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Abstract – Classically, external power optimization over the coupling times of a heat engine to
its baths leads to universal features in the efficiency. Here we study internal work optimization
over the energy levels of a multilevel quantum Otto engine, and find similar universal features.
It is shown that in the ultra-hot regime the efficiency is determined solely by the energy level
optimization constraint, and is independent of the engine’s details. Constraints on the energy
levels naturally appear due to physical limitations or design goals. For some constraints the
results significantly differ from the classical universality.
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Carnot’s discovery of a universal efficiency upper bound
for heat engines had a profound impact on physics and
engineering. Yet, in practice to approach this efficiency
bound’ the system needs to be reversible, which implies
an infinitely slow cycle time and vanishing power output.
This has motivated extensive studies under the title of
“finite-time thermodynamics” (see [1,2] for review arti-
cles). More importantly, efficiency is only a secondary
design goal. First the engine must be capable of doing the
task it is designed to do: lifting a weight in a given time,
accelerating a car, etc. In general, the efficiency depends
on the heat transfer mechanism between the system and
the bath. Nevertheless, some universal features were dis-
covered when the power output is maximal. In this work
we study the universality of efficiency at a maximal out-
put of quantum Otto engines. In the engines studied here,
the working substance is a single particle that constitutes
an N -level system. In the adiabatic stroke of the quan-
tum Otto engine the levels of the particle must be varied
in time. In real systems this level variability is limited by
practical considerations. For example, in Zeeman splitting
the maximal gap is determined by the maximal available
external magnetic field. In other systems it can be the
power of the laser. In this work we study the optimal out-
put of engines subjected to this type of constraints. We
find that the details of the engine are irrelevant when the
baths are very hot. The efficiency at maximal output is
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determined only by the nature of the constraint and the
temperatures.

Typically, in classical engines the equation of state of the
working substance is known and the output optimization
is done by changing the coupling time to the baths. The
output power may change from system to system but it
was observed that for some classes of classical engines the
efficiency at maximum power has universal features. In
particular, in [3,4] it was shown that in the low-dissipation
limit the efficiency at maximum power satisfies

ηc

2
≤ ηLD ≤ ηc

2 − ηc
, (1)

where ηc is the Carnot efficiency ηc = 1−Tc/Th. The same
results were obtained in [5,6] for different thermalization
mechanisms. In the low-dissipation scenario, the special
case where the coupling coefficients to the cold and hot
baths is the same (symmetric case), yields the Curzon-
Ahlborn (CA) [7–9] efficiency,

ηCA = 1 −
√

Tc/Th. (2)

ηCA was originally obtained by applying the Newton heat
transfer law. The CA efficiency was observed in a recip-
rocating hot quantum engine in [10] and in a continuous
engine in [11]. Classically, features of universality appear
in the Taylor expansion of the efficiency in terms of the
Carnot efficiency. In [12] it was shown that

ηPmax,sym =
ηc

2
+

η2
c

8
+ O(η3

c ). (3)
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The one-half factor of the linear term is universal and the
second term is universal for systems that have a “left-
right” symmetry. For studies of efficiency in different
models see [13–16] and references therein.

In this work we study work optimization in multilevel
quantum Otto engines [17]. The working substance is a
single N -level particle coupled periodically to hot and cold
baths. The properties of this quantum working substance
are determined by the level structure of the particle when
it is coupled to the hot and cold baths. We optimize
the level structure to get maximal work output per cycle.
When the cycle time is fixed this is equivalent to power
optimization. The classical optimization described earlier
can be called “external” as it involves the optimization of
the coupling process to the external baths. The maximum
power in this case originates from the fact that reaching
a thermal equilibrium with the baths is time consuming.
Yet our optimization is “internal” as we optimize over the
working medium properties (the level structure). We will
assume that the baths are coupled for a sufficiently long
period to effectively reach equilibrium for all practical pur-
poses. This assumption is very reasonable when only one
particle needs to be thermalized (and not a whole medium
filled with particles). Here, the analysis includes the case
of partial “swap” thermalization [17]. It is remarkable
that for the most basic constraints the results of this in-
ternal structure quantum optimization are identical to the
classical external coupling optimization.

We consider a generic single particle four-stroke Otto
cycle. In the adiabatic strokes the energy levels of the
particle (engine) change in time without changing the pop-
ulations (see discussion in [17] on ways of achieving this in
a short time). In the thermal strokes the system is coupled
to hot and cold baths. If the system is coupled for periods
that exceed a few relaxation times, it is plausible to assume
that a full thermalization has taken place. As shown in
the present work, some universal engine-independent fea-
tures appear in the ultra-hot limit where only first order in
β (inverse of the temperature) is non-negligible. In some
cases, our results hold to order β2 as well. For a study of
refrigerators in hot regime see [18].

The work output of an N -level ultra-hot swap engine
is [17]

W ultra
hot =

ξ

2 − ξ

1
N

[(βc +βh)Ec ·Eh−βc |Ec|2−βh |Eh|2], (4)

where Ec(h),i is the i-th cold (hot) energy level of the en-
gine, and |E|2 = E · E is the standard Euclidean L2 norm
squared (not to be confused with the energy variance of
the energy distribution). The energy levels are shifted so
that Mean(E) = 0. The work is energy shift invariant,
but a zero mean leads to a more compact form. The swap
parameter 0 ≤ ξ ≤ 1 determines the degree of thermal-
ization in the thermal strokes of the engine. When ξ = 1
a full thermalization takes place. This case should hold
for any interaction that leads to a practically full ther-
malization regardless of the mechanism that generates it.

Before proceeding, we note that the norm of the levels
in the ultra-hot regime is directly related to several key
quantities. For example, the internal energy when cou-
pled to one bath is tr(ρbHb) = 1

N βb |Eb|2, the purity and
entropy is tr(ρ2

b) = 1
N + 1

N2 β2
b |Eb|2, and the heat capacity

is Cv = 1
N β2

b |Eb|2. Another example for the norm signif-
icance will be given later on. In [17] it was shown that
once the norm of the hot and cold levels are fixed, the
maximum work is obtained when the energy vectors are
parallel:

Ec = (1 − χ)Eh, (5)
0 ≤ χ ≤ ηc, (6)

where χ, the compression deviation, is related to the com-
pression ratio via C = 1

1−χ . Condition (6) follows from the
necessary condition for engine operation in the ultra-hot
regime Tc/Th ≤ |Ec| / |Eh| ≤ 1 (see [17]). The exact ex-
pression for the efficiency of an Otto engine with uniform
compression (5) is [17]

η = 1 − |Ec| / |Eh| = χ. (7)

Despite the equality of η and χ (7), it is useful to keep
the different notation in order to prevent confusion. The
maximal work in terms of χ and the Carnot efficiency is

Wχ =
ξ

2 − ξ
βcχ(ηc − χ)

|Eh|2

N
, (8)

where the subscript χ indicates that we have already im-
posed the necessary but not sufficient optimality condi-
tion (5). Notice that Wχ(χ = 0) = 0 (no compression)
and Wχ(χ = ηc) = 0 (reversible limit in Otto engines).
Since |Eh| �= 0, it follows from (8) that a maximum ex-
ists in the domain χ = η ∈ (0, ηc). The maximal work in
the ultra-hot regime has an inherent universality. It de-
pends only on the norms |Eh|2 and |Ec|2 (or |Eh|2 and the
compression ratio). The specific energy level structure is
insignificant. All quantum Otto engines1 with the same
energy variance2, and the same temperatures will have the
same efficiency and same maximal work per cycle (up to
the ξ/(2− ξ) factor in (8)). The finer details of the engine
manifest themselves only at colder temperatures.

Work per cycle optimization. – We start with a few
important cases that exemplify the kinship to the classi-
cal case with very little algebra. First we choose the con-
straint |Eh| = const. Applying d

dχWχ = 0 to (8) with fixed
|Eh| we obtain

η|Eh| =
ηc

2
, (9)

1Otto engines that reach full thermalization in the thermal
strokes. In addition we assume that the non-adiabatic losses in the
adiabatic strokes are eliminated using one of the methods described
in [17].

2In the leading order, β0, the variance of the energy population
is related to the L2 norm via

˙

E2
¸

= |E|2 /N .
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which is the lower limit on the efficiency in the low-
dissipation model (1). On the other hand, the opposite
constraint |Ec| = const (|Eh| = const/(1 − χ)) yields

η|Ec| =
ηc

2 − ηc
, (10)

which is the upper limit on the efficiency in the low-
dissipation model (1). When applying the symmetric con-
straint |Ec| |Eh| = const then:

η|Ec||Eh| = ηCA = 1 −
√

1 − ηc. (11)

Although this specific symmetric constraint yields CA effi-
ciency (2), we shall see that symmetry does not necessarily
lead to the CA efficiency in quantum Otto engines. Fur-
thermore we will present a non-symmetric constraint that
yields the CA efficiency as well. Another important exam-
ple follows from the constraint α |Ec|+(1−α) |Eh| = const
that yields the maximum power efficiency:

ηα =
ηc

2 − αηc
. (12)

This efficiency form frequently appears in various classical
systems such as Brownian engines [14], systems operating
in the low-dissipation limit [4], and systems with other
thermalization processes [5,6].

The simple linear constraints studied above can be
solved in a closed form. In what follows we explore the
low-efficiency limit for a general constraint and find uni-
versal features.

A general optimization constraint. – As an
example for a non-trivial physical constraint that is char-
acterized by the energy norms, consider the quantum Otto
engine studied in [19,20]. This engine has four energy
levels and is comprised of two interacting spins and an
external time-dependent magnetic field. In order to have
the same population in the beginning and at the end of
the adiabatic evolution strokes a certain protocol must be
applied. Using the optimal protocol in [20], the minimal
time for the adiabatic step is proportional to 1

|Eh| +
1

|Ec| (to
simplify (24) in [20] we considered the limit ωf,ωi � j).
Thus, for the engine to operate at the minimal possi-
ble time (e.g. to maximize the power) the constraint is

1
|Eh| +

1
|Ec| = const. This example shows that a completely

different optimization process (in this example elimination
of non-adiabatic effects), may also lead to energy norm
constraint. In addition, it clarifies that for observing uni-
versality there is a justified need for a framework valid
for more complicated non-linear constraints. Applying
d
dχWχ = 0 to (8) we get

d
dχ |Eh|
|Eh|

=
(ηc − 2χ)

2(χηc − χ2)
. (13)

At this point we introduce the constraint function

G(|Ec| , |Eh|) = const, (14)

that can describe either an implementation constraint or
a design goal. Writing

G((1 − χ) |Eh(χ)| , |Eh(χ)|) = const, (15)

we get the additional equation needed to find χ. The
only limitation on G is that (15) must provide a positive
continuous solution for |Eh| in the domain 0 < χ < ηc.
When |Eh(χ)| can be solved explicitly from (15), then it
can be used to evaluate the left-hand side of (13) and ob-
tain an explicit equation for the optimal χ. Yet, it is sim-
pler to take the derivative of (15), evaluate d

dχ |Eh| / |Eh|
and then use it in (13). However, even this simpler method
is limited to very simple constraints and it is hard to see
the underlying universal structure, and to compare it to
the classical results. In what follows, we explore the low-
efficiency limit, but before doing so we wish to point out
that the solution of (13) and (15) yields an efficiency of
the form η = η(G, ηc). That is, an efficiency that depends
only on the constraint and on the temperature ratio. It
does not depend on the number of levels or on the engine
specific details of the energy level structure Eh. Hence,
even without an explicit solution it is clear that there is
universality to all orders in χ for hot quantum Otto en-
gines that are subjected to the same constraint (or a design
goal). To the lowest order in χ we can expand:

d
dχ

|Eh| / |Eh| = A + Bχ. (16)

Using (16) in (13) leads to a cubic equation in χ. Since
χ is small we use the lowest-order solution χ = ηc

2 and

replace the cubic term by χ3 = η3
c

8 . This yields a quadratic
equation that is correct up to order η3

c . The solution is

η =
1
2
ηc + aη2

c + bη3
c + O(η4

c), (17)

a = A/4, (18)
b = B/8. (19)

In order to obtain a and b we need to specify a constraint
function: To evaluate A and B we expand (15) in powers
of χ. Since G =

∑
Fkχk is constant in χ, all non-zero–

order multipliers Fi>0 should be zero. In particular F1 = 0
yields

a =
1
4

(
d
dχ

|Eh| / |Eh|
) ∣∣∣∣∣

χ=0

=
1
4

G10

G10 + G01

∣∣∣∣∣χ=0, (20)

where the subscript of G specify the order of derivatives
with respect to the first and second variable (the values
of the variables are omitted for brevity but they are de-
termined by χ = 0: |Ec| = |Eh| = |Eh|χ=0). From (20)
two important results immediately follow. First, if the
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constraint is symmetric G(|Ec| , |Eh|) = G(|Eh| , |Ec|), then
G10 = G01 for χ = 0 and therefore

asym =
1
8
. (21)

Using this in (17) we see that the same universality in the
second-order coefficient that was observed in the classical
case, appears here as well even though the optimization
task is completely different.

The second result that follows from (20) concerns the
asymmetric case where G10 �= G01 . If G10 and G01 have
the same sign, then

0 ≤ asign ≤ 1
4
. (22)

The two extreme values 0 and 1
4 appear in the |Eh| =

const and |Ec| = const studied earlier. However, in con-
trast to the classical power optimization studied in [3],
in the quantum constraints (QC) framework studied here,
the function η|Ec| is not necessarily an upper bound on the
efficiency. For example, this is true if the sign of G10 is dif-
ferent from that of G01. This can be seen by comparing the
leading order of the QC case and classical low-dissipation
case:

ηQC =
ηc

2
+

η2
c

4(1 + G01
G10

)
+ O(η3

c ), (23)

ηLD =
ηc

2
+

η2
c

4(1 +
√

Σc√
Σh

)
+ O(η3

c ), (24)

where Σc,h are the relaxation time scales of the baths [3].
Since Σc ≥ 0,Σh ≥ 0 it follows that a ≤ 1/4 (for |Ec| =
const a = 1/4). In contrast, in the quantum case a can
be larger if G01/G10 is smaller than zero. Consider the
constraint |Ec|−(1−d) |Eh| = const for which G01 = d−1,
G10 = 1 thus the quadratic term is 1

4dη2
c . For d = 1 we get

the expected 1
4 for |Ec| = const, but for smaller d, a > 1/4.

Note that d should satisfy d > ηc. When d = ηc the Taylor
series no longer converges. Physically, beyond this point
the solution is no longer an engine.

Until now the constraints were due to some physical
limitation. Yet, energy constraints can be indirectly im-
posed by setting a design goal. For example, if we wish
to get maximal power but we want the energy expecta-
tion value of the particle after interaction with the hot
bath to be fixed i.e. tr(ρhH) = βh |Eh|2 = const, the ef-
ficiency at max power will be η|Eh| (see (9)). Fixing the
cold energy, yields (10). If the average energy is fixed,
1
2βc |Ec|2 + 1

2βh |Eh|2 = const, the efficiency at max power
is exactly ηCA (2). This shows that the CA efficiency can
appear as a result of very different constrains (in (11) it
followed from |Ec| |Eh| = const). Notice that the average
energy constraint is not symmetric under |Ec| ↔ |Eh| if
βc �= βh. From this we conclude that in contrast to the
classical low-dissipation model, the CA result is not nec-
essarily associated with hot-cold symmetry.

If we set the average von Neumann entropy (with
ultra-hot approximation) Savg = Sc + Sh = 1

2β2
c |Ec|2 +

1
2β2

h |Eh|2 = const, the efficiency compared to the average
energy case is

ηSavg
=

ηc

2
+

η2
c

8
+

η3
c

8
+ O(η4

c ), (25)

ηEavg
=

ηc

2
+

η2
c

8
+

η3
c

16
+ O(η4

c ). (26)

Different thermodynamic constrains lead to different
maximal efficiency. In this example, the difference appears
only in the third order. In the next section we derive an
analytical expression for the third order as a function of
the constraint equation. However for simplicity we write
down the result only for the symmetric case.

Next order for symmetric constraints. – We start
by using the F2 = 0 condition from const = G = F0 +
F1χ + 1

2F2χ
2 + O(χ3), and get for the symmetric case

(Gij = Gji):

d
dχ |Eh|
|Eh|

=
1
2

+
1
4

⎡
⎣1 +

|Eh| (G11 − G20)
G10

∣∣∣∣∣
χ=0

⎤
⎦χ. (27)

The multiplier of the linear term is B and therefore:

ηsym =
1
2
ηc +

1
8
η2

c

+
1
32

[1 +
|Eh| (G11 − G20)

G10
|χ=0]η3

c + O(η4
c ). (28)

For example for the CA constraint |Ec| |Eh| = const,
G11 = 1, G20 = 0, G10 = |Eh| and indeed we get the
correct factor 1

16η3
c . As a second example, consider

the efficiency ηα=1/2 (12) obtained from the constraint
|Ec|+ |Eh| = const. In this case G11 = G20 = 0 so the mul-
tiplier of the cubic term is 1/32 as can be verified from the
exact expression for the efficiency. Using the same meth-
ods a similar (yet considerably more cumbersome) formula
can be written for the non-symmetric case.

Colder engines with reflection symmetry. – Sur-
prisingly, the next order in β only adds the following
leading-order terms to the work:

ξ

2 − ξ

1
N

N∑
i=1

[
1
2
β2

cE3
c,i +

1
2
β2

hE3
h,i

− 1
2
β2

cE2
c,iEh,i −

1
2
β2

hE2
h,iEc,i]. (29)

In principle, it complicates the optimization, however if
the Ec, Eh are symmetric with respect to zero (reflection
symmetry) then each term individually sums up to zero
and all the results previously obtained still hold. In partic-
ular (29) is always zero for two-level systems and systems
with evenly spaced spectrum. Notice that this reflection
symmetry of the levels is completely unrelated to the hot-
cold symmetry of the constraints discussed earlier.
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Conclusion. – We have studied internal optimization
of hot quantum Otto engines. Universal features of the
efficiency were identified. For some optimization con-
straints the efficiencies at maximal work are the same as
the efficiency at maximum power in the low-dissipation
limit. However, we find constraints for which the effi-
ciencies deviate from the classical results. In the present
case the optimization is with respect to the internal prop-
erties of the working fluid, while in the low-dissipation
limit, power is optimized with respect to heat transport.
It is interesting to see if similar universality appears in
different engines (e.g. continuous engines) and in different
operating regimes. In particular, it is intriguing to investi-
gate if similar universality appears in faster engines where
coherence is very important.
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