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Abstract

A scheme for calculating thermally averaged observables for quantum dissipative systems is presented. The method

is based on a wavefunction with equal amplitude and random phase composed of a complete set of states, which is then

propagated in imaginary time b=2. Application to a Surrogate Hamiltonian simulation of a molecule subject to an

ultrafast pulse coupled to a bath is studied. Compared to Boltzmann thermal averaging the method scales more fa-

vorably with an increase in the number of bath modes. A self-averaging phenomenon was identified which reduces the

number of random sets required to converge the thermal average.

� 2003 Elsevier B.V. All rights reserved.
1. Introduction

Modeling quantum dissipative phenomena re-
mains a challenging problem in condensed matter

physics and chemistry [1]. Among other ap-

proaches the Surrogate Hamiltonian method [2]

has been developed to describe the short time

quantum dynamics of dissipative processes, that

take place on metal surfaces. Recently, the method

was extended to model an ultrafast charge transfer

processes in condensed matter [3,4].
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The method is based on constructing a surro-

gate finite system-bath Hamiltonian, that in the

limit of an infinite number of bath modes repro-
duces the true system dynamics. This is done by

renormalizing the system-bath interaction term in

the Surrogate Hamiltonian. Since within a finite

interval of time, the system cannot resolve the full

density of the bath states, it is sufficient to replace

the bath modes by a finite set. The Surrogate

Hamiltonian, consisting of a finite number of bath

modes, faithfully represents the dynamics of the
observable system for a finite time. This con-

struction is not Markovian and differs from the

Redfield [5,6] or semigroup treatments [7–9].

The use of a finite number of bath modes limits the

length of time in which the dynamics is consistent
ed.
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with that of a ‘‘true’’ infinite bath. This makes the

Surrogate Hamiltonian method well suited for

short time events.

The application of the Surrogate Hamiltonian

method has been practically restricted to the low

temperature regime. For finite temperatures a
Boltzmann average is needed. However, the Hil-

bert space of the total system HS �HB contains

many more states than the Hilbert space of the

primary system alone, HS. Therefore computing

the large number of eigenstates and then repeating

the propagation step for each initial state has

limited the use of the Surrogate Hamiltonian. The

number of eigenfunctions required grows with
temperature, and what is more important, it

grows exponentially as the number of bath modes

increases.

In this Letter we present an alternative scheme

of calculating thermally averaged properties suit-

able for the Surrogate Hamiltonian method. The

method is based on a random phase superposition

of all states in the combined Hilbert space
HS �HB. By averaging a sum of projections of

these superpositions the identity operator can be

reconstructed for any basis set. Applying the

thermal propagator e�b=2ĤH0 to this state, a thermal

wavefunction is produced. This pure state serves as

an initial state for the time propagation and for the

evaluation of the primary system observables.

Averaging of many random phase sets leads to the
thermal averaged observables. For scattering

problems, a thermal Gaussian wavepackets de-

fined by a width which is adjusted to the mean

kinetic energy of a free particle thermal ensemble

has been employed [10,11]. A uniform averaging in

coordinate space would lead to a thermal free

particle density operator [10]. These application

are non-random and are limited to free space. The
random phase vectors have been used before by

[12] in order to calculate the linear response

functions of non-interacting electrons with a time-

dependent Schr€oodinger equation.
The scaling of computation effort with the

temperature and the number of the bath modes is

more favorable for the proposed random method

compared to direct thermal averaging over the
energy eigenstates. Comparable results are ob-

tained by repeating a relatively small number of
propagations. In addition since the random phase

wavepacket can be expanded in any set of states,

the calculation of the energy eigenstates becomes

unnecessary.

The random phase method was tested for the

model of Morse oscillator in equilibrium with an
ohmic bath, perturbed by a short pulse. The ab-

sorbed power and dipole correlation function were

calculated for a relatively high temperature with

an increasing number of the bath modes. The re-

sults obtained from the random phase thermal

averaging were compared with the results from a

direct averaging using the eigenstates of the com-

bined system-bath.
2. Method

2.1. The thermal wavefunction

The initial state of a quantum encounter at fi-

nite temperature is described by the mixed state
density operator

q̂qbð0Þ ¼
e�bĤH0

Z
ð1Þ

with b ¼ 1=kbT , ĤH0 the stationary Hamiltonian

and Z ¼ Trfe�bĤH0g is the partition function. The

density operator is diagonal in the energy repre-
sentation therefore

q̂qb ¼ Z�1
XL
j¼1

e�bEj jwjihwjj ð2Þ

with Z ¼
PL

j e
�bEj , L is the dimension of the Hilbert

space H. Ej is the energy of the jth eigenfunction

jwji. An evaluation of Eq. (2) by direct diagonal-

ization of ĤH0 would scale as OðL3Þ. For a finite

temperature, employing propagation techniques

[13] Eq. (2) can be approximated using only J en-

ergy eigenfunctions jwji with Boltzmann weights

where J is chosen such that e�bEJ � �, where � is the
error. In this case the numerical effort is close to

OðJ 3Þ. In the application of interest, the Surrogate

Hamiltonian, cf. Section 2.2, both L and J scale

exponentially with the simulation time. These

scaling relations are the motivation for seeking an

alternative method for thermal averaging.
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The starting point is a wavefunction composed

of a complete set of eigenfunctions fj/ig with

equal amplitude and a random set of phases ~hh:

jUð~hhÞi ¼
ffiffiffiffi
Q

p XL
k¼1

eihk j/ki; ð3Þ

where
ffiffiffiffi
Q

p
is a normalization constant. The pro-

jection constructed from this wavefunction

jUð~hhÞihUð~hhÞj ¼ Q
X
n;m

eiðhn�hmÞj/nih/mj ð4Þ

connects all states in the Hilbert space. Using the

property of the average of random phases

eiðhn�hmÞ
� �

¼ 1

2p

Z 2p

0

eiðn�mÞh dh ¼ dnm; ð5Þ

the off-diagonal elements of the projection Eq. (4)

can be eliminated. This property is used to obtain

the identity operator ÎI by averaging many realiza-

tions of the projection with different phase sets ~hh:

ÎI ¼ lim
K!1

1

K

XK
k¼1

jUð~hhkÞihUð~hhkÞj
 !

; ð6Þ

where~hhk is the kth realization of the random phase

set ~hh. This identity can be employed to construct
the thermal state by averaging an ensemble of

random thermal wavefunctions

q̂qb ¼
1

Z
e�ðb=2ÞĤH0 ÎIe�ðb=2ÞĤH0

¼ lim
K!1

1

Z
1

K

XK
k¼1

U
b
2
;~hhk

� �����
�

U
b
2
;~hhk

� �� ����
 !

;

ð7Þ
where the random thermal wavefunction becomes

U
b
2
;~hh

� �����
�

¼ e�ðb=2ÞĤH0 jUð~hhÞi: ð8Þ

The advantage of Eq. (8) is that the random

thermal wavefunction can be obtained by propa-

gating an initial random phase wavefunction in

imaginary time b=2. Using this construction a

thermal average of an observable hÂAib becomes

hÂAib ¼ trfq̂qbÂAg

¼ lim
K!1

1

Z
1

K

XK
k¼1

U
b
2
;~hhk

� �
ÂA U

b
2
;~hhk

� �����
����

� � !
:

ð9Þ
The random approach to the thermal-averaged

observable is subject to statistical errors. If the

realizations are statistically independent, the

standard error of the mean value decreases with

the square root of the number of random phase
sets

r2 ¼ kðLÞ
K

; ð10Þ

where kðLÞ takes into account the dependence of

the statistical error on the Hilbert space size L and

temperature T , but does not depend on the num-

ber of random sets K. Using a sufficiently large

number of simulations, kðLÞ can be determined, as
well as the number of random phase sets which are

necessary to achieve a given accuracy r. The de-

pendence of kðLÞ on the system size can be related

to the degree of self-averaging of the observable

[14]. If kðLÞ is a non-increasing function of L with

an increase in system size, the random method will

become more efficient than the direct Boltzmann

thermal averaging.

2.2. Brief review of the Surrogate Hamiltonian

method

The system under study describes a primary

system immersed in a bath. The state of the com-

bined system-bath is described by the wave func-

tion WðR; r1; r2; . . . ; r2M Þ, where R represents the
nuclear configuration of the dynamical system,

and rm the bath degrees of freedom. The station-

ary Hamiltonian of such a combined system is

ĤH0 ¼ ĤHS � ÎIB þ ÎIS � ĤHB þ ĤHSB: ð11Þ
The primary system Hamiltonian takes the form

ĤHS ¼ T̂Tþ VSðR̂RÞ; ð12Þ
where T̂T ¼ P̂P2=2M is the kinetic energy and VS is an
external potential, which is a function of the sys-

tem coordinate(s) R̂R. ĤHB denotes the dissipative

bath Hamiltonian consisting of an infinite sum of

spin modes

ĤHB ¼
X
m

emr̂r
y
mr̂rm; ð13Þ

where em are the representative energy eigenvalues,

and r̂rm are the creation and annihilation operators
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of the representative mode m. More than one ef-

fective bath can be employed, each related to a

different dissipative phenomenon. As an example a

system-bath coupling inducing vibrational dissi-

pation has the form

ĤHSB ¼ f ðR̂RÞ �
X
m

dmðr̂ry
m þ r̂rmÞ; ð14Þ

where f ðR̂RÞ is a function of the system displace-

ment operator. The constants dm are determined

from the spectral density �JJðemÞ:

dm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�JJðemÞ=qðemÞ

q
; ð15Þ

where qðemÞ is the density of states of the bath.

The observables are associated with operators

of the primary system. They are determined from

the reduced system density operator: q̂qSðR̂R; R̂R0Þ ¼
trBfjWðR̂RÞihWðR̂R0Þjg, where trBfg is a partial trace

over the bath degrees of freedom That is, the

system density operator is constructed from the
total system-bath wave function.

The combined system is initiated in a stationary

thermal equilibrium state. The dynamics is in-

duced by an external time-dependent perturbation

ĤH ¼ ĤH0 þ ĤHintðtÞ � ÎIB: ð16Þ
For an excitation by an electromagnetic field,

the interaction is described by the time-dependent

Hamiltonian

ĤHintðtÞ ¼ �l̂l � ÊEðtÞ; ð17Þ

where l̂l denotes the dipole moment operator and

ÊEðtÞ is an external electric field. Any coupling to

the bath degrees of freedom is neglected.
The main idea of the Surrogate Hamiltonian

method is that the infinite bath is replaced by a

finite number of representative modes. Since

within a finite interval of time, the system cannot

resolve the full density of the bath states, it is

sufficient to replace the bath modes by a finite set.

The sampling density in energy of this set is de-

termined by the inverse of the time interval. The
existence of the spectral density points the way to a

convergent method of sampling the bath by a finite

number of modes. The finite bath of M spins is

constructed with a system-bath coupling term

which in the limit M ! 1 converges to the given
spectral density of the full bath. The Surrogate

Hamiltonian, consisting of a finite number of bath

modes, faithfully represents the dynamics of the

observable system for a finite time. Higher order

system-bath coupling schemes describing dephas-

ing have also been developed [3].
2.3. Numerical details

The state of the system combined with the bath

is described by a 2M -dimensional spinor WðR̂RÞ with
M being the number of the bath modes. In the case

of a one mode bath M ¼ 1, for example, the total

wavefunction is represented as a two-component
spinor

WðR̂RÞ ¼ /0ðR̂RÞ
/1ðR̂RÞ

� �
:

The ‘‘0’’ component corresponds to spin down

while the ‘‘1’’ component to spin up. Each spinor

component /mðR̂RÞ is defined on the equally spaced
grid with N grid points. The spinor is bit-ordered,

and for the general M case, the mth bit set in the

spinor index corresponds to the mth two-level-

system (TLS) mode excited where the counting of

bits starts at m ¼ 0. The wave function represen-

tation is designed to perform sums of spin opera-

tors efficiently. The detailed algorithm for applying

the bath operators has already been given for the
general case of an M mode bath [2,3]. The nu-

merical effort scales quasi-linearly ðL log LÞ in the

number of spinor components. The algorithm

contains all possible system-bath correlations it is

also possible to restrict the number of simulta-

neous bath excitations [4].

The primary system is represented by the Fou-

rier method [15], which allows a faithful descrip-
tion of multidimensional systems with arbitrary

potential shapes. The dynamics of the system

combined with the bath is generated by solving the

time-dependent Schr€oodinger equation

jWðtÞi ¼ ÛUðtÞjWð0Þi ¼ e�iĤHtjWð0Þi: ð18Þ

The system observables are determined from the

reduced system density operator

q̂qsðtÞ ¼ TrBfÛUðtÞjWð0ÞihWð0ÞjÛUyðtÞg; ð19Þ



Table 1

The notations used herein

Number of grid points N
Number of bath modes M
Dimension of HS �HB L ¼ N � 2M
Number of eigenstates in the direct

averaging

J

Number of random phase sets K
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where TrBfg denotes a partial trace over the bath

degrees of freedom.

Method A: The numerical implementation of

the algorithm is as follows:

1. The first step is to build the initial random
phase wavefunction WðR̂R;~hhÞ. On each equally

spaced grid point k the wavefunction is assigned

a random value eihk , where hk is a real number,

06 hk 6 2p. Each spinor component is also mul-

tiplied by eihm .

2. The random wavefunction WðR̂R;~hhÞ is propa-

gated for an imaginary time b=2 by the thermal

propagator e�ðb=2ÞĤH0 . The Newton propagation
technique is used [16]. This random phase wave-

packet is normalized, leading to Wðb=2; R̂R;~hhÞ.
3. The thermal random wavefunction is now used

as an initial state for a dynamical simulation

propagated in real time. This includes an ex-

plicit time dependence of the Hamiltonian in-

duced by an external field. The propagation is

cut to short time segments and for each segment
e�iĤHDt is applied. The Chebychev method [13] is

used to compute the evolution operator. For

time-dependent Hamiltonian, the Chebychev

propagator remains stable with a slightly differ-

ent scaling [17].

4. The relevant dynamical observables of the pri-

mary system are calculated.

5. The simulation is repeated, many times, with
different sets of initial random wavefunctions

(steps 1–4).

6. The final step is to average all the results ob-

tained for different sets of random phases.

Method B: An alternative method for obtaining

the random phase wavefunction is based on the

assumption that the eigenvalues of ĤH0 are quasi-

random. A propagation in real time e�iĤH0s for a
random period s, will multiply to each eigenvalue

component by a random phase e�ihk , where

hk ¼Eks.
1. A wavefunction is constructed with equal am-

plitude in all components wðR̂RÞ.
2. The wavepacket is propagated in imaginary

time b=2 by e�ðb=2ÞĤH0 and normalized, leading

to wðb=2; R̂RÞ.
3. The resulting wavefunction is propagated for a

random real period e�iĤH0s, leading to wðs; b=
2; R̂RÞ. The random time is chosen to be on
the same order as the simulation periods

ðs � tsimÞ.
4. The wavefunction is then used as an initial state

for the dynamical simulation where the propa-

gation includes the effect of the external field
e�iĤHDt.

5. The process (1–4) is repeated and averaged.

2.4. Numerical scaling

The required computational resources in CPU

time of the different thermal averaging methods

determines their applicability. The framework for
estimating the numerical scaling of the simulation

is set by the energy range DErange ¼ Emax � Emin

and the time scale tsim. The elementary step of the

simulation is to perform the operation of the

Hamiltonian on the wavefunction / ¼ ĤHw. When

the Fourier method is used for the primary system,

and the Surrogate Hamiltonian method for the

bath, the scaling of this elementary step becomes
OðL log LÞ ¼ Oð2MM � N logNÞ [18] (see Table 1).

The zero temperature simulation will serve as a

reference to the cost of thermal averaging. There

are two steps to the calculation. The first is finding

the lowest energy state. This can be done by

propagation in imaginary time s. It is sufficient

considering the required energy resolution to

propagate to a time scale of s ¼ tsim. The number
of propagation steps would be n � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tsim � DErange

p
[13]. The simulation itself would require a larger

number of propagation steps of the order of

n � 1
2
tsim � DErange [19]. The simulation effort will

therefore scale as: Oð2MMN logNtsim � DErangeÞ or as
OðM2MÞ � Oð2MÞ with the number of bath modes.

For finite temperature the numerical effort of

the direct approach requires obtaining J eigen-
functions and in addition J real time propagations

for a period tsim of each eigenvalue. J is determined
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by the condition that the Boltzmann weight is

smaller than a tolerance e�bEJ =Z � �. Assuming an

even distribution of eigenvalues EJ � DErangeJ=L,
leads to the estimation of J :

J � 1þ�kb logð�ZÞ
DErange

LT : ð20Þ

In Eq. (20) J scales linearly with temperature T
and exponentially Oð2MÞ with the number of bath

modes. If J is small, i.e. J 6 200, the total numer-

ical cost is J times the cost of the zero temperature

calculation. This means that the numerical cost

should scale as Oð22MÞ. When J becomes large the

cost of obtaining the J eigenfunctions overcomes

the cost of propagation. The numerical scaling of
eigenfunction selection becomes proportional to

�J 3, leading to an exponential scaling of Oð24MÞ
with respect to the number of bath modes. This is

the reason that the direct method is practically

restricted to low temperature simulations.

The numerical effort of the random phase

thermal wavefunction method is split into the

computation cost of obtaining the thermal wave-
function and cost of the K propagations of the

wavefunction to obtain the thermal averaging.

Both random method require an initial propaga-

tion in imaginary time s ¼ b=2. The numerical

effort is small compared to the real time prop-

agation for t ¼ tsim. The numerical effort in

randomization by real time propagation is ap-

proximately equivalent to the propagation effort
required in the simulation. s ¼ 10%tsim was found

to be sufficient. This means that the numerical ef-

fort is K times the effort at zero temperature. The

number K can be estimated from Eq. (10) and

depends on the functional dependence of kðLÞ on

L. In the analyzed result (cf. Section 3) it was

found that due to self averaging kðLÞ is a de-

creasing function of L. This means that the nu-
merical scaling of the method with respect to the

number of bath modes becomes equivalent to the

zero temperature case of Oð2MÞ.
3. Results

The illustrative example chosen to test the
methods models a typical simulation of ultrafast
spectroscopy in condensed phases. A molecule

which is first equilibrated with its solvent is subject

to a short EM pulse. In the model the molecule is

described as a Morse oscillator V ðX̂XÞ ¼ Dðe�2aX̂X�
2e�aX̂XÞ where X̂X ¼ R̂R� R̂Req, is linearly coupled to

the dissipative bath. The bath, assumed to be oh-
mic, is described by its spectral density

�JJð�Þ ¼ c�e��=�c : ð21Þ
The dimensionless parameter c determines the

strength of coupling and �c is a cutoff frequency. A

finite bath with equally spaced sampling of the

energy range was used. The primary system pa-

rameters were chosen as D ¼ 0:05, a ¼ 2:0, and

l ¼ 105 (all in atomic units).

To simulate directly the absorption spectrum a
short electromagnetic pulse is applied to the sys-

tem. The corresponding electric field has the fol-

lowing time-dependent form:

EðtÞ ¼ E0 sin
2 pðt � t0Þ

tp

	 

cosðxLtÞ; ð22Þ

where E0 is the electric field amplitude, xL is the

laser carrier frequency, and tp is the pulse duration.
The laser field has the sin2 form. Other pulse

shapes, such a Gaussian resulted in essentially

similar results.
The laser parameters were chosen as E0 ¼ 0:001

a.u. and tp ¼ 1000 fs. The temperature was chosen

to be relatively high kbT ¼ x0 ðx0 ¼ a
ffiffiffiffiffiffiffiffiffiffiffi
2D=l

p
Þ, so

that at least several of the vibrational energy levels

are populated.

3.1. Power absorption

The thermal averaged absorption spectrum was

calculated using the methods described above. A

non-perturbative direct method is employed ap-

plicable to strong or weak fields. The power ab-

sorbed or emitted from the radiation field is given

by the expectation value [20]

P ¼ oĤHint

ot

* +
¼ TrS q̂qS

oĤHint

ot

( )
ð23Þ

To obtain the total energy DE absorbed by a pulse,

Eq. (23) is integrated for the total pulse duration.

By varying the carrier frequency xL of the pulse
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and calculating DE, a spectrum of absorbed energy

vs frequency was obtained.

The bath parameters were chosen as c ¼ 4:0
and �c ¼ 1:5x0 and with a 5-modes bath ðM ¼ 5Þ,
the Surrogate Hamiltonian method converges to a
timescale of the pulse duration.

As a reference, the power was calculated di-

rectly by finding the first J eigenfunctions of H0.

The simulation including the pulse was run for

each eigenfunction and Boltzmann averaged.

For M ¼ 3 and kbT ¼ x0 the required number

of eigenstates J � 30, however, for M ¼ 9 bath

J � 1420.
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The direct thermal averaging results were then

compared with the random phase thermal wave-

function results. The convergence of the absorbed

power with K random phase sets is shown in Fig. 1.

For K > 50 the agreement between two calcula-

tions is quantitatively good. The random nature is
demonstrated in Fig. 2 showing that the statistical

error decreases linearly with 1=
ffiffiffiffi
K

p
. The function

kðLÞ Eq. (10) which measures the self-averaging

property is shown in Fig. 2. The best power de-

pendence fit through the data kðLÞ � Lc is found to

be c � 1
2
, (0:45� 0:09 for kbT ¼ x0). which means

that the observable P is self-averaging.
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3.2. Correlation functions

The dipole correlation function is a more

stringent test since it depends directly on the de-

phasing rate. The dipole autocorrelation function
was calculated using the Surrogate Hamiltonian

without explicitly including the external field

CðtÞ ¼ TrS
�
q̂qSM̂Mg; ð24Þ

where M̂M ¼ l̂l�e�iĤHtl̂leiĤHt and l̂l / X̂X is the actual

dipole function.
Fig. 3 shows the dipole autocorrelation function

calculated by Eq. (24) for finite temperature. The

initial state for the time propagation was chosen as

a random phase thermal wavepacket. Then, the

initial state was operated on by the position op-

erator of the oscillator and then was propagated in

time. The calculations were performed with an

increasing number of the bath modes which pro-
gressively pushed the converged part of the ap-

proximation to longer times. The thermal

averaging was performed using an increasing

number of the random phase sets. Reasonably

accurate results were obtained with K ¼ 100 ran-

dom phase sets.

Fig. 4 shows the the expectation value of the

position X̂X of the oscillator after applying the short
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Fig. 3. The absolute value of the dipole autocorrelation func-

tion for the relaxing Morse oscillator coupled to the ohmic

bath. The dynamics is shown for an increasing number of bath

modes (M ¼ 3; 5; 7). Upper and lower panels correspond to

averaging over a different number of random phase sets (K ¼ 10

and K ¼ 100, respectively).
pulse. The pulse duration was chosen as tp ¼ 500

fs. The bath parameters are the same as with the

previous calculations. The convergence was ob-

tained for a relatively large number of sets.

A comparison of the scaling of the numerical

effort between the direct and random methods is
shown in Fig. 5. The total power absorbed by the

system at xmax was calculated for two different

temperatures and an increasing number of bath

modes. The direct thermal averaging shows the

expected increase in the numerical effort with the

number of bath modes, as well as the increase of

numerical effort with temperature. In particular,

the number of J grows linearly with increasing the
system size L and the temperature T . However, for

a larger number of the bath modes M > 11, the

cost of obtaining the J eigenfunctions should

overcomes the cost of propagation. Thus, the total

CPU time in the direct method will grow as OðL3Þ.
The numerical effort required by the random

phase method depends on the desired accuracy.

The number of the propagations K that are nec-
essary to achieve a given accuracy r depends on

the system size L and the temperature T . Deter-

mining kðLÞ by fitting Eq. (10) to the simulated

data, cf. Fig. 2, we found that KðLÞ decreases with
L as KðLÞ � L�1=2. This means that, in order to

achieve a constant statistical error in the simula-

tion results when the system size L is increased, the
-0.02

-0.01

0.00

0.01

0.02

0.03

0.04

po
si

tio
n 

(a
.u

.)

M=3
M=5
M=7

0 250 500 750 1000 1250
time (fs)

-0.02

-0.01

0.00

0.01

0.02

0.03

0.04

Fig. 4. The expectation value of the position operator vs time.

The dynamics is shown for an increasing number of bath modes

ðM ¼ 3; 5; 7Þ. Upper and lower panels correspond to averaging
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spectively).
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number of random phase sets K is decreased. It

follows that for large system size i.e. a large

number of the bath modes M and for high tem-

perature the random phase simulation will always

require less CPU time than the direct method.

According to Fig. 5 for kbT ¼ x0, the random
method becomes more efficient for M > 6, and

when kbT ¼ 0:5x0 for M > 7. The two alternative

ways for constructing the random wavepacket

gave similar results. The additional computational

effort required in method B to randomize the

phase by real time propagation was found to be

insignificant.

A dominant source of computational error in
the random phase method is associated with the

choice of the initial wavefunction. This wave-

function should consist of equal amplitude of all

the states of the combined Hilbert space

HS �HB. Good results were obtained by choos-

ing an initial wavefunction as a d function in co-

ordinates that is located at the minimum of the

potential while each spinor component has an
equal amplitude and a different phase. The nu-

merical tests also confirm that the actual CPU

times follow the scaling arguments.
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Fig. 5. The numerical effort measured as the number of prop-

agations J or K required for thermal averaging vs the system

size L. The figure relates to the power absorbed at xmax. The

temperatures used were kbT ¼ x0 (squares) and kbT ¼ 0:5x0

(triangles). The solid lines refer to the direct method. The da-

shed lines refer to the number of random phase sets K needed to

obtain the converged results with an accuracy of 1%.
4. Discussion

An interesting issue is the source of the ob-

served self averaging. The numerical tests indicate

that the size of the statistical pool is �K � L, this
means that there is strong self averaging propor-

tional to the number of states in the Hilbert space.

A possible reason is the local character of the

observables which depend only on the primary

systems operators. For sufficiently strong system-

bath coupling we found that the eigenvalue

spacing distribution is Wigner like [21]. For weak

system-bath coupling a Poisson spacing distribu-
tion was found and the self-averaging phenomena

was less pronounced. These issues will be the

subject of future studies.

The Surrogate Hamiltonian method has been

shown to be an effective scheme for simulating

quantum transient phenomena taking place in a

condensed phase environment. The method is ap-

plicable for short time phenomena where the
timescale limits the energy resolution of the

problem. The original construction was limited to

phenomena close to zero temperature. Finite

temperature calculations required averaging a

substantial number of initial states where the

number of these states increased exponentially

with the number of bath modes.

The random phase method, introduced in this
study, obtains converged results for thermally av-

eraged observables by only averaging a small

number of randomly chosen initial states.Moreover

the number of initial states K required to obtain

convergence is a decreasing function of the system

size L for the strong system-bath coupling and de-

creases with temperature. This finding means that

the Surrogate Hamiltonian method has the same
scaling properties for the zero temperature simula-

tion aswell as for the finite temperature simulations.

Moreover the finite temperature simulations can be

run in parallel since each random phase run is in-

dependent of the others. As a consequence, the

Surrogate Hamiltonian method can be applied

practically for moderate temperature simulations,

when the bath modes do not saturate [22].
It should be mentioned that the present thermal

random phase method is not restricted to the

Surrogate Hamiltonian approach. The basic
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construction is representation independent. The

random phase method could be applied almost as

is to numerical simulations of spin-bath decoher-

ence [23]. The method could also be used for

thermal averaging in the multi-configuration time-

dependent Hartree application to dissipative dy-
namics [24].
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