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Abstract

In this thesis we explore chemical reactivity of energetic materials from an
atomistic viewpoint. Despite decades of research, some prominent open
questions in the fundamental chemistry of materials under extreme conditions
are yet to be resolved. Continuum theories neglect the discreteness of matter
and so are approaching their limits. Experimental techniques are limited in their
resolution under the extreme conditions that prevail during energetic materials
decomposition. Thus, it is our aim to reveal, using atomistic computational
methods, the interplay between molecular structure and material performance.

We develop new descriptions of chemical reactivity in the form of
reactive force fields based on quantum chemical calculations, and use them in
molecular dynamics simulations. The simulations are applied to several kinds
of complex, condensed phase systems to explain key unsettled phenomena.
Specifically, (I) in Chapter 3 we study the effects of the molecular environment
on the initiation of explosion in nitro aromatic solid explosives; In addition, a
parallel study concentrates on the liquid phase (Appendix A); (II) in Chapter 4
we employ novel simulation methods to predict how the decomposition of an
emerging improvised explosive - FErythritol tetranitrate, is affected by
nanometre-scale crystal imperfections. We arrive at the complete decomposition
mechanism in the neat crystal phase and in the defected crystal. The defects
substantially enhance the reactivity of the explosive through mechanochemical
routes. Further calculations and experimental measurements did verify parts
our work (Appendix B); (III) in Chapter 5 we propose a theoretical model,
based on reactive molecular dynamics simulations, to explain major
experimental findings of a recently developed laser based mass-spectrometry
technique. The model links between the laser and analyte parameters and allows
to tune the experimental parameters to achieve better performance; (IV) in
Chapter 6 we develop a new reactive force field for a liquid explosive —
Hydrazoic acid, and use it to characterize its decomposition sequence. Excellent
agreement is reached between our model and significantly more costly, tight-
binding DFT model; (V) lastly, in Chapter 7 we develop an enhanced particle
swarm optimization algorithm by augmenting the equations of motion with
isotropic Gaussian mutation operators. The new method shows superior
performance compared to several global optimization algorithms with respect
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to non-linear, multimodal benchmark functions. The algorithm is implemented
in a standalone C+4++ numerical package and can be used to effectively train

ReaxFF reactive force fields.
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Chapter 1

Introduction and outline

In the fleeting moment of a high-explosive's detonation, the resulting detonation
wave produces a pressure 500,000 times that of the Earth's atmosphere, it
travels as fast as 10 kilometers per second, and the internal temperatures of
shocked material could reach up to 5000K. The traditional theoretical
description of detonation propagation is provided within the Chapman-Jouguet
(CJ) theory, based on the assumption of an instantaneous transformation of
explosives into decomposition products in the detonation wave front. The
prevailing theory of Zel'dovich-von Neumann-Doring (ZND) appeared as an
extension to the over simplified CJ model. In the ZND model, the
transformation mechanism of parent explosive material into decomposition
products proceeds by a combustion of a layer of finite thickness of shock-
compressed explosive behind the shock front with the velocity of the front.
However, some experimental findings turned out to be inconsistent with the
theory. The independence of the width of the reaction zone on the detailed
structure of an explosive (i.e. particle size, single crystal or cast, type of filler
materials, and states of matter) is a prominent example.

Under the extreme conditions present during a detonation, continuum
theories, such as CJ and ZND models, are limited in their predictive power,
since they ignore the essential discrete nature of matter. An especially
fundamental challenge of hydrodynamic theory emerges where the theory
approaches its limits, namely on the scale where continuum concepts break
down. Local thermodynamic equilibrium assumes that the macroscopic fluid
variables do not change much over molecular length and time scales, a clearly
oversimplifying assumption. The chemical reactions and material
microstructure is of considerable importance in understanding processes that
these materials experience under impact and detonation conditions. The
generation of hot-spots[1], crystal orientational sensitivity anisotropy[2], and
the coupling of shocks with molecular systems|3] are only a few examples where
basic understanding is missing and continuum models are mainly
phenomenological and largely questionable[4-6]. The structure and dynamics of
every explosive molecule is fully determined by its electronic structure and
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specific arrangement inside the crystal. The necessity to account for the finer
scales is now evident, however hydrodynamic theory alone fails at this quest.
Hence, a fundamental understanding that is based on molecular level processes

underpinning continuum phenomena is highly desirable.

Advances in the experimental and theoretical understanding of chemical
kinetics at high pressures and temperatures extended the basic theory of ZND.
Dlott et al.[7, 8], have developed a model describing the flow of energy in a
shocked solid consisting of large molecules. They used it to gain fundamental
understanding of secondary explosives chemical initiation mechanisms under
shock strengths characteristic of accidents. Tarver[9], in his qualitative
extension to the hydrodynamic theory accounted for vibrational excitation
processes that precede, control the rates of, and follow the chemical reaction
sequence in a detonation. Smirnov and Dremin[10] studied the influence of
energy transfer mechanisms to internal degrees of freedom in detonation waves.
They showed, using molecular dynamics simulations that the shock and
detonation structure depends strongly on the vibrational spectra and normal
modes of the molecules.

Current understanding of detonation at the molecular level remains
mainly qualitative and no molecular theory of detonation has been put
forward[11]. Just before detonation is initiated, burning fronts travel at a
velocity of several hundred meters per second, while at the same time, the
respective time-scales of atomic vibrations in decomposing molecules are on the
order of ~10%%. Although first-principles theoretical methods can accurately
predict ground and excited state properties of an explosive molecule, they are
typically limited to <1ps simulation time for small isolated systems. So a central
question is whether a theoretical method can reliably account for several
important time and length scales? And precisely, what are the requirements for
an accurate molecular description of the chemistry that governs an explosive's
material response towards thermal, mechanical or electromagnetic stimuli? In
this thesis, we attempt to answer these questions by developing and validating
reactive descriptions of chemical dynamics in extreme conditions at atomic
resolution. ReaxFF reactive molecular dynamics simulations provide, to date,
the only access to chemical reactions in the bulk. We note that the simulations
make no approximations other than the ones implied in the interatomic
potentials and the fact that the dynamics of the atoms is purely classical. For
example, no approximation is made as to what type of chemical reaction can or
cannot occur; complex phenomena such as pressure effects, multi-molecular

reactions and relaxation processes.

Thus, it is our aim to unravel, at the molecular level, the initiation
mechanisms, detailed decomposition pathways, kinetic rates at high-pressure

and temperature and the strong links between materials microstructure and
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chemical reactivity. Specifically, we develop first-principles based reactive force
fields in ReaxFF formalism and optimize them to reproduce extensive sets of
accurate density functional theory (DFT) calculations. The training datasets
include key molecular configurations and energy barriers pertaining to both
ambient and possible high-energy conditions. Remarkably, with a balanced
training set of DFT data together with a proper fitting of all relevant force field
parameters, a near quantum chemical accuracy is achieved in simulating
systems with over 10° atoms and for long durations (>100ps). In addition, a
new method for efficient global optimization of reactive force fields and general
multidimensional, highly nonlinear problems is proposed and validated.

The methods developed in this thesis are employed to tackle some
challenging open questions concerning the behavior of bulk chemical systems
under extreme conditions. It is our aim to contribute to the development of a
fundamental understanding of hydrodynamic phenomena from atomistic-scale
simulations to bridge the time- and length-scale gaps of ab initio methods.
Specifically, we devoted our efforts to (I) elucidate prominent experimental
contradictions in the decomposition sequence of aromatic high-explosives
(Chapter 3); (II) study the effects of nm-size spherical voids in crystalline home-
made explosives on the chemical reactivity (Chapter 4); (III) offer a novel
theoretical model to reveal the physical mechanism that governs a recently
developed experimental technique of laser-assisted mass spectrometry (Chapter
5); and (IV) predict the kinetics and thermodynamics of detonating liquid
explosive (Chapter 6). Finally, we have developed an efficient algorithm for

global optimization of reactive force fields based on swarm intelligence (Chapter

7).



Chapter 2

Theoretical background

“Given for one instant an intelligence which could comprehend all the forces by which
nature is animated and the respective positions of the beings which compose it, if
moreover this intelligence were vast enough to submit these data to analysis, it would
embrace in the same formula both the movements of the largest bodies in the universe
and those of the lightest atom; to it nothing would be uncertain, and the future as the

past would be present to its eye.” Pierre Laplace, 1812

2.1 Molecular dynamics simulations

2.1.1 Introduction

Computer simulation methods have become a very powerful tool to solve the
N-body problem in physics and chemistry. The traditional numerical methods
for these systems can be divided into two classes of stochastic and deterministic
simulations, which are largely covered by the Monte Carlo (MC) method and
the molecular dynamics (MD) method, respectively. MD methods are governed
by the system’s Hamiltonian and consequently Hamilton’s equations of motion
(Eq. 1) are integrated to move particles to new positions and to get new

velocities at these new positions.

o o
Pi 2q; ' i op;
(1)

This is an advantage of MD simulations with respect to MC, since not only is
the configuration space probed but the whole phase space which gives additional
information about the dynamics of the system. Both methods are
complementary in nature but they lead to the same averages of static quantities,
given that the system under consideration is ergodic and the same statistical
ensemble is used. MD simulations always require a model for the interaction
between system constituents. This model has to be tested against experimental

results, i.e., it should reproduce or approximate experimental findings like
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distribution functions or phase diagrams, and theoretical constraints, i.e. it
should obey fundamental laws like energy conservation. Modern interaction
models, popularly called “force fields”, are established from approximate ab
initio treatments using more accurate methods like DF'T and post-HF methods

and are expected to reproduce them to some desired accuracy.

The ingredients of an MD simulation are threefold: (I) a model for the
interaction between system constituents (atoms and molecules) is needed.
Often, it is assumed that particles interact only pair-wise, which is exact e.g.
for particles with fixed partial charges; (II) an integrator is needed, which
propagates particle positions and velocities from time ¢ to ¢+dt. It is a finite
difference scheme which moves trajectories discretely in time. The time step,
dt, has to be properly chosen to guarantee stability of the integrator, i.e. there
should be no drift in the system’s total energy; (III) a statistical ensemble has
to be chosen, where thermodynamic quantities like pressure, temperature or the
number of particles are controlled. The natural choice of an ensemble in MD
simulations is the microcanonical ensemble (NVE), since the system’s
Hamiltonian without external potentials is a conserved quantity. Nevertheless,
there are extensions to the Hamiltonian which also allow to simulate different
statistical ensembles.

An important issue of a simulation is the accessible time- and length-scale
coverable by microscopic simulations. It is clear that the more detailed a
simulation technique operates, the smaller is the accessibility of long times and
large length-scales. Classical molecular dynamics approximates electronic
distributions in a rather coarse-grained fashion by putting either fixed partial
charges on interactions sites or by adding an approximate model for polarization
effects. In both cases, the time-scale of the system is not dominated by the
motion of electrons, but the time of intermolecular collision events, rotational
motions or intramolecular vibrations, which are orders of magnitude slower than
those of electron motions. Consequently, the time step of integration is larger
and trajectory lengths are of order 10% and accessible lengths of order 10-10%A.

Classical molecular dynamics methods are nowadays applied to a huge class of
problems, e.g. properties of liquids, defects in solids, fracture, surface properties,
molecular clusters, energetic materials and biomolecules. Due to the large area
of applicability, simulation codes for molecular dynamics were developed by
many groups. Among them, which are partly available free of charge, are
CHARMM][12], NAMDI[13], NWCHEM]|14] and LAMMPS[15]. The MD results
presented in this thesis were carried out with the freely available LAMMPS
package.



2.1.2 Fundamentals of molecular dynamics simulation

The time evolution of an atomic system is typically determined and described
by Newtonian equations of motion. This constitutes a set of 3N second-order,
nonlinear, coupled partial differential equations for the coordinates of all of the
atoms. Apart from conserving total energy and linear and angular momentum,

the equations are time reversible.
Statistical ensembles:

The time evolution can likewise be thought of as a trajectory through phase
space of 6N dimensions in which there is an axis for every position and every
conjugate momentum. For classical systems, the energy is conserved and the
phase space trajectory adheres to a surface of constant energy. Systems that are
ergodic and able to reach equilibrium are able to fully explore all parts of phase
space that have the same energy as the constant total. That is, the trajectory
of an ergodic system will visit all points in phase space on the constant energy
hypersurface with equal probability. Technically, in an MD simulation, it is
impossible to explore exhaustively all accessible regions of phase space.
However, we can explore a subset of the accessible regions that are statistically
identical or that are representative. In this sense, the simulation can be ergodic
and reach equilibrium. The succession of states generated in MD simulation are
in accordance with the distribution function for the microcanonical ensemble
(NVE). If we wish to study other ensembles, i.e. systems at constant pressure
or temperature, it is possible to invent a kind of equation of motion, i.e. a means
of generating, from one state point, a succeeding state point (will be described
in sections 1.1.3-1.1.4). Such an equation should satisfy three conditions: (I) the
probability density for the ensemble of interest should not change as the system
evolves; (IT) any reasonable starting distribution should tend to this stationary
solution as simulation proceeds; (IIT) we should be able to argue that ergodicity
holds. If these conditions are met, we should be able to generate a succession of
state points which, in the long term, are sampled in accordance with the desired
probability density (constant NVT, NPT, etc.). In these circumstances, the
ensemble average will be equal to the time average of the property under

consideration.

Time integration:

To generate dynamics, a time integration scheme is used to update the atomic
positions and velocities in a discretized form of Newton’s equations using a small
enough time step. Consider a Taylor expansion of the position vector in time

increments Ot:



dr(t) dzr(t) d’r(t)
r(t+ 6t) =r(t) + 76 e S5t + 6d =6t +0(6t*)
f(t )&2 3r(t)

6dt3

=7r(t) + v(t)ét + 5t3 + 0(6t%)

Similarly,

@, _d’r(®)

r(t =60 =r(®) —v(O)st + 7> odi?

——=6t3 + 0(8t%)
(3)

Adding these two equations together and moving the r(t — 8t) term to the RHS
yields:

r(t + 6t) = 2r(t) —r(t — 6t) + UG )&2 + 0(6t%)

(4)

This last equation forms the basis of the Verlet algorithm for molecular
dynamics. The system is propagated forward in time by a time step 8t. To do
so, we use the positions at the previous two time steps as well as the forces at
the current time step. To get the forces, we use the gradient of the potential
energy function (i.e. force field):

d
Fo = - 200
o)

The accuracy of this equation is of order O(8t*). Alternatively, we could use
the velocity to determine the position at the next step. We can approximate
the velocities using:

r(t + &t) —r(t — 6t)
26t

v(t) = + 0(6t3)

(6)

One disadvantage of the Verlet algorithm is that it requires us to store in
memory two sets of positions, r(t + 6t) and r(t). An alternative is the so-called
velocity Verlet algorithm, which is a reformulation of the original algorithm that

uses the velocity directly:

r(t + 6t) =r(t) + v(t)ét + @(Stz
2m

f(t+5t)+f(t)5t

v(t + 6t) =v(t) +
2m

This integration algorithm is one of the most frequently used in molecular
simulations because of its ease of implementation.
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Periodic boundary conditions:

Enforcing periodic boundary conditions (PBC) means that the particles interact
over the boundaries of the simulation volume. This will create a repetition of
the simulation volume in all directions, which approximates an infinite system
(i.e. bulk of a material) typically used to describe crystals. Using PBC just
requires to keep track of the particles inside of the simulation volume. Any
particle position in one of the replicas can be calculated by using the information
about the real particle position. A particle position in one of the replicas,
Treplica, Can be easily calculated by

Treplica = Treal + nL
(8)

where 1,..4; is the particle position in the simulation volume, L the length of the
side of the simulation voume, which for simplicity is assumed to be cubic, and
n is a three dimensional vector with integer components corresponding to in
which replica of the simulation volume that ry.epjicq is in.

A general form of PBC would be that each particle in the simulation volume
interacts with all other particles in the simulation volume and all the particles
in the replicas, including the particle’s own replica. This general case is not
possible in practice. A summation of all particle interactions would be an infinite
sum, making the above approach impossible to implement. Also, the fact that
particles interact with their own replicas will give rise to correlations. In MD
simulations, most of the interactions are short ranged, meaning that most of
the interaction energy arises from interactions with neighboring particles inside
of a cutoff distance, .. A special case of interest is when r, < L/2, leading to
that particles just interact with the nearest replica of the other particles and
never with it’s own replica. Long range interactions need special treatment and
how this is done depends on the system. Another important fact about PBC is
that the simulation volume can be defined to be anywhere in the system of
replicas, without the result of the simulation being changed, but it must have
the same shape and orientation. This is an effect that the infinite system is

periodic over the distance L in the direction of the boundaries.

2.1.3 Controlling the temperature in MD simulation

Different methods were proposed to fix the temperature to a fixed value during
a simulation without allowing temperature fluctuations. In the first method[16],
the velocities are scaled according to p; = /To/T p;, where Ty is the reference
temperature and T the actual temperature, calculated from the velocity of the
particles. This method, called, velocity re-scaling, often leads to discontinuities
in the momentum of the phase space trajectory due to the rescaling procedure.

In a second method, a proportional thermostat tries to correct deviations of the
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actual temperature T from the prescribed one Ty by multiplying the velocities
by a certain factor A in order to move the system dynamics towards one
corresponding to Ty. The difference with respect to the previous method is that
the method allows for fluctuations of the temperature, thereby not fixing it to
a constant value. In each integration step, it is insured that the T is corrected
to a value more close to To. A thermostat of this type is called a Berendsen
thermostat[17]. In the third method, additional degrees of freedom are
introduced into the system’s Hamiltonian for which equations of motion can be
derived. They are integrated in line with the equations for the spatial
coordinates and momenta. The idea of the method invented by Nosé[18] is to
reduce the effect of an external system acting as heat reservoir to keep the
temperature of the system constant, to one additional degree of freedom. The
thermal interactions between a heat reservoir and the system result in a change
of the kinetic energy, i.e. the velocity of the particles in the system. Formally it
may therefore be expressed as scaling of the velocities. Nosé introduced two sets
of wvariables: real and so called virtual ones. The virtual variables are
consistently derived from a Sundman transformation[19] dt/dt = s, where T is
a virtual time and s is a resulting scaling factor, which is treated as dynamical
variable. The transformation from virtual to real variables is then performed as

(Eq. 4):

pi=ms , qi=pi
(4)
The introduction of the effective mass, Ms, connects also a momentum to the
additional degree of freedom, m,. The resulting Hamiltonian, expressed in virtual
coordinates reads (Eq. 5):

N

2 2
H* = E T L U(p) + = 4 gksTlns
£ 2m;s? 2M, B
l:

(5)

where g = 3N + 1 is the number of degrees of freedom in a system of N free
particles. The Hamiltonian in Eq. 5 was shown to lead to a probability density
in phase space, corresponding to the canonical ensemble. The equations of

motion drawn from this Hamiltonian are:

o _m
0t s?
(6)
om; au(p)
ot 0p,
(7)
ds g
o M,



N
om,  1~om  gkgT

ot s3Lam S
=1

(9)

If one transforms these equations back into real variables, it is found[20] that
they can be simplified by introducing the new variable & = ds/dt = s ps/Ms (ps
is real momentum connected to the heat bath)

99; _ pi
at mi
(10)
op; oUu(q)
= - —¢p;
at aql
(11)
dlns _
ot
(12)
98 1 [~op?
- i
at B MS (Zl m; ngT)
l=
(13)

These equations describe the so called Nosé-Hoover thermostat. Several
stochastic methods[21, 22] also exist to control the temperature and pressure

in MD simulations, however these will not be elaborated here.

2.1.4 Controlling the pressure in MD simulation

In order to control the pressure in an MD simulation cell, it is necessary to
allow for volume variations. A simple picture for a constant pressure system is
a box the walls of which are coupled to a piston which controls the pressure. In
contrast to the case where the temperature is controlled, no coupling to the
dynamics of the particles is performed but the length scales of the system will
be modified. In addition, the conserved quantity will not be the system’s energy,
since there will be an energy transfer to or from the external system (piston
etc.), but the enthalpy H will be constant. The Berendsen barostat acts on a
volume change, which may be expressed in a scaling of particles’ positions[17]:
dq; _p;
Bt m, + aq;
(14)

while a change in volume is postulated as

V =3alV
10



A change in pressure is related to the isothermal compressibility xr

_ 1 0V 3a
KV ot krp
(15)
which is approximated as
™ K
(16)
and therefore Eq. 14 can be written as
09; pi K
—=——-——(Py—P
at m; 3Tp( 0 )
(17)

which corresponds to a scaling of the box length and coordinates q = sq and
L = sL, where
KrOt
31p

s=1- (P, — P)

(18)

The time constant Tp was introduced into Eq. 16 as a characteristic timescale
on which the system pressure will approach the desired pressure P,. It also
controls the strength of the coupling to the barostat and therefore the strength
of the volume/pressure fluctuations. If the isothermal compressibility, kr, is not
known for the system, the constant Tp = Tp/ky may be considered as a
phenomenological coupling time which can be adjusted to the system under
consideration. A drawback for this method is that the statistical ensemble is
not known. In analogy to the thermostat, it may be assumed to interpolate
between the microcanonical and the constant-pressure ensemble, depending on
the coupling constant Tp. A second method to control the pressure during MD
simulation is analogous to the Nosé-Hoover thermostat, i.e. one can introduce
a new degree of freedom into the system’s Hamiltonian which controls volume
fluctuations. The idea is to include the volume as an additional degree of
freedom and to write the Hamiltonian in a scaled form, where lengths are
expressed in units of the box length L = V/3, i.e. q; = Lp; and p; = Lm;. Since
L is also a dynamical quantity, the momentum is not related to the simple time
derivative of the coordinates but d,q; = Ld;p; + p;0;L. The extended system

Hamiltonian is then written as

o

2M,

1

N
1T
H* = E —+U(V'3p) + PV
Ve i=12mi+ (V*72p) + PV +
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(19)

where P,, is the prescribed external pressure and m, and My are a momentum
and a mass associated with the fluctuations of the volume. The equations of
motion derived from this Hamiltonian in real variables then gives

aqi _ Pi 1 0V

3t m; 3vord
(20)
dp;  dU(q) 19V
ot aq, 3vack
(21)
v py
at My
(22)
N 2
opv _1(\pi_ V@) _,
at 3V 4 1mi e aql ex
1=
(23)

In the last equation the term in brackets corresponds to the pressure, calculated
from the virial theorem. The associated volume force, introducing fluctuations
of the box volume is therefore controlled by the internal pressure, originating
from the particle dynamics and the external pressure, P,,.

2.1.6 Simulating shock waves in MD simulation

Several methods commonly used to simulate the passage of shock waves in a
material were developed during the years. In reality, shocks are set up in solid
media by either explosive means, or by accelerating a thin flat plate (flyer) to
a high velocity prior to that flyer impacting upon the sample. In MD, it is
possible to recreate the flyer plate experiment by superimposing an additional
uniform velocity upon a subset of the atoms within the simulation[23, 24]. This
method is attractive in that in enables a faithful representation of the
experimental conditions. However, there is a severe drawback. Since, as in the
experiment, a shock is set up at the flyer-sample interface, two shock fronts are
observed; one travelling forward into the sample and another travelling back
into the flyer. Now the shock travelling into the flyer reaches the free surface
at the rear of the simulation and, as in the experiment, is reflected back into
the material as a release wave. Since the release wave is moving into compressed
material, the sound speed is high and this wave will catch up with the shock
travelling forward into the sample, after which time the amplitude of that shock
is eroded. Therefore, of one wishes to observe relaxation effects or chemical
reactions which are much slower than shock traversal time, it will be necessary

to include a large flyer. In an alternative method, the boundaries of the
12



simulation cell are utilized. Here a test is carried out on the motion of the atoms
near to the boundary on one side of the cell. The test examines whether, during
the time covered by that time step, any atom will pass across the boundary.
For any atom where such a motion is predicted, then its position is not updated,
and its velocity towards the wall is reversed, thus creating a momentum mirror
on one side of the simulation cell. The entire set of atoms in the simulation is
then given a superimposed additional velocity in the direction of the momentum
mirror. This causes the atoms to compress up against that mirror, and a shock
then propagates away from the mirror boundary. This method though has been
found to cause peculiar effects of atoms reaching the boundary|[25]. A better
way to introduce a shock wave in a material uses a repulsive potential energy
wall instead of the momentum mirror. In this way a piston is created which
drives into the simulation cell and creates a stationary planar shock wave[24].
Nevertheless, this method cannot account for long time-scale phenomena behind
the shock front since as soon as it reaches the boundary, a reflection wave is
propagating backwards and will cause tension of the shock-compressed material.
Thus, in order to observe chemical reactions for long enough periods of time,
long after the passage of the shock, other methods of shock simulation are
needed. In chapter 4 we present one such method that decouples the time scale
of shock propagation and late chemical evolution in the shocked material.

2.1.5 Empirical potential energy surfaces

Due to the non-locality of interactions in quantum mechanics, the high accuracy
of ab initio molecular dynamics methods comes at a high computational cost.
Brute force approaches to such calculations suffer from the exponential growth
of computational complexity with the number of electrons in the simulated
system. Even with the approximations to reduce computational costs, ab initio
methods do not scale well with the system size; N being the number of electrons,
coupled cluster methods scale as N, perturbation methods as N° and some
localized variants can bring the scaling factor down to N®. On the other hand,
density functional based methods typically scale as N°. Hence, force field
methods that treat the nuclei core together with orbital electrons as a single
entity are more computationally attractive. Since electrons are not treated
explicitly, their roles and effects are approximated by means of approximate

functional forms and parameters.

However, while traditional atomistic force fields are successful in reproducing
features of real systems to varying degrees, they are limited in many respects.
Some of these limitations include: (I) due to specific parameterizations, these
methods are not generic and cannot be used for arbitrary systems; (II) while
this is true for any empirical force field, conventional methods start with the
assumption of static bonds in their target system, therefore they cannot be used
to model reactive systems; and (III) in most atomistic methods, charges are
13



kept fixed throughout the simulation. Although polarizable force fields were
introduced almost two decades ago[26], they have only recently gained
significant attention for modeling charge transfer in empirical force fields[27].
Polarization is achieved either by inducible point dipole methods, or by
fluctuating charge models. Even though polarizable force fields are built upon
their non-polarizable counter-parts, their development still requires considerable
effort since charges are not assumed to be fixed in the target system. This
requires most of the parameters to be re-parameterized.

To bridge the gap between quantum methods and classical MD methods, a
number of models with empirical bond order potentials have been proposed.
These techniques mimic quantum overlap of electronic wave functions through
a bond order term that describes the bonds in the system dynamically based on
the local neighborhoods of each atom. A widely used bond order potential has
been the Reactive Empirical Bond Order (REBO) potential[28]. REBO is built
on the Tersoff potential[29], which was inspired by Abell’s work[30]. REBO was
extended to describe interactions with Si, F and Pt. Like many other bond order
potentials, REBO lacks long range interactions, which are important in
modeling molecular systems. AIREBO was an attempt by Stuart et al.[31] to
generalize REBO to include long range interactions. However, it retained the
fundamental problems in the shapes of the dissociation and reactive potential
curves of REBO. The ReaxFF developed by van Duin et al.[32], is the first
reactive force field that contains dynamic bonds and polarization effects in its
formulation. The flexibility and transferability of the force field allows ReaxFF
to be easily extended for many systems of interest, including organic materials,

semiconductors, ceramics, metal alloys and more.

2.1.6 ReaxFF Reactive Force Field

In classical molecular dynamics, atoms constitute molecules through static
bonds, akin to a “balls and springs” model in which springs are statically
attached. This approach cannot simulate chemical reactions, since reactions
correspond to bond breaking and formation. In reactive molecular dynamics
using the ReaxFF force field, each atom is treated as a separate entity, whose
bond structure is updated at every time-step through the bond order for every
pair of atoms in the system. This dynamic bonding scheme, together with charge
redistribution (equilibration to minimize electrostatic energy) constitutes the
core of ReaxFF. The number of energy terms included in ReaxFF is quite
substantial, and only the bond order (BO) function and the bond energy where
the BO function is employed will be described here. This demonstrates the use
of the BO function and similar procedures are applied to all bonded interactions.
A full description of the energy terms ReaxFF applies can be found in appendix
X.
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The BO between a pair of atoms, ¢ and 7, is the strength of the bond between
the two atoms. In ReaxFF, bond order is modeled by a closed form (Eq. 24),
which computes the BO in terms of the times of atoms ¢ and j, and the distance
between them:

rij bg
BO{j = exp |a, (—)

Toa

(24)

where a corresponds to oo, om or mmw bonds, a, and b, are parameters specific
to the bond type, and 1y, is the optimal length for this bond type. The total
bond order (BO;;) is computed as a summation of to oo, om or mm bonds as

follows:
BO{j = BOL-UJ-’ + BO;T]-' + Bij"'
(25)

The wuse of pair-wise bond order potentials could sometimes lead to
unsatisfactory description of complex bond structures. For this reason, it is
essential to account for the total coordination number of each atom and 1-3
bond corrections in valence angles. For instance, the bond length and strength
between O and H atoms in a hydroxyl group are different than those in a water
molecule. Alternately, taking the example of H atoms in a water molecule,
detach the two H atoms from the middle O atom and put them in vacuum while
preserving the distance between them. Those two same H atoms between which
we do not observe any bonding in a water molecule would then share a weak
covalent bond. These examples suggest the necessity of aforementioned

corrections, which are applied in ReaxFF using the following equation:

BO;; = BO - f1(A;, A7) * fa(A, BO) - f5(4), BOyy)

(26)
Here, A; is the deviation of atom 4 from its optimal coordination number,
f1(A}, 4)) enforces over-coordination correction, and f, (A, BO;;) together with
fs(4}, BO;;) account for 1-3 bond order corrections. Only corrected bond orders
are used in energy and force computations in ReaxFF. Once bond orders are
calculated, the simulation process resembles classical MD. Indeed, in ReaxFF
the total energy of the system is comprised of partial energy contributions as
follows

EReaxFF = Ebond + Esystem + Elp + Eover + Eunder + Eval + Epen + E3—conj
+ Etors + E4—conj + EH—bond + EvdW + ECoulomb

(27)

In Eq. 27, most of the terms are similar to classical MD methods. However, due

to the dynamic bonding scheme of ReaxFF', these potentials must be modified
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to ensure smooth potential energy curves as bonds form or break. For example,

the bond energy is related to the bond order as follows

Epona = =D& " BOJ; * exp[ppes (1 — (Bog-)”bez)] — DZ - BOT, — DI™ - BOT"
(28)

As can be seen from Eq. 28, in ReaxFF the effects of neighboring bonds are
taken into consideration by computing the energy incident on a bond from all
bond order constituents. The higher the bond order, the lower the energy and
the stronger the force associated with the bond. In addition, the function ensures
that the energy and force due to a bond smoothly go to zero as the bond breaks
(i.e. bond order is 0).

2.1.7 Training ReaxFF reactive force fields

Determination of parameters is vital for ensuring the accuracy of any empirical
model. In order for a mathematical model of a molecular system to have
relevance to experimentally observable systems, the parameters governing their
interactions must be chosen such that the model is a reasonably accurate
representation of the reference system. Parameters can be chosen by solving the
constrained optimization problem:

min f (p)

pPEP (29)

where P is the parameter space to be explored, p is a point in the parameter
space and f is a cost function which measures the discrepancy between model
predictions and target data[33]. The parameter space P may be bounded or
unbounded. In the case of bounded optimization, limits are placed on parameter
values, including limits on complex functions of parameter values. If a maximum

value optimizes the model, the problem can be solved by minimizing —f.

The general problem of optimization arises in many different fields from
physical sciences and engineering to social sciences and finance. Different models
and methods for determining the suitability of models lead to a wide variety of
optimization problems. Because of the substantial differences in the
computation costs of the comparison, the size of the parameter space, and the
characteristics of the target function in optimization problems, there are many
methods for obtaining solutions. Target functions for molecular models typically
have certain properties which make the optimization procedure a significant
challenge. The computational cost of a target function evaluation is often very
high. For the specific case of molecular models, the target function is very rarely
a closed, analytic function. Rather, evaluation of the target function involves
simulations of the model followed by comparison of model observations with
those of either experiment or a more fundamental model (such as ab initio
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quantum mechanics in the case of atomistic molecular dynamics or atomistic
models in the case of coarse-grained molecular dynamics). The comparison of
simulation results can be inexpensive, if only single point calculations (e.g.
partial charges, bond orders, energy) are used for tuning.

Unfortunately, gradient-based minimization schemes require that the
derivatives be computed at each iteration step; therefore these methods are not
suitable when the derivative function is not known, may be computationally
expensive to obtain or for which the derivative of the cost function is not defined
at a particular point[34]. The Downbhill Simplex method is a heuristic method
that improves on the gradient method in that it does not require the calculation
of the derivatives[35]. Unfortunately, both the gradient-based and Downhill
Simplex method can only go downhill and thus find only nearby minimum in
parameter space. They are unlikely to find the global minimum in a
multidimensional parameter space as is often encountered in molecular force
fields where the number of dimensions be as high as 100 per chemical element.
Recent approaches to molecular model parameter optimization have included
the usage of gradients of observables with respect to potential parameters[36].
This typically involves the usage of second- and third-order fluctuations of MD
observables in the optimization procedure, which is difficult to determine
precisely. The successive one-parameter search algorithm[26] is another method
that is extensively used to optimize the ReaxFF reactive force field. According
to this method, one particular parameter s in the force field is chosen at a time,
and then a parabolic fit is made between three values of the cost function
against three values for that parameter; one being the initial value, and the
other two being small perturbations ds in both directions, s + §s. The optimum
value for this parameter s is then calculated by minimizing this parabola. The
procedure is then repeated by choosing a different parameter and is continued
until the error no longer decreases. There are several problems with this
algorithm from the point of view of global optimization. Cost functions of high
dimensionality are rarely separable and thus exhibit high degrees of correlation
between parameters. Thus, the procedure has to be repeated along several
rounds over all the parameters to get a converged force field and might require
prohibitively long optimization cycles. Another drawback lies in the fact that
the procedure transforms a global optimization problem into a consecutive set
of local optimization tasks. This means the algorithm can only find a local
minimum in parameter space and that a very good initial guess for the
parameters is necessary, otherwise the resulting force field will behave
unexpectedly. For new systems of interest that have no adequate previous

parameterizations to serve as an initial guess, this could be a formidable task.

In chapter 7, we attempt to overcome the above listed limitations and

present an efficient approach to search for global minima of highly nonlinear,
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multidimensional optimization problems. In addition, we apply it to train the
ReaxFF reactive force field for an improved description of long range dispersion
forces in organic explosive crystals.

2.2 Density functional theory
2.2.1 Introduction

In 1964, the work of Hohenberg and Kohn set the foundations of modern
quantum chemistry methods by three theorems[37]. The first theorem states
that the ground-state electron density uniquely determines the electronic wave
function and hence all ground-state properties of the system. The second one
establishes that the energy of an electron distribution can be described as a
functional of the electron density, while the third one indicates this functional
minimizes the ground state density. This, the problem of solving the many-body
Schrodinger equation is transformed to minimize a density functional. Because
of this complexity reduction, DFT has become increasingly useful for the
understanding and calculation of the ground state density and energy of
molecules, clusters, and solids — any system consisting of nuclei and electrons —
with or without applied static perturbations. Whereas Thomas-Fermi and
Hartree-Fock (HF) theories are intrinsically approximate, their successor, DFT,

is in principle exact.

Wayve function methods are ordinarily preferable when dealing with few-
atom systems (N S5—10) and when high accuracy is required. DFT is
preferable when larger molecular systems are of interest and a more modest
accuracy is acceptable. The key building blocks of traditional methods are
single-electron orbitals 1; and many-electron wave functions ¥, constructed
from them. The key element of DFT is the electron density and, in the Kohn-
Sham formulation, the fictitious single-particle orbitals. An intrinsic limitation
of DF'T is that it depends on the adequate knowledge of the exchange correlation
energy functional, and although more and more accurate forms are constantly
being developed[38-40], there is not a systematic way to achieve arbitrarily high
accuracy. Nevertheless, it remains the method of choice to compute the energies,
geometries, vibrational spectra and reaction barriers of many-electron systems

in chemistry.

2.2.2 Fundamentals of DFT

A system of N nonrelativistic, interacting electrons in a nonmagnetic state is

described with the Hamiltonian
H=T+V+U
(30)

where the above terms are defined as follows (in atomic units)
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(31)
In the above definition, a broad class of Hamiltonians with electrons moving in
an arbitrary external potential v(rj) is considered.

The starting point of DFT is the rigorous, lemma of Hohenberg and Kohn: The
specification of the ground state density, n(r), determines the external potential
v(rj) uniquely,

n(r) - v(r)
(31)

Since n(r) also determines the number of electrons N by integration, it
determins the full Hamiltonian H and hence, implicitly all properties
determined by it: full N -particle ground state wave function, electrical
polarizability, nth excitation energy, vibrational force constants and potential
energy surfaces for chemical reactions.

With the help of this lemma, a variational principle for the energy as functional
of n(r) can be derived[37]. For given v(r) one defines the following energy
functional of n(r):

Eyor [n(r)] = f o()n()dr + Fln(r)]

where
Fn()] = min(W,, (T + V%)
(33)

and the minimum is from among all antisymmetric wave functions Wy, with

density n(r).[Levy, M. PNAS, 1979, 76, 6062] The variational principle holds:

Ev(r) [TL(T)] = Ev(r) [no(r)] =E
(34)

where ny(r) and E are the density and energy of the ground state. The equality
in Eq. 34 holds only if n(r) = ny(r).

By making approximations for F[n(r)], one can easily retrieve the Thomas-
Fermi approximation. However, for most purposes a different approach has
proved to be more useful[41]. We extract from F[n] its largest and elementary
contributions, by writing

n(ryn(r)

7] drdr + E,.[n(r)]

FIn)] = 0]+ [
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(35)

where Tg[n(r)] is the kinetic energy of a non-interacting system with density
n(r), and the next term is the classical expression for the interaction energy.
The remaining E,., the so-called exchange correlation energy, is defined by Eq.
35.

If E,. is ignored, the physical content of the theory becomes identical to that

of the Hartree approximation. It is then no surprise that the Euler-Lagrange

equation associated with the stationarity of E,[n] can be transformed into a
new set of self-consistent (so-called Kohn-Sham) equations:

(—lvz +v(r) + f n(r),

2 |r — 7|

n@) = Y 6O veelr) = 8B [n()]/on(r)
j=1

dr + v, (r) — ej> pi(r)=0

(35)

which differ from the Hartree equations only by the inclusion of the exchange
correlation potential vy (r). The local equations (Eq. 35) must be solved self-
consistently, like the Hartree equations, calculating v, in each cycle with an
appropriate approximation for E,.[n(r)]. It is noteworthy that in spite of the
appearance of simple, single particle orbitals, the Kohn-Sham equations are in
principle ezact provided that the exact E,.[n(r)] is used In other words, the
only error in the theory is due to approximations of the exchange correlation

functional. The ground state energy is given by

E= Z € — lf Mdrdr’ — f Ve (Mn(r)dr + E,.[n(r)]

2 |r — 7|

(36)
where the €; and n are the self-consistent quantities.

The individual eigenfunctions and eigenvalues, ¢; and €, have no strict
physical significant, with one exception: For isolated systems with v(c0) = 0,
the highest eigenvalue, €y, is the negative of the exact, many-body, ionization
potential. To put this theory into practical use, good approximations for E,.

are needed.

2.2.3 Exchange-Correlation functionals

Numerous approximations to the exchange-correlation (xc) energy, Ey.[n(r)],
have been developed. In this section, we will describe some prominent versions
that were used in this work. A more general exposition can be found in Refs.
[42, 43].
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It is common to split the xc functional into an exchange term and a correlation

term, namely

Eye = Ex + Ey
(37)

The xc functionals may depend on several variables, for example, the electron
density, its gradient, or other differential forms constructed from the Kohn-
Sham orbitals

Exc = Exc[p,Vp, ¢]
(38)

The density and orbital variables are often separated into two variables, one for
each type of electron spin, @ and f (i.e. p = pg,pg). Depending on which
variables are contained in the xc functional, the functionals are separated into
different classes. The local density approximation (LDA) is dependent only on
the electron density p. The generalized approximations (GGA) are also
dependent on the density gradient Vp. In this class some known functionals
include the BLYP and PBE forms. The hybrid functionals include a proportion
of HF exchange

v’ —r|

O ([ BB T b ()
%—;f

(39)

using the well-known HF exchange energy expression. Functionals of this type
include the B3LYP, PBEO and CAM-B3LYP forms. A set of relevant
functionals described in the next section.

BLYP: The BLYP functional is a GGA functional dependent on both the
electron density and its gradient. BLYP consists of the Becke functional][44] for
exchange and the Lee-Yang-Parr functional[45, 46] for correlation. The
exchange functional has the correct asymptotic behavior of the exchange
potential for large distances and contains one empirical parameter fitted to
exact energies of noble gas atoms from HF calculations. The LYP correlation
functional is based on the expression for the correlation energy developed by
Colle and Salvetti[45] which has been reformulated into a functional dependent

on the electron density and its second-order gradient.

PBE: The Perdew-Burke-Ernzerhof functional is a GGA functional for both
exchange and correlation[47]. The main idea behind the functional development
is to satisfy exact conditions on the exchange and correlation functionals
important for the energy evaluation rather than fitting parameters to empirical
data. The functional contains no empirical parameters except the LDA
correlation parameters of VWNI48].
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B3LYP: The popular Becke-3-parameter-Lee-Yang-Parr functional is an
admixture of the LDA, BLYP exchange-correlation and HF exchange energy
and it contains three empirical parameters[49]. The inclusion of 20% HF
exchange energy makes it a hybrid functional. In the original paper by Becke,
the PWO1 correlation functional[50] was used in the expression

EZPWOl = ExPA + ag(EYF — EXP) + ayAEY + acAEF™™!
(40)

The parameters ao =0.20 , ay =0.72 and a,=0.81 were fitted to
thermochemical data. Later, Stephens et al.[51] found a slightly better
performance when replacing PW91 with LYP, and the resulting functional is
B3LYP.

The accuracy of this functional has been reported to give an average
deviation in the energy prediction of 3.11kcal/mol on the 148-molecules test set
G2-2[52] by comparing to experimental energies. This deviation is much higher
than the deviation obtained by using G2-theory[52] which gives an average
energy deviation of 1.58kcal/mol. Parts of this set have been used to
parameterize the B3LYP functional[49], thus a comparison using a bigger test
set will give a more systematic estimate for the accuracy. Such a comparison
has been performed by Curtiss et al. who reported an average energy deviation
of 4.14kcal/mol. The B3LYP functional also seems to describe well radical
reactions as Bernardi et al.[53] report that the unrestricted B3LYP functional
gives errors between 9-18% on reaction barriers for open-shell systems consisting
of small hydrocarbon radicals and is superior to unrestricted HF and MP2
methods.

PBEO: The PBEO functional[54, 55] is a hybrid functional based on the PBE

formalism, that contains 25% HF exchange energy,

1
BEPED = BE° + 2 (1 — EP°9)

(41)

It is claimed to contain no empirical parameters as the factor 1/4 in Eq. 41 can

be determined from perturbation theory[56].

CAM-B3LYP: The CAM-B3LYP functional[57] belongs to the class of range-
separated functionals, meaning that the exchange interaction is described by
different mechanisms for short and long inter-electron distances. It is possible

) 1
to write — as
T12

1 _ [t perf(uria)] 1~ [a+ Berf(ury)]

12 12 12

(42)
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where a, f and p are parameters and erf is the error function. The
parameterization allows the partitioning of two different exchange energy

. 1
expressions ELR and ESR, both dependent on —
12

a+p erf(um)) | e <1 —[a+ ﬁerf(mz)])

T2

Ex(ﬁz) = EJZE(

T2

(43)

where ELR is the exchange functional whose importance increases at long range
and ESR is the exchange functional whose importance increases at short range
when a, f and a + 8 take values between 0 and 1. In CAM-B3LYP, the long
range ELR is the exact HF exchange energy and the short range EZR is the Becke
1988 functional. The correlation energy in CAM-B3LYP is described by the
B3LYP correlation contribution. The fitted parameters are a = 0.19, g = 0.46
and p = 0.33ay?, with a, being the Bohr radius. The sum a + 8 determines the
amount of HF exchange at long range which should be equal to 1 for the correct
asymptotic behavior of the exchange potential.

2.2.4 Basis sets

One can coarsely separate basis sets into two types: Slater type orbitals (STO's)
and Gaussian type orbitals (GTO's) which are used to define the wave function.
Using GTO's is a more common practice, which are of the form

f(x,y,2) = Nxtylvzlze=ar? (44)

where the [;'s are integers, instead of the exponential dependence used in
STO's[58]. To approximate the functional form of the STO's (which have the
shape of non-interacting one-electron orbitals), a linear combination of a certain
number of GTO's is carried out, often called a “contraction”. A typical set of
such STO-like orbitals are the STO-nG basis sets[59], where a STO has been
approximated by n GTO's. Another common approach is to separate valence
orbitals and core orbitals (i.e. “split-valence”), as the valence orbitals describe
most of the chemical properties of a molecule. Usually, the orbitals are centered
on the nuclei, as this is the case for the one-electron systems without external
fields. Here we note some characteristics of the most common basis sets used in
this thesis.

6-311 basis sets: These basis sets[60, 61] describe the core orbitals as one
contraction of 6 GTO's, and the valence orbitals as one contraction of 3GTO's
and 2 uncontracted GTO's, thus the name 6-311. More specifically, for 1°' row
atoms, the core 1s-orbital is given as one contraction of 6 GTO's, the valence
2s-orbital and the 3 2p-orbitals are given as linear combinations of 3, 1 and 1
contracted GTO's. The 1s orbital of hydrogen is also described as a linear
combination of 3, 1 and 1 contracted GTO's.
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This set of contracted orbitals is optimized to describe the proper orbitals.
However, some effects are not described properly. The contracted set is not
flexible enough to polarize properly, and we therefore often add such flexibility
by adding another GTO for each atom. The “(d,p)” in 6-311++G(d,p) means
that 5 d-type GTO's (1 per d-orbital direction) have been added to the heavy
atoms, while 3 p-type GTO's (1 per p-orbital direction) have been added to
hydrogen. Another problem with the contracted basis sets is that the
constructed wave function approaches zero earlier than the true wave function
for long distances from the atomic center. In particular anions[62], lone pair
electrons and weakly bounded systems such as hydrogen-bond systems|63] suffer
from this poor description. A correction for describing such systems properly is
then included by adding a flat and broad s-type GTO, also called a “diffuse”
function. Such a function can be added only to the heavy atoms (signified by
one +, e.g. 6-311+G(d,p)) or also to hydrogens (signified by two +'s, e.g. 6-
311++G(d,p)).

Dunning's correlation consistent basis sets: These basis sets were specially
designed for post-HF calculations, in which correlation is better taken into
account than at the HF level[64]. Because they are intended, ideally, to give
with such calculations improved results in step with (correlated with) their
increasing size, they are called “correlation-consistent” (cc) basis sets. Ideally,
they systematically improve results with increasing basis set size, and permit
extrapolation to the infinite basis set limit. The cc-sets are designated cc-pVXZ,
where p stands for polarization functions, V for valence, X for the number of
shells the valence functions are split into, and Z for zeta (split valence). Thus,
we have cc-pVDZ (cc polarized valence doubly-split zeta), cc-pVTZ (cc
polarized valence triply-split zeta), cc-pVQZ (cc polarized valence quadruply-
split zeta), and cc-pV5HZ (cc polarized valence five-fold-split zeta). These basis
sets can be augmented with diffuse and extra polarization functions, giving aug-
cc-pVXZ sets. The cc-pVDZ is roughly comparable in size to the 6-31G(d); the
other cc sets are much bigger. Correlation-consistent basis sets sometimes[65]
but do not necessarily[66] give results superior to those with 6-31G basis sets

that require about the same computational time.
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