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ABSTRACT. A survey of the basic features of the Fourier method for a grid represention of quantum 
mechanical wavefunctions is presented. The intention is to gain insight into the connection between the 
mathematical foundations and the physical applications. The elements of functional representation theory 
are explored to unco\'er the roots of the Fourier representation method for molecular dynamics. The mct.hod 
is viewed in the context of orthogonal collocation methods. The representation of nonlocal operators is 
reviewed. The Harmonic oscillator is used as an illustration for a discussion of sampling optimization. 
Some more advanced topics such as mapped representations and multidimensional generalizations are also 
discussed. 

1. Representation theory 

Representation theory can be thought of as a setting of the stage on which dynamical events can take 
placf'. In quantum mechanics this stage supplies the mathematical framework necessary to represent 
the state of a system and its evolution through time. In other words, by following the evolution of 
the stat.e of t.he syst.eJll t.he values of measurements can be extracted. Axiomatic quantum mechanics 
which originated in t.he work of von Neumann bases the description of t.he stat.e in Hilbert space [1]. 
Three eleJllent.s const.it.ute this Hilbert space: a) A functional domain wit.h well-defined boundary 
conditions. b) A set of vectors defined on this functional domain; the definition of the scalar product 
of t.wo vectors is a crucial element. c) Operators which map the vectors into new ones in the same 
funct.ional dOlllain. 

A molecular encollnter can be imagined as taking place in a large lIlulti-dimensional "box" which 
is a product of the momentum coordinate phase space box and the time euergy phase space. This 
view is consist.cnt with t he practical observation that any experiment. is contained in a finite volume, 
is rest.ricted to an energy band which also determines the momentum range, and is completed in finite 
t.ime. Such a view is refipcted in t.he methods of simulation which impose a finit.e representation of 
space-momentum, time-energy phase space. It becomes apparent therefore t.hat the computational 
effort is determined by the "volume" of this box in phase space and a cent.ral point when considering 
comput.at.ional methods is thelf abilit.y t.o represent the volume effectively. The global nature of 
quantum mechanics requires that the box should be globally represented. This fact is responsible 
for the large llIemory requirelTlents of quantum computational schemes. In t.he construction of a 
calculation scheme a rest rict.ion t.o a discrete representation has to be imposed on the Hilbert space. 

Consider approximating an arbitrary function \b(x) by a finite set of N fundions gn{x) 

N-l 

L an g,,(x) , (1) 
n=O 

where gn(J') are analytic functions in the dOlllain of iuterest.. The finite representation problem 
is recast a.s a method to opt.imize the expansion coefficient.s an. The traditional approach is the 
variation method whirh l1linimi7,es t.he functional 
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J == l dx l,p(x) -1/>(xW . (2) 

Here, J is the averaged squared difference between the function1/; and its approximation 1/>, and Dis 
the domain of int.erest, leading t.o the determination of an by the relation 6J = O. If the expansion 
functions are orthogonal, < gn 19m >== bnm , then the expansion coefficients become the functional 
transform of 1/): an == < V'19n >. This method will be referred to as t.he variat.ional spectral 
met.hod [2]. An alieruative approach, due to Gauss, is the collocation t.echnique for optimizing the 
expansion coefficients. This technique will be explored in the next. section. 

2. General Collocation Method 

Imagine viewing t.he functional space through a finite set of portholes which restrict the view to a 
local picture. If these portholes are d,'nse enough, a complete picture can be reconstructed by using 
the cont.inuous properties of the functional space to interpolate the observed data and reconstruct 
the full picture. TIl(' collocation method makes use of this concept. In mathematical t.erms the 
collocation method determilles the expansion coefficients by matching the approximate solution to 
the true solution on a set, of N grid points, 

N-l 

L an g,,(Xj) , (3) 
n:::O 

where the Xj are t.he collocat.ion points. These are the sampling point.s discussed above. This 
equation is equivalent t.o a set of collpled linear equations. In matrix form t.hey become 

Ga, (4) 

where 1/'j == 1/;(rj) alld the matrix Gnj 

dent, the solution becomes 
gn (x j). Provided that the gn (x j) are linearly indepen-

a == G- I 1/;. (5) 

The functional basis t.hat. supplies the global picture is connected through t.he expansion coefficients 
an to the spatial grid. This provides the ability to define the scalar product of two fUllctions. If 

1/-( r) L a"g,,(x) (6) 

and 

¢( J~ ) Lbmgm(x) (7) 
m 

then 

< 1/-19 > LSnman*bm (8) 
nm 

where Snm is the overlap matrix 

')tl111 l dx gn(x)' 9m(X) (9) 

and t.he int.egrat.ion is carried 0111. over the domain D. 
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The operators in t.he discrete Hilbert space can be represented by it.s expression in terms of the 
expansion coefficients. The duality of unbounded operators, quantified by t.he uncertainty principle, 
implies t.hat the local, point-wise, evaulation of the potential forces the momentum operator to 
become nonlocal. Hence, the accurate evaulation of nonlocal operators, such as the momentum 
operator -ih tx and its mapping of the wavefunction tt>(x) becomes crucial 

(10) 

The action of these non local operators can be reduced to a calculation at t.he sampling points Xj,-

N-l 

-itt L an qn(Xj) ( 11) 
n=O 

by defining Hew expansion funct.ions qn (;r.) a&r 9n (x). Usua.lly these new functions qn (x) are 
recast into a linear combination of the old ones gn(x), result.ing in a discrete representation of the 
non local operat.ion. The dualit.y of the representation which, on the one hand is represented by the 
values at sampling points and on the other by a functional global represent.ation, is responsible for 
t.he applicability of the method to represent processes in Hilbert space. Thus either the sampling 
points or the functional expansion can be taken as the "fundamental" representation with a linear 
mapping connecting them - the matrix G above. 

Primit.ive collocation methods which use nonorthogonal expansion functions have been used. 
An example is the method of Hamilton and Light [3] which uses a set of distributed Gaussians 
as expansion functions, y,,(x). The main numerical drawback of primitive collocation schemes is 
overcomplet.eness of the represent.ation leading to a reduction in the rank of the overlap matrix S. 
This problem causes numerical singularities in the inversion of the G matrix. This phenomenon can 
also be understood from the perspective of Gram-Schmidt orthogonalization. Functions which have 
nearly complete overlap will cause extreme numerical sensitivity upon orthogonalization. One way 
to overcome this problem is to use orthogonal expansion functions, the subject of the next section. 
Another method is to use more sampling points than functions and a least square procedure to 
overcome the indeterminancy of the inversion. 

3. Orthogonal Collocation Schemes 

A great simplification in the collocation scheme is achieved if the set of expansion functions Yn(x) 
obeys the orthogonality relation 

N-l 

L y,,(x;)Y~(Xj) ( 12) 
n=O 

allowing a direct inversion for the coefficients a" in equation (4) 

(13) 

This nwans that the expansion coefficients an. are the discrete functional transform of the function 
11'. On t.he other hand if 

< Yn.IYm > L dx Yn(X)g;;'(x) (14) 
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then the scalar product in equation (8) is greatly simplified leading to 

(15) 

which, using equat.ion (12), becomes 

N-J 

2: ~}·(Xj)</J(Xj). ( 16) 
j=O 

A consequence of the orthogonality relations is that. t.he collocation funct.ional expansion scheme 
b("comes a discrete vector space with a unitary t.ransformation between the discret.e sampling points 
Xj and the discrete functional base a.". The matrix G is unitary. The following sections will 
elaborat.e on a particular choice of ort.hogonal functions: the Fourier set.. Other orthogonal functions, 
especially orthogonal polynomials, have been used successfully in some applications. These choices 
are explored in ot.h("r chapters [4]. 

4. The Fourier Method In ID 

An examination of the Fourier method, which is a special case of an orthogonal collocation 
representation, elucidat.es the main considerations of representation theory. It will be shown that 
by optimizing the representation the quantum limit of one point per unit phase space volume of 
h can be obtained. Moreover, the Fourier method has great numerical advantages because of the 
"fast" nature of the algorithm [5]. This means that the numerical effort scales semilinearly with the 
represented volume of phase space. 

In the Fourier method, t.he orthogonal functions 9n (x) are chosen as 

ei21fk./:/L, k = -(N /2 - 1), ... ,0, ... , N/2 (17) 

leading to N equally spaced sampling points where Xj = (j - 1)Llx, (j = 1, .... N) and L is the 
length of the interval. Using t.he relation L = N Ax, the completeness relations of the Fourier 
expansion functions become 

N/2 

2: 
k=-N/2-1 

N/2 

2: 
k=-N/2-1 

N/2 

2: 
k=-N/2-1 

1 _ e i21f (1l-m) 

1 - e i21f (1l-m)/N 
(18) 

where the sunllllation can be carried out explicit.Jy because it is a geometric series. The fourth 
equalit.y in equat.ion (18) follows because if n = m the summation is trivial. Otherwise, In - ml 
ranges from 1 to N - 1 and is never an integral multiple of N. Thus the denominator never vanishes 
while t.h" numerator is ident.ically zero. This is the first orthogonality relation equation (12). 

The second orthogonality relation equation (14) becomes 

1 [ 1 ei(m-ll)x] 1r 

211" i(m - n) -1r 

( 19) 



179 

where x' = 7r(X/ L - 1), 0 ::; x ::; L. These relationships imply that. the domain J) has periodic 
boundary conditions. The symmetry between nand k in equation (18) leads t.o the discrete version 
of equation (19): 

N 

L gk(:Cj)gi(xj) = 6kl N Ik -il < N . (20) 
j=l 

Now t.hat t.he basic properties of Fourier expansion functions have been demonstrated the expan­
sion of a wavefunction 1j;(x) is next explored: 

N/2 

L (21) 
k=-(N/2-1) 

The expansion coefficients a.k become the discrete Fourier expansion coefficients. One can use the 
orthogonality of the Fourier fnnctions with equidistant sampling points to invert the relation giving 

N 

~ L 1/0( Xj )e-i27rbj/ L . 

N j=l 

(22) 

Thus the adjoint relationship, expressed by the matrix G, is particularly simple. In quantum 
mechanics I,he coefficients ak have an important interpretation since they represent the amplitude 
of the wavefunction in momentum space. Equation (21) and equation (22) are direct analogues to 
the continuous Fourier transformation, which changes a coordinate representation to a momentum 
representation: 

1j;(X) = 

if;(k) = 

_1_100 eik:J:if;(k)dk 
.j2; -00 

-- e-·kt:1j;(x)dx . 1 100 
. 

.j2; -00 

5. Phase Space Representation Of The Fourier Method 

(23) 

(24) 

At this point the phase space representation of the Fourier method should be considered. The 
minimum volnme in phase space covered by the Fourier representation is calculated as follows: 
The length of the spatial dimension in phase space is L, and the maximum momentum is Pmax. 

Therefore, the represented volume becomes Volume = 2L· Pmax, where the factor of two appears 
because the moment.um range is from -Pmax to + Pmax . Using the fact that p = hk, the phase 
space volume can be expressed as 

llolume 2h L· k m8x Nh, (25) 

where N is the number of sampling points. Since L = N Llx, it follows that the sampling spacing 
Llx is related to the maximum wave vector via 

(26) 

Figure 1 expresses the relation between the volume in phase space, the unit volume, and the grid 
parameters Llx and N. The computational scaling properties of the Fourier method are a result of 
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the scaling properties of the FFT algorit.hm which scales as O(N log N). As a result the Fourier 
method scales wit.h phase space volume as O( Volume log Volume ). 

p 

q 

l 

FIG. 1. Phase space volume. 

A function that is compact in momentum space is equivalent. to the band-limited Fourier trans­
form of the function . Confinement of such a function to a finite volume in phase space is equivalent 
to a band-limited function with finite support. (The support of a function is the set for which the 
function is nonzero). The accuracy of a representation of this function is assured by the Whittaker­
Kotel'nikov-Shannon sampling theorem [6]. It states that a band-limited function with finite sup­
port, is fully specified if the functional values are given by a discrete, sufficiently dense set of equally 
spaced sampling points. The number of points is determined by equation (25). This implies that 
a value of the function at an intermediate point can be interpolated with any desired accuracy. 
This theorem also implies a faithful representation of the n'th derivative of the function inside the 
interval of support. In ot.her words, a finite set of well-chosen points yields arbitrary accuracy. 

For unbounded problems, such as occur in quantum mechanics, t.he wavefunction can­
not be confined in both co-o,dinate and momentum space. In principle, no wavefunction 
is strict.ly band-limit.ed with finit.e support. The idea of a wavepacket which is a wave­
function that is almost. band-limited is central to the usc of the discrete representation. 
A wavepacket is a wa.ve/unction that is semilocalized ill phase space . The most well-known 
example is the Gaussian wavepacket.. Alt.hough the wavefunction is not confined to a finite vol­
ume, the amplit.ude outside this volume in phase space converges exponentially to zero in either 
co-ordinate or momentulll space. This exponential convergence is typical of a good represent.ation 
of phase space. A count.er-example is supplied by a rectangular packet.. In coordinate space the 
wavefunction is well-confined, but in momentum space the rectangular wavefunction is transformed 
to ij,( k) == A 'in~t1~~:;')). which has only a linear convergence rate with the size of the grid in k 
space. This point is cent.ral t.o the use of the Fourier method which balances the co-ordinate and 
moment.nm representations. For a t.ime dependent calculation, a phase space box has to be large 
enough t.o keep the wavefullctioll localized at a.1l t.imes. 
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6. Representation Of Operators By The Fourier Method 

The previous sections have analyzed the dual representation space, i. e. a discrete representation in 
coordinate as well as in momentum space, The the discrete Fourier transform supplies the unitary 
transformation between the two spaces. The special structure of the two spaces is used to convert 
the operator mapping of vectors to local operations thus reducing the number of operations from 
O(N2) to O(N log N). 

The partition of the Hamiltonian operator into the sum of local. operators in coordinate and 
momentum space is central to the usefulness of the Fourier representation. (Other more complicated 
examples will be analyzed in section 8). The Hamiltonian operator is usually partitioned into kinetic 
and potential operators: 

T + V. (27) 

The numerical strategy is to calculate the operation (mapping) of each of the operators in equation 
(27) on the wavefunction locally 

(28) 

The potential operator is already local in coordinate space so that its operation is simply V(Xj)1j.>(Xj) 
on grid point j. The Fourier transform allows a local operation of the kinetic energy operator since 
the expansion functions 9n(X) are eigenfunctions of the kinetic energy operator. The first step in 
the operation is to Fourier transform 1j.>(x) from coordinate space to -/fi(k) in momentum space. The 
kinetic energy discrete spectrum becomes 

T(k) = (29) 

The operation on a component of wavefunction represented in momentum space becomes: 

(30) 

This result can also be obtained from equation (21) by differentiating the Fourier expansion 
functions twice by using the discrete version of the relation: 

(31) 

The result of equations (29)and (30) can be generalized for any local operator in momentum space. 
The algorithm for calculating the mapping of such operators is as follows: a) calculate the expansion 
coefficients ak by the discrete Fourier transform; b) multiply each point in k space by the value of 
the operator at that point; c) transform the result back to the coordinate sampling space by an 
inverse Fourier transform. For the Hamiltonian mapping the last step is to combine the operations 
by summing the action of the potential and kinetic operators. 

The convergence of the operator mapping <p = 01j.> is determined by the wavepacket nature of 
the wavefunction <p. The quantum mechanical nature of the approximation depends on the ability 
to represent the position momentum commutation relation [X, P] = iii. A close examination reveals 
that the function f(x) = x is not band limited on the interval [0, L] because it is discontinuous at 
the end of the interval x L. Now if f(x) = x is replaced by a periodic function f(x+L) = f(x), 
then 

[f(X),P] iliJ'(X) (32) 
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since the Fourier method differentiates exactly periodic functions [13]. This means that the Fourier 
method fulfills the quantum mechanical commutation relations for periodic potentials and compact 
wavefunctions. Practically this means that converged results are obtained when the wavefunction 
is effectively zero at the boundaries of the phase space box i.e. it is a wavepacket. 

Another important operator which is local in momentum space is the unitary translation operator 
defined by 

(33) 

which becomes a phase shift in momentum space: 

(34) 

The efficient. Ilumerical ability to translate the wavepacket in coordinate space has important con­
sequences. \-Vit.h no loss of accuracy t.he wavepacket. can be cent.ered in the middle of the grid. This 
can be done rontinuously, resulting in a dynamical grid, or sequentially at. predetermined intervals. 
Such a process can be accompanied by a shift in momentum 

1f;(k + k') , (35) 

which becomes a phase shift in the coordinate space: 

(36) 

The two shift operators equat.ions (33) and (35) can reduce significantly the effective represented 
volume in pha.5e space by matching t.he grid to regions where the wavefunct.ion has significant 
amplit.ude. One should remember t.hat when shifting the wavefunction the potential has to be 
shifted in the opposite direction and the kinetic energy operatotto T(k) = ;~ (k - k')2. Another 
use of the shift. operator is t.o interpolate the wavefunction t.o points which are not represented on the 
grid. An example of the use of an interpolation procedure is when t.here is a sudden change of the 
potential. In photodissociation, for example, the ground state wavefunction is placed on an excited 
electronic potential which undergoes a rapid momentum increase. To guarantee convergence, the 
sampling densit.y has to be increased from its value in the ground electronic state. 

One simple scheme to effect this interpolation would be as follows. Consider a wavefunction which 
is sampled by N points. It is first transformed to momentum space. Then the wavefunction is cast 
onto a larger grid of M point.s by adding M - N zeros to the momentum values for Ikl > 7rN / L. 
A back transform will increase the density of points without adding any new information to the 
wavefunction. 

The simple implementation of the translation operator is a consequence of a general property of 
the Fourier t.ransform: a convolution of two functions in coordinate space becomes a multiplication 
of the transform function in momentum space. This fact can be used to study the mapping of the 
fourth-order finite difference (FD) kinetic energy operator: 

(37) 

Equation (37) is a member of the family of convolution operators and therefore is diagonal in k 
space. Performing a Fourier transform, the spectrum in k space of the FD kinetic energy operator 
is obtained: 

,,2 2(cos(k~x) - 1) 

- 2m (~x)2 
~ (2Sin(k~X/2))2 
2m ~x 

(38) 

Likewise, t.he sixt.h-order finite difference operator has t.he spectrum: 
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11. 2 2cos(2kAx) - 32cos(kAx) +30 
-2m 12(Ax}2 (39) 

Figure 2 compares t.he different spectra. 

90.0 Fourier 

60.0 6th crdcr FD 

4th crOOFD 

30.0 

0.00 -/-----.------..::::::.-,...-:::==----.-___ ---. 
·10.0 ·5.00 0.00 5.00 10.0 

k 

FIG. 2. Comparison of the kinetic energy operator spectrum for the Fourier method and the fourth- and 
sixth-order fillite difference method. 

It. is apparent that as k increases, the finite difference spectrum deviates more and more from 
the correct value. It is usually assumed that acceptable accuracy with the FD method is obtained 
when at least. ten points are used per wave period. This means also using ten points per unit volume 
in phase space. The finit.e difference algorithms are based on a local polynomial approximation of 
the wavefunction and therefore the convergence of the method follows a power law of (Ax)n where 
n is the order of the finite difference approximation. The semilocal description leads to a poor 
spectral representation of the kinetic energy operator. A general consequence is that a semilocal 
represcntat.ion of the moment.um operator does not obey the commutation relations of quantum 
mechanics. This fact, combined with an iterative use of the operator, leads to an exponential 
accumulation of errors. 

7. The Harmonic Oscillator Example 

The use of the Fourier expansion method to calculate the spectrum of the Harmonic oscillator 
demonstrates t.he propert.ies of the met.hod. For simplicity, consider a harmonic oscillator with mass 
m. and frequency w. The system is represented by a finite grid with equally spaced sampling points. 
Figure 3 shows the relevant phase space. 

On this grid the maximum va.lue of the potential energy is determined by the extent of t.he grid, 

(40) 

where N is t.he number of sampling points and the grid. is centered about zero. The maximum 
kinetic energy is ,limited by. the maximum momentum which 'can be represented on the grid leading 
to 
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P;,ax 
2m 

p 

-L/2 

h 2 ( 211" ) 2 

2m 26.x 
(41 ) 

Q 
L/2 

FIG. 3. Schemat.ic phase space of the harmonic osciUator. The rat.io between the area of t.he square and 
the circle is 'If / 4. 

Equations (40) and (41) represent an energy cutoff due to the discrete representation of the 
Hilbert space. The optimal representation balances the kinetiC and potential energy. Using the 
viria! theorem for the harmonic oscillator, the cutoff in t.he potential energy should match the cutoff 
in the kinetic energy, wit.h t.he result.ing optimal grid spacing 

(42) 

To illustrate these formulae a grid is constructed using the functions ¢(Xj) .5(Xi - Xj) = 
~sinc(211"(xi - Xj )/6.x). ( sinc(z) = sin(z)lz). This basis function is zero on all other grid points 
except j where it.s value is one . The Hamiltonian matrix in t.his base is calculated as follows: The 
potential energy matrix is diagonal: ~'ij = V(Xj). To calculate the kinetic energy matrix elements, 
a discrete Fourier transform is applied to the expansion function V'j then multiplied by h2 k2 12m 
and back transformed. The resulting vector becomes the matrix element 1ji. At this stage the 
Hamiltonian matrix fI = T + V is diagonalized and the eigenvalues of the discrete represent.ation 
are compared to the exact results. Table I shows the calculated eigenvalues using 8 , 16 and 32 
sampling point.s with t.he optimal grid spacing 6.x op l for w = 1, m = I,and h = I. 

When the results of the 8 sampling points are compared with 16 sampling point.s, the exponential 
convergence of the expansion is demonstrated. For the ground state energy the error decreases six 
orders of magnitude by only doubling the number of grid points. Other states show similar behavior. 
When the number of points is doubled again to 32, the error in the ground state becomes saturated 
because the roundoff error of the double precision arithmet.ic used in the calculation overcomes the 
representat.ion error. For unsaturated eigenvalues doubling the number of points from 16 t.o 32 
reduces the error another five to six orders of magnitude. 
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TABLE I. Convergence of t.he Fourier representat.ion for the harmonic oscillator 

n Exact 8 points 16 points 32 points 
AXopt 0.8862265 0.6266568 0.4431132 

1 0.5 0.4999760107111692 0.4999999998715793 0.4999999999999845 
2 1.5 1.500539183698194 1.500000006153576 1.499999999999986 
3 2.5 2.494397791604125 2.499999857637178 2.500000000000002 
4 3.5 3.534291735531325 3.500002068787167 3.499999999999993 
5 4.5 4.378294841394608 4.499978178076544 4.499999999999982 
6 5.5 5.960743369677700 5.500169240572392 5.500000000000130 
7 6.5 6.212358517586826 6.498928884935602 6.499999999997876 
8 7.5 9.976917743504451 7.505122466888302 7.500000000025498 
9 8.5 8.478529454896226 8.499999999731434 

10 9.5 9.567379412999802 9.500000002414588 
11 10.5 10.33263329166096 10.49999998073345 
12 11.5 11.95570264326039 11.50000013337068 
1:1 12.5 12.04789296489282 12.49999916184023 
14 13.5 14.5601287518743.3 13.50000457741937 
15 14.5 15.44949561677325 14.49997680742042 
16 15.5 20.69252130835984 15.50010120025324 
17 16.5 16.49957859092886 
18 17.5 17.50146417275678 

Table II shows the convergence of the first. eigenvalues of the finite difference method for the same 
paramet.ers as table I. The kinet.ic energy spectrum wa~ constructed from equation (38). The grid 
spacing Llx was optimized for each case ind(~pendently. 

TABLE II. Convergence of t.he Finite Difference represent.ation for the harmonic oscillator 

Fourth order FD 
n Exact 8 points 16 points 32 points 64 points 

AXopt 0.7 0.4 0.2 0.11 

1 0.5 0.4825740879 0.49478668002 0.49860380104 0.499603845744 
2 1.5 1.4317143539 1.47679543400 1.49594408176 1.498464505411 
3 2.5 2.2214522909 2.41491682858 2.46274206266 2.490855167811 
4 3.5 3.1888159106 3.43350682128 3.54493542145 3.511444750027 
5 4.5 3.5308260773 4.10115403608 4.21270019153 4.381333406923 
6 5.5 4.4614149311 5.56420368670 5.96798953995 5.712163111633 

Sixth order FD 
n Exact 8 points 16 points 32 points 64 points 

.6. x opt 0.75 0.44 0.24 0.13 
1 0.5 0.496832961 0.4996361441 0.4999643185 0.4999968936 
2 1.5 1.485276212 1.4982057984 1.4998077039 1.4999837996 
3 2.5 2.393088218 2.485823514 2.4985394570 2.4998518646 
4 3.5 3.439160266 3.5084173131 3.5020862644 3.5004457190 
5 4.5 3.920284648 4.3402199322 4.4695728153 4.4948505331 
6 5.5 5.7031594608 5.5688982555 5.5178475240 
7 6.5 6.0977450000 6.2657050814 6.4167645240 
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Table I and Table II reveal the slow convergence of the finite difference method compared to the 
Fourier method. Even for the sixth order finite difference the convergence is increased only one 
order of magnitude when the number of poinq; is doubled. The smaUer optimal grid spacing used 
for the finite difference method should also be noticed. 

Another issue is the number of converged eigenvalues that can be obtained in the Fourier method 
for an n point representation. If the criterion is three significant digits it can be seen from table I that 
3 eigenvalues are obtained for 8 points, 8 for 16 points, and 20 for 32 points. It can be concluded 
therefore that the fraction of significant eigenvalues increases with the number of points in the 
representation. Figure 4 shows the fraction of significant eigenvalues as a function of the logarithm 
of the number of points. An eigenvalue is defined as converged when the number of significant digits 
is larger than. a preset value. What can be observed in the figure is that the converged eigenvalue 
fraction increases with the number of points until it reaches saturation regardless of the number 
of significant digits used as the convergence criterion. The saturation phenomena occur because 
the Fourier method constructs a rectangular phase space. Using the balanced choice of t:.XOl'h the 
phase space becomes a square. On the other hand, due to energy conservation, the support for an 
eigenfunction in phase space has the shape of a disc, in the semiclassical limit of large quantum 
numbers the support area has a shape of a ring, whereas the support for aU eigenvalues up to a 
cutoff energy has the shape of a disc determined by the largest eigenfunction. (or an ellipse in the 
general case). The area between the circumference of the circle and the perimeter of the square is 
wasted sampling space. Therefore the maximum sampling efficiency is the ratio of the area of the 
circle to the area of the square leading to '11"/4 ~ 79%. This is the asymptotic value represented by 
a bold line in Figure 4. 

1.00 

0.67 

c 

I .. 
" OJ 
> c 0.33 .. 

. !l' .. 
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FIG. 4. Sampling efficiency defined by the ratio of converged eigenvlaues within a fixed number of digits 
to the number of sampling points, as a function of the logarithm of the number of sampling points. The 
heavy line represents the asymptotic value of '11"/4. 

To illustrate this point further Figure 5 shows the converged eigenvalue fraction as a function of 
the grid spacing t:.x. It is clear that a square in phase space offers the optimal choice where, to the 
left of the cusp point t:.x = t:.xopt the kinetic energy operator error dominates and to the right of 
the cusp point the potential error dominates. 
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This example shows that a careful choice of grid parameters which balance the representation of 
the kinetic and potential energy can drastically change the amount of computation effort. 
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FIG. 5. Sampling efficiency for a fixed number of points (N = 64) as a function of the grid spacing Ax. 

8. Mapped Fourier Methods 

In the previous section the importance of balancing the representation was demonstrated. However 
even for the optimally balanced representation of the harmonic oscillator there is "air" between the 
rectangular "box" in phase space used by the Fourier method and the circular shape defined by 
the Hamiltonian. One can imagine cases where the phase space box has a more complicated shape. 
For example it can be expected that the optimal sampling density of the Morse oscillator should be 
lower in regions of small classical kinetic energy. A simple solution to the balancing problem is to 
define a mapping transformation from the old coordinate system to a new one, x', which can change 
the sampling density, 

x' = M(x,a) (43) 

and its inverse 

(44) 

where a is a set of parameters defining the mapping function M. The result of this mapping is a 
correlation between the kinetic and potential operators. The computational price of the mapping 
procedure is that the kinetic energy operator must be calculated by the chain rule 

T __ ~ (aM)~ (aM) ~ 
- 2m ax ax' ax ax'· (45) 

This kinetic energy operation can be implemented by a sequential evaluation of the first derivative 
multiplied by~. The overall evaulation requires at least 3 Fourier transforms per operation 
compared to 2 Fourier transforms for the simple, rectilinear, Fourier method. There are many 
examples of such mapping functions. For example if 
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(46) 

and 

x = cos(O) , (47) 

then the Fourier method is transformed into a Chebyshev pseudo-spectral representation (2). This 
representation which belongs to the class of orthogonal polynomial transformations is e~ceptional 
because the mapping of equation (47) has a fast transform implementation. Another example is the 
mapping of the interval -1 < x < 1 into itself by the mapping (7) 

1 
x' = M(x.O') = x~+>:tan-l(0'1(X-0'2» (48) 

where x~ = (Ii - 1)/(1i + 1), K. tan-1 (O'dl + 0'2»/tan-1 (0'1(1-0'2» and 
~ = tan- 1 (0'1(1 + 0'2» /0- x~). The inverse is given by: 

(49) 

The parameters 0'1 and 0'2 define the center of the region to be stretched and the amount of stretching. 
The idea of a functional space which contains a local representation of the kinetic energy operator, 

can be carried beyond Cartesian coordinates. For example the kinetic energy operator in spherical 
coordinates is 

(50) 

For the ¢ coordinate, the Fourier method is applicable directly. The rand 0 coordinates can be 
evaluated by a sequential application of the Fourier method. An alternative method for the radial 
part is based on the fact that the Bessel function J1/ 2(r) is an eigenfunction of the radial part of the 
Laplacian. This means that hy using a Bessel transform the radial part of the Laplacian becomes a 
local operator with the spectrum _k2 . This result can be generalized by using the t.ransform with 
J/+1/2. In this case a centrifugal part 1(1 + 1)/r2 , is included in the trasformation. This transform 
is useful in a mixed calculation when the angular part of the wavefunction is expanded by Yim 
functions. Technically, fast Bessel transforms can be carried out by a change of variable. The 
transform becomes a convolution which is then carried out by means of a fast Fourier transform 
[16,17). The Fourier-Bessel transform of order v is defined by: 

1/~(k) = 1'''' rtp(r)Jv(kr)dr (51) 

for k > O. The Bessel transfortn is its own inverse. Substituting r = roe-Y and k = koe'" in 
equation (51) and multiplying of both sides by eO'" gives: 

(52) 

The expression on the right hand side is a convolution of the funct.ion e(O-2)Y1/>(I·oe-Y) and 
r5eoz Jv(rokoe X ). The parameter 0' is arbitrary and therefore can be chosen to opt.imize the ac­
curacy. The convolut.ion t.heorem [18] states that. the Fourier t~ansform of t.he convolut.ion of band 
c, b * c equals the product of their Fourier transforms. Hence b * c can be computed by perform­
ing an FFT 011 band c, multiplying the results, and performing an inverse FFT. The use of the 
Fourier-Bessel transform can be viewed as a logarithmic. mapping function on the coordinates r. 
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9. The Fourier Method hl Many Dimensions 

The most straightforward approach in constructing a: multi-dimensional representation is to assemble 
it direct.ly from a product of one-dimensional representations. If, for each dimension, there are N 
sampling points the computational scaling of the problem of D dimensions becomes O(DND log N) 
using t.he Fourier method. The practical meaning of the exponential scaling is that any possible 
approach which reduces the number of sampling points N and the effective dimensionality should 
be used. 

An obvious solution to minimize N is to introduce symmetry. Consider for example an inversion 
point such as the point x = 0 for the harmonic oscillator. The eigenfunctions can be classified as 
either being even or odd with respect to parity: lJI(x) = ±t/>( -x). If one restricts the calculation to 
one class of functions the computat.ional effort can be reduced by a factor of 2 by using a fast cosine 
transform for even functions and a fast sine transform for odd functions [8]. 

Translat.ional symmetry of the type V(x + nL) = V(x) can also be exploited. The symmetry 
of the potential is reflected in selection rules imposed on the momentum change. A typical example 
can be found in atom scattering from a crystal surface. In this case the selection rule L1k = ±mf / L 
is imposed. By matching the grid to the unit cell and employing the periodic boundary conditions of 
the Fourier representation the selection rules are automatically fulfilled. In more than one dimension 
the matching of the grid to the unit cell might require a skewed grid representation. As will be 
seen below the skewed grid has more efficient sampling. Other types of symmetry can be considered 
by working out the selection rules on L1k. Then the kinetic energy operator can be evaluated by 
shifting the spectrum in k space using equation (36). The details can be found in reference [9]. 

For more general problems it has been observed that the direct product representation, which 
for the Fourier method implies a represention by an equally spaced Cartesian grid, is not optimal. 
A strat.egy can be developed to enhance the sampling efficiency by abandoning the direct product 
representation and introducing correlations. A careful analysis of the Fourier method leads to 
the observation that this direct product grid is not isotropic in momentum space, so that different 
directions have different sampling intervals. A faithful representation of a multidimensional function 
by the Fourier method means that the function has to be band limited. The symmetric construction 
of the coordinate and moment.um representation means that the description of the function is also 
periodic in momentum space. The representation therefore can be viewed as an infinite number of 
replicas of the original k space picture extending in all directions. The band limited property of the 
original function means that these replicas do not overlap. If a priori there is no preferable direction 
in space a cutoff in momentum can be represented as a sphere with radius Pma",' A Cartesian grid 
in coordinate space is also Cartesian in momentum space. Therefore the non overlapping role can 
be envisioned as packing spheres so that they touch their neighbors at 2D points for D dimensions. 
It is clear that the best sampled direction is in the diagonal one, but for an isotropic problem the 
volume bet.ween the sphere.s is wasted sampling volume. 

Although a completely isotropic grid is not possible, the sampling positions can be chosen to 
construct the optimum isotropic grid in momentum space. From the previous description it can 
be concluded that the optimal sampling points are equivalent to the centers of multidimensional 
densely packed hard spheres. (The problem of the optimal packing of hard spheres has been solved 
up to 23 dimensions [10]). The free volume between the spheres is wasted sampling volume. The 
sampling efficiency can be defined as the ratio of the volume of the space filling spheres to the 
volume of the total space. Figure 6 illustrates the situation in two dimensions. 
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The Cartesian grid reaches a sampling efficiency of ~ ::::: i9%. Skewing the grid increases the 
sampling f.'fficiency to 27:3 ::::: 91%. In many dimensions, the limit of one sampling point per unit 

Cubic Samplig In 2- D 

FIG. 6. Schematic view of the k spectrum sampled on a two-dimensional cubic and skewed grid . The 
fourier t.ransform of a function f is contained in the sphere po. Sampling the function the function f on 
a descrete grid produces copies of f( K) each containing a sphere with radius R. These spheres should be 
distinct for opt.imal sampling. 

volumf.' is not obtainable even for optimal packing. Table III compares the sampling efficiency of a 
cu bic grid with the optimal grid as a function of dimension. 

TABLE III. Isotropic Sampling Efficiency 

Dimension Maximum Efficiency eu bic lattice Improvrnent factor 
'1m4z(%) '/cub (%) 11ma,r/""cub 

I 100.0 100.0 1.0 
2 90.7 78.5 1.15 
3 74.0 52.4 1.4 
4 61.7 30.8 2.0 
5 46.5 16.45 2.8 
6 37.3 8.07 4.6 
7 29.57 3.69 8.0 
8 8.07 0.505 16.0 

Source: Peterson and Middleton [10). 
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It can be deduced from Figure 7 that the importance of optimal sampling increases with dimen­
sionality. Opt.imal sampling becomes ext.remely important for calculations beyond three dimensions. 
For example for six dimensions. 2.7 sampling points are needed per unit volume, compared to 12.4 
points in the Cartesian cubic lattice. Nevertheless 'even the optimal sampling efficiency decreases 
with dimensionality. This fact poses an intrinsic limitation to the Fourier method for multidimeu­
sional calculations. 

100~~~~----____________ --. 

234 5 6 7 8 9 
Dimension 

FIG. 7. Comparison of sampling efficiency of a cubic to skewed grid as a function of dimension. The stars 
represent the cubic grid and the4 open circles the skewed grid. 

In a rectangular set of multidimensional coordinates, the kinetic energy operator is separable, 

2 D 
~~K? 
2m L.J l' 

i=l 

(53) 

where Ki is the vector of k values in t.he spatial dimension i. In the case of the opt.imal packing or 
other skewed sets of coordinates, the kinetic energy operator becomes 

(54) 

where K is the vector of k values for each spatial direction and G a positive definite matrix 
connecting spatial direction i with direction j. The G matrix can be calculated by using the 
knowledge of t.he coordinates of the centers of the optimally packed spheres [11]. 

A third option for multi-dimensional calculations is to use non-Cartesian coordinat.es such as 
spherical coordinates (equation (50)). cylindrical coordinates, hyperspiterical coordinates [9] or bond 
coordinates [15]. The choice depends on the symmetry of the total Hamiltonian operator as well as 
the symmetry of the initial condition. These methods are usually implemented by a mixed repre­
sentation strategy of Fourier decomposition for some degrees of freedom, wit.h some combination of 
DVR and spectral expansion for the other degrees of freedom. 

10. Computational Considerations 

The main numerical t.ool of the Fourier llIethod is the Fast Fourier Transform (Flo'T). One can 
view the algorithm as an efficient llIeans to perform the unitary transformation from coordinate 
to momentum space. An alternative t.o the FFT algorithm is to define directly the kinetic energy 
operator in coordinate space 

T(x) Z-lT(k)Z , 
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where Zjk =< Xj Ik >= 1/"f'i;iei k:I: j is the coordinate to momentum unitary transformation. The 
drawback to the use of equation (55) is that it is a full matrix operator scaling as O(N2). Neverthless 
since the FFT algorithm has an overhead of a factor of 3 to 5 there is a turnover appearing between 
Ncri! = 32 to Ncri! = 96 so that N < Ncrit a direct transform becomes more efficient. than the FFT 
algorithm. This finding is very sensitive to the particular computer architecture. For example, very 
efficient FFT routines are available on vector and parallel computer architecture [14). One advantage 
to using the direct matrix kinetic energy operator is that. the sampling points in coordinat.e sapce 
can be identified thus allowing a correlation with the potential energy operator by eliminating points 
which are deep in the classically forbidden region. The effect can be achieved also by nsing the fast 
Fourier transform programmed with a jagged shaped phase space box. 

These findings make it worthwhile to compare the computational strategy used for light and 
heavy mass quantum calculations. This can be done by considering the effective phase space of 
the interaction region of reactive scattering. For the H + H2 reaction with total J = 0, the 
interact.ion region is approximately contained in a box of dimensions L = 2 ~ 4bo/l7'. For energies 
of Emax ~ O.lhartl'ee a box in momentum space of Pmax ::::: v'2mE = 20a.u. contains the action. 
This means an effective phase space volume of (80h)3 ~ 50000h3 • Such a value is direct.ly related 
to the number of sampling points or expansion functions required for a converged calculation. The 
estimate is based on a rectangularly shaped phase space volume. A more complicated shape in 
phase space which correlates the kinetic and potential energy can reduce the number of sampling 
points significantly. For this calculation the applicability of the FFT algorithm is marginal. 

In multidimensional cases the sampling efficiency of a direct product base is further reduced for 
two reasons. First, direct product sampling points are not isotropic in kinetic energy. Different 
directions in space have different sampling efficiencies. Therefore correlated maximally isotropic 
grids have a much better sampling efficiency where the ratio grows with dimensionality of the 
problem. Second,correlations in the kinetic and potential couplings improve the sampling efficiency. 
These considerations lead to a strategy of searching for a tightly tailored grid. 

Before examining these options an analogous heavy atom system should be analyzed. As an 
example of heavy masses, the 13' system is typical. A study of its photochemistry shows that due 
to long range forces the interaction cage is approximately 3 ~ Mohr. A typical momentum for a 
photodissociation energy of 0.1 hartree is p = ../2mE = 200a.u .. This means that a rectangular 
interaction box in phase space requires about 10003h3 or 109 sampling points. This large phase space 
volume requires a different sampling strategy with particular emphasis on the scaling properties of 
the sampling method. The difference between the O(N log N) and the O(N2) scaling makes the full 
matrix transform or other methods unusable. The sampling method therefore has to be based on 
fast transforms. 

Two conclusions can be drawn from the analysis. First, for a particular potential sampling, 
efficiencies close to 1 can be obtained by using a direct matix kinetic energy operator. Second, for 
a large phase space volume with many sampling points, the difference between sampling strategies 
becomes smaller so that fast transforms will be a crucial factor. 

One of the recurring problems in using the Fourier method is the periodic boundary conditions. In 
some cases, such as scattering from a crystal surface, these boundary conditions match the physical 
problem. When a bound state problem is considered, the wavefunction at the boundary should be 
zero. Effectively such a condition is approximated by forcing the wavefunction at the boundary of 
the grid to be deep in the c1a .. ,sical forbidden region. The amplitude of the wavefunction at the 
boundary can thus be made exponentially small. Practically this means devoting some sampling 
points to the classically forbidden region. The extent of this region can be estimated from the 
semiclassical tunneling formula: 

(56) 

where the buffer region extends from I to L with E as a typical energy. These boundary conditions 
fit the view of a wavepacket which becomes exponentially close to a band limited function with 
finite support. Absorbing boundary conditions are also extremely i~nportant. Like the bound state 
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boundary conditions they reduce t.he amplitude of the wavefunction at the end of the grid to zero. 
More extensive treatment of t.his method can be found in chapter [19]. 

One of the methods to minimize the computational effort is the use of an adaptive grid - a 
grid which changes as the calculation progresses. For example, in a reactive scattering calculation 
for the initial state rf'presentation it is sufficient to include only the ent.rance channel; when the 
wavepacket evolves t.o sample more of the grid then include the reactive channel. The ke~ element 
in this program is an int.erpolation scheme which allows grid-to-grid transfer of the wavefunction. 
Optimal positioning of the wavefunction is then possible. The collocation method in general and the 
Fourier method in particular are capable of extremely accurate and efficient interpolation besides 
their intrinsic advantage in the representation of non local operators. A similar concept makes use 
of the superposition principle to split the propagation onto two overlapping grids. This method 
allows the separat.ion of the asymptot.ic dynamics from the interaction part. Care must be taken 
t.hat the transmission of amplitude fr01l1 one grid to the other is gradual in space to avoid numerical 
problems of overflowing phase space by a sharp transmission function. 

11. Summary 

The Fourier met.hod has many advantages as well as some drawbacks. Its success in many molecular 
applications is due mainly to its easy implementation and interpretation. For almost all I-D and 
2-D quantum dynamical calculations one can use an almost generic construction. The Cartesian 
structure allows a direct interpretation just by inspecting snapshots of the wavefunction either in 
coordinate space or in momentum space. With its correct use i.e. not violating the wavepacket 
properties of the wavefunction, the Fourier method has extremely high accuracy compared to almost 
all other methods. Due to th<' exponential convergence the price paid for this accuracy is not high 
in computational effort. This accuracy allows the method to be used to calculate isotope effects in 
tunneling where absolute accuracy of 12 digits is necessary. 

In multi-dimensional calculations representation strategy becomes much more involved and com­
putational efficiency becomes a major factor. Except for surface scattering where the Fourier method 
is the method of choice it seems that a mixed representation strategy on non-Cartesian coordinates 
might be the optimal method. 
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