
γ [20]:

γl ≡ γl(Ω) = π
∑

k

|gl(k)|2δ(ω(k) − Ω)[1 − e−βlω(k)]−1,

(14)
where ω(k) are the frequencies of the baths modes. For
the case of a 3-dimensional phonon bath with a linear
dispersion relation the relaxation rate can be expressed
as

γl(Ω) = κΩ3[1 − e−βlΩ]−1, (15)

where κ > 0 embodies all the constants and is proportional
to the square of the system-bath coupling.

The steady-state observables of the local and global
approached are compared in fig. 3 as a function of the
node-to-node coupling strength ε. For local observables

20004-p3



Amikam Levy and Ronnie Kosloff

Fig. 3: (Colour on-line) The heat current Jh and the popula-
tion as a function of the coupling parameter ε evaluated in the
local (blue line) and the global (red line) approaches. The pop-
ulation of subsystem A (dashed line), and the heat flow from
the hot bath Jh (solid line). Here Th = 12, Tc = 10, ωh = 10,
ωc = 5 and κ = 10−4.

such as the local population n̂A ≡ 〈
â†â

〉
the two ap-

proaches converge to the thermal population when ε �
{ωh, ωc,

√|ωh − ωc|}. However, the non-local observables
such as the current Jh deviate qualitatively. In the lo-
cal approach when ωc

Tc
< ωh

Th
the second law is violated:

the heat flow becomes negative for all values of the cou-
pling ε while for the global approach Jh is always positive,
cf. fig. 3.

The local approach is also not reliable even for parame-
ters where the second law is obeyed: ωc

Tc
> ωh

Th
. Deviations

from the exact global approach appear in the favorable do-
main of small ε, as seen in fig. 4 displaying Jh for a wide
range of ωh. It is noteworthy that the behavior of the
heat flows observed in fig. 4 will be the same for all ε, also
when ε � κ. The only domain where the global approach
breaks down is on resonance, when ωh = ωc and ε < κ.
At this point, the secular approximation is not justified
since the two Bohr frequencies ω± are not well separated,
and on the time scale 1/κω3, one can not neglect rotating
terms such as ei2ε [21].

Additional insight is obtained when examining the co-
variance matrix for the two-mode Gaussian state (see [15]
for details). The correlations between subsystems A and
B is fully determined by the set of correlation func-
tions {cor(xA, xB), cor(xA, pB), cor(pA, xB), cor(pA, pB)}.
Here {x, p} are the position and momentum coordinates
of the subsystems. In both approaches cor(xA, xB) and
cor(pA, pB) are equal for small ε. The two additional cor-
relations, cor(xA, pB) and cor(pA, xB), vanish at steady
state in the global approach, where in the local approach
they remain finite. Thus, in the local approach the nodes
are over correlated compared to the global approach. It
should be noted that in steady state none of the ap-
proaches generate entanglement. The two-mode Gaussian
state is a separable state according to the separability cri-
terion for continuous variable systems [22,23].

Fig. 4: (Colour on-line) Comparison between the local (blue
line) and the global (red line) approaches. The population of
subsystem A (dashed line), and the heat flow from the hot
bath Jh (solid line), as a function of ωh. The inset describes
the domain of near resonance ωh ≈ ωc. Here Th = 12, Tc = 10,
ωc = 5, ε = 10−3 and κ = 10−7.

To summarize: As expected, the local dynamical
approach is incorrect for strong coupling between the sub-
systems. In the weak coupling limit, local observables con-
verge to their correct value. The non-local observables
such as heat currents are qualitatively and quantitatively
erroneous in the local MME. A strong indication is the
violation of the second law of thermodynamics. The com-
pletely positive LGKS generator is a desired form for the
master equation. However, for consistency with the phys-
ical world, a microscopic global derivation of the master
equation is required. Such approaches are consistent with
thermodynamics [24–28].
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