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The finite-time operation of a quantum-mechanical heat engine with a working fluid consisting 
of many noninteracting spin-l/2 systems is considered. The engine is driven by an external, 
time-dependent and nonrotating magnetic field. The cycle of operation consists of two adiabats 
and two isotherms. The analysis is based on the time derivatives of the first and second laws of 
thermodynamics. Explicit relations linking quantum observables to thermodynamic quantities 
are developed. The irreversible operation of this engine is studied in three cases: ( 1) The 
sudden limit, where the performance is found to be the same as that of the spin analog of the 
Otto cycle. This case provides the lower bound of efficiency. (2) The step-cycle operation 
scheme. Here, the optimization of power is carried out in the high-temperature limit (the 
“classical” limit). The results obtained are similar to those of Andresen et al. [ Phys. Rev. A 
15,2086 ( 1977) 1. (3) The Curzon-Ahlborn operation scheme. The semigroup approach is 
used to model the dynamics. Then the power production is optimized. All the results obtained 
for Newtonian engines operating by the same scheme, such as the Curzon-Ahlborn efficiency, 
apply in the high-temperature limit. These results are obtained without the additional 
assumption of proximity to thermal equilibrium, implicitly implied by the use of Newtonian 
heat conduction in the original derivation. It seems that the results of the Curzon-Ahlborn 
analysis are always obtained in the high-temperature limit, irrespective of the details of the 
model. The performance beyond the classical limit is optimized numerically. The classical 
approximation is found to be valid for most of the spin-polarization range. The deviations from 
the classical limit depend heavily upon the specific nature of both the working fluid and the 
heat baths and exhibit great diversity and complexity. 

I. INTRODUCTION also been presented by Salamon et a1.4 

The finite-time performance of engines has been inten- 
sively studied in recent years,’ beginning with the model of 
the endoreversible heat engine presented by Curzon and 
Ahlborn.’ The validity of the results obtained in these stud- 
ies is limited in two respects. 

(I) The working fluid and the heat baths are classical. 
This statement has a twofold meaning: First, the tempera- 
tures are high enough so that the equipartition theorem 
holds, thus making the energy a quasicontinuous quantity. 
Second, all the operators representing observables commute, 
so that interference effects are erased. 

In a previous study, a laser was modeled as a quantum- 
mechanical heat engine, not limited in the above-mentioned 
sense.5 The thermal relaxation dynamics was modeled by 
the semigroup formalism.6 The power of this engine was 
optimized, and its efficiency at maximum power was found 
to converge to the Curzon-Ahlborn efficiency,’ 

TCA = 1 - (TJT,, )“2, (1.1) 
in the classical limit. Furthermore, an intrinsic and pure 
quantum-mechanical source of irreversibility was found to 
reside in the mechanical coupling with the external world. 

(II) The dynamics along the “thermal branches” is 
modeled by phenomenological heat transfer laws. Newtoni- 
an heat conduction, Q = K( T - T’), is by far the most popu- 
lar choice (where Q refers to a heat current, T to the absolute 
temperature, and K to the heat conductivity; primed and un- 
primed quantities are related to the working fluid and the 
heat bath, respectively). Some attention has also been given 
to other heat transfer laws, mainly the linear law of irrevers- 
ible thermodynamics, Q = L( l/T’ - l/7’), and the Stefan- 
Boltzmann thermal radiation law, Q = a( T4 - T’4).3 
Apart from being phenomenological, these laws are valid 
only near thermal equilibrium, thus disregarding the more 
complex relaxation dynamics far from equilibrium. Some 
general bounds on the performance of engines that are not 
limited with respect to the specific heat transfer law have 

A new model of an endoreversible quantum-mechanical 
heat engine is presented in the present study. It belongs to 
the same class of engines for which the relaxation dynamics 
is modeled by the semigroup approach. It differs from the 
previous model in three respects. 
I. The engine cycles mechanically, with an average net work 
production per cycle, rather than being operated continu- 
ously. It is therefore more suitable for comparison with gen- 
eric models based on phenomenological heat transfer laws. 
The problem of simultaneous thermal contact with two heat 
baths is also avoided this way. On the other hand, a steady- 
state algebraic solution does not exist, and one must resort to 
the task of solving the differential equation involved. 
II. The working fluid consists of spin-l/2 systems that, apart 
from being the simplest quantum-mechanical systems, have 
no real classical analog. (The working fluid in the previous 
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model was constructed from two coupled harmonic oscilla- 
tors. ) 
III. The time dependence of the external driving field is con- 
trollable, rather than imposed. 

Three main questions motivate this research. 
1. Are the basic results of finite-time thermodynamics more 
general than their derivations suggest? For example, can the 
Curzon-Ahlborn efficiency be interpreted as a classical limit 
(i.e., a high-temperature limit), independent of how far 
from equilibrium the engine is operated? 
2. Is most of finite-time thermodynamics in its present state 
merely the classical and near-equilibrium limit of a richer 
far-from-equilibrium quantum-mechanical finite-time ther- 
modynamics? If so, how do quantum-mechanical engines 
approach this limit? 
3. In what way does quantum mechanics per se affect the 
finite-time performance of engines? 

We intend to explore these questions by analyzing mod- 
els of quantum-mechanical heat engines and similar devices. 

II. THE ENGINE 
A. General setup 

An engine is defined by its working fluid and cycle of 
operation. In each segment of the cycle the working fluid 
transforms one type of energy into another. The engine is 
carried through the cycle by an external driving force. For 
the spin-l/2 engine under discussion, these three constitu- 
ents are as follows. 
I. A working fluid consisting of many noninteracting spin- 
l/2 systems. 
II. A cycle of the Carnot type, i.e., two isothermal branches 
connected by two adiabatic branches, none of which are as- 
sumed reversible. Throughout this paper “temperature” will 
refer top rather than T, if not stated otherwise (p = l/T, 
where T is the absolute temperature in energy units). Each 
of the spin-l/2 systems is thermally coupled to a heat bath of 
constant temperature /?,, or fl, along the hot or cold iso- 
therms, respectively (fi,, <fi, ). In the present study fl,, and 
fl, are assumed non-negative. 
III. An external time-dependent magnetic field. The field’s 
direction is chosen constant and along the positive z axis. 
The field’s magnitude, however, does change over time, but 
is not allowed to reach zero, where the two energy levels are 
degenerate. 

B. Definitions for energy, work, heat, and temperature 

The yamiltonian of the inteFction between a maget& 
moment M and a magnet& field B is given by H = - M-B. 
For a single-spit sy+stem M is proportional to the spin angu- 
lar momentum S: M =p, where y is the gyromagnetic con- 
stant. Since in our case B is set along the positive z axis and is 
time dependent, the Hamiltonian is given by 
H(t) = - @,B,(t). We define w(t) = r’yB,(~). w is 
positive since y is assumed negative (i.e., S and M are in 
opposite directions). Throughout this paper we refer to w 
rather than B, as ‘*the field.” The Hamiltonian of an isolated 
single spin-l/2 in the presence of the field o(t) is then’ 

H(r) = w(t)S,. (2.1) 

It is important to realize that w, and therefore H, are explicit- 
ly time dependent. We would also like to stress that the non- 
negative temperature and the positive magnetic field as- 
sumptions imply 0 > S> - l/2, where S = (S, ) (our units 
are such that +i = 1). The internal energy of the spin is sim- 
ply the expectation value of the Hamiltonian: 
E=(H) =wS. 

The engine’s operation can be followed through the 
change in the observables of the working fluid. Using the 
Heisenberg picture for the rate of change of an operator one 
obtains 

i=i[HX] +E+Y (X) 9 
at D ’ 

(2.2) 

where YD (X) is a dissipation term, originating from a ther- 
mal coupling of the spin to a heat bath. It will be given expli- 
citly and discussed in Sec. V A. H is the effective Hamilto- 
nian of a spin coupled to a bath. In the weak-coupling limit it 
is substituted by the Hamiltonian of the thermally isolated 
spin given by Eq. (2.1) . We implicitly refer to such a limit 
from now on. ~9 X/at is the result of an explicit time depend- 
ence of X. For obtaining the rate of change of energy we 
substitute X by H in Eq. (2.2), obtaining 

T=;(H) =&(S,) +w(L?,(S,))=&Y+w+& 

(2.3) 
This result is the time derivative of the first law of thermody- 
namics. 5 The instantaneous power is identified by 
P = (a H/at ) = &S, and the instantaneous heat flow is iden- 
tified by 0 = (.YD (H)) = w,!?” The definitions for the 
work and heat inexact differentials then emerge naturally as 

aw= Sdw, (2.4a) 

&?Q = wdS. (2.4b) 
The discussion above refers to a single spin-l/2. The 

energy, work, and heat are therefore given per single spin- 
l/2. This is justified in the absence of spin-spin interactions. 
In such a case, simply multiplying by the total number of 
spins will produce the same quantities for the working fluid 
as a whole. 

The temperature fi’ of the working fluid is always well 
established for given Sand w because, for a two-level system, 
it is always well defined by the following relation: 

S= - 1 tanh(P’w/2). (2.5) 

C. The adiabatic branch 

In the absence of thermal coupling and therefore of a 
dissipation term in IQ. (2.2), the adiabatic dynamics is gov- 
erned by a purely mechanical Heisenberg equation. Since S, 
commutes with H [ Eq. (2.1) 1, S is a constant of the motion 
regardless of the time dependence of w. The von Neumann 
entropy is also constant along this branch since the evolution 
is unitary. [cvN = - tr(P In b), where b is the density ma- 
trix. Here, as in the rest of the paper, we designate the en- 
tropy by a, not to be confused with the polarization 
S= (S,)]. The diagonal entropy (Ok = - X,p, Inp,) is 
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also a constant of the motion. This is because S, and S, do 
not contribute to the diagonal elements of ,?J when it is ex- 
panded in the Pauli matrices in the S, representation. It is 
therefore convenient to assume (S, ) = (S, ) = 0 from the 
beginning. Even if (S, ) , (S,, ) # 0 initially, these nonzero po- 
larizations along the x or-y axes will eventually be suppressed 
by the dissipation terms along the isothermal branches. This 
effective diagonality of p (which also holds for the isother- 
mal branches) implies that no interference effects will ap- 
pear under the assumption of constant field direction im- 
posed on the model. However, the working fluid is still 
nonclassical in the sense that the discrete nature of energy 
remains. Consequently, the adiabatic branches can be re- 
garded as both instantaneous and reversible (i.e., entropy 
conserving), since S is a constant of the motion, irrespective 
of the time dependence of w. 

Increasing w adiabatically enlarges the energy gap be- 
tween the two energy levels. Since S is a constant of motion, 
the populations of the two levels do not change during this 
process. The working fluid’s temperature T' therefore in- 
creases and its energy decreases. No heat exchange is in- 
volved, and increasing w therefore corresponds to the perfor- 
mance of work by the working fluid on the surroundings. 
The reverse process of adiabatically decreasing w corre- 
sponds to the performance of work by the surroundings on 
the working fluid. In both instances the total amount of work 
involved is given by W,, = S( w,. - wi ), where wi and w,- are 
the initial and final values of w, respectively. 

A basic difference exists between the spin-l/2 working 
fluid and a quantum ideal-gas working fluid consisting of 
many noninteracting particles contained in a box: when per- 
forming work on the surroundings, the temperature T' of the 
ideal gas decreases while that of the spin-l/2 increases. This 
is attributed to the following: All the particle’s energy levels 
move uniformly when the volume changes, while the two 
energy levels of the spin-l/2 move in opposite directions 
when w changes. The sign of the spin’s net energy change is 
determined by the change in the lower level (in the non- 
negative temperature case). The adiabatic energy-tempera- 
ture relation of the spin therefore has a slope opposite to that 
of the particle in the box. 

D. The isothermal branch 
For the purpose of the present study it is sufficient to 

discuss only the isothermal branches for which the working 
fluid’s initial and final temperatures are the same and equal 
to P ’ (B ’ is not necessarily equal to the bath temperatureg) . 
Changing w isothermally from an initial value wi to a final 
value w/ involves a total change of the energy E by 

hEis = - +wr tanh(P’w/2) + joi tanh(P’oi/2). (2.6) 

The specific allocation of AE,, to heat and work depends on 
the specific time dependence of w (the latter determines the 
net entropy production). 

Increasing w isothermally corresponds to a decrease of 
the working fluid’s energy by a release of both work and 
heat. It is also accompanied by a decrease in the working 
fluid’s entropy (the opposite is true for the reverse process of 

decreasing w isothermally). Two sources are responsible for 
the total energy change: one is the change in the energy gap 
between the energy levels (i.e., in w), and the other is the 
change in the polarization (i.e., in S). IAE,, 1 is therefore 
larger than 1 hEad 1 for given wi and wr, since the latter in- 
volves the first source only. 

The isothermal process described above differs from its 
ideal-gas analog: Wand Q have the same sign in the former, 
and opposite signs in the latter. The reason for this is similar 
to that discussed in the context of the adiabatic branch. 

E. The reversible cycle of the Carnot type 
The reversible hot isotherm equation is given by 
S= -$tanh(&w/2). (2.7a) 

The reversible cold isotherm equation is given by 

S = - 1 tanh(p,w/2). (2.7b) 
/?,, and/?, are the hot and cold bath temperatures, respective- 
ly. 

The two adiabats connecting those two isotherms are 
given by 

s=s,, s=s,, (2.8) 
where S, <S, by choice, and S, ,S, < 0 since fl, and /3,, are 
assumed non-negative. 

It is most instructive to plot the cycle, whether reversi- 
ble or not, in the (w,S) plane. The reversible cycle in this 
plane is shown in Fig. 1. Note that the reversible cycle is fully 
delined by the values of four parameters: Ph, fi,, S, , and S, . 
The efficiency of this cycle is maximal and is given by 

rl rev = 1 -$Jp,. (2.9) 

III. THE ENGINE’S PERFORMANCE IN THE SUDDEN 
LIMIT 

Operating the spin- l/2 engine in the sudden limit allows 
one to study the irreversible performance without going into 
the details of the relaxation mechanism (cf. Sec. V). Con- 
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FIG. 1. The reversible Carnot cycle (solid line) in the (0,s) plane (w is the 
field and S the polarization). The cycle is composed of two reversible iso- 
therms corresponding to the temperatures flh and fl< (0, > p,, ) and of two 
adiabats corresponding to the polarizations S, and .S, (S, < .S, ; S, ,S, < 0). 
Positive net work production is obtained by going anticlockwise. The direc- 
tions of work and heat flows along each branch are indicated. 
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nections are then established between the quantum-mechan- 
ical engine and similar classical engines. These links will 
guide us in what follows. 

The reversible cycle corresponds to the limit k-+0, 
where w changes very slowly on the time scale of the polar- 
ization thermal relaxation, and therefore maximizes effi- 
ciency. The sudden limit corresponds to the opposite limit of 
h-03, where o changes very fast on the time scale of the 
polarization thermal relaxation, and it therefore leads to 
minimal efficiency. These two extremes delimit the range of 
efficiencies that can be obtained from all the irreversible cy- 
cles going through the same four vertices. 

The sudden limit cycle (1-+1’+2+3-+3’+4-.1) is 
shown in Fig. 2, where the corresponding reversible cycle for 
the same temperatures PC, fi,, and polarizations S, , S, is also 
plotted ( 1 + 2 + 3 -+4+ 1). The cycles share the same adia- 
batic branches since S is constant along them regardless of 
w(t). Both sudden limit isothermal branches are composed 
of two sub-branches: a very fast (i.e., sudden) change of w 
during which the polarization remains constant (I-+ l’, 
3 + 3’)) followed by a relaxation of the polarization at con- 
stant w until thermal equilibrium is attained ( l’+ 2, 3’ -+ 4). 
The former sub-branches are adiabatic since they do not in- 
volve heat transfer. A finite-temperature difference between 
the working fluid and the bath is therefore created. This tem- 
perature difference induces the thermal relaxation in the lat- 
ter sub-branches. The sudden limit efficiency, which is the 
lower bound on efficiency for given PC, fl,, , S, , and S,, is 
obtained by applying Eq. (2.4) and is given by 

%d 

P,, tanh-‘(2S, ) 

fl, tanh-‘(2S,) 
(3.1) 

?&,d is smaller than 7jr,, since IS, I> IS, 1 and greater than 
zero since wq < w1 must hold if the working fluid is to per- 
form work on the surroundings (see Fig. 2). 

The universal entropy production per cycle is given by 
Au,,,,, = - CPh Qh + B, Q, 1, where Q, and Qh are the 
amounts of heat delivered between the working fluid and the 

s2 

Sl 
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cold and hot baths, respectively. In the sudden limit one can 
obtain, using Eq. (2.4)) 

A.a $ = 2(S2 -S,) [tanh-‘(2S2) -tanh-‘(2S,)], 

(3.2) 
which is the upper bound of hoCYcle for given S, and S’, (the 
lower bound is obtained for the reversible cycle: A0 FC,, 
= 0). 

Since the sub-branches 1 --) l’, 3 -3’ merge with 
the adiabats, the performance of the cycle 
1+1’+2-+3-+3’-+4+1 is the same as that of the cycle 
1’-+2-+3’-4-+ 1’. The latter is the spin-l/2 analog of the 
Otto cycle, usually discussed in terms of volume work per- 
formed by a working fluid running through a cycle com- 
posed of two adiabats and two isochores.’ The efficiency of 
an Otto cycle with an ideal gas as the working fluid is given 
by d%o = 1 - ( VJV, )y- ‘, where V, and V, are the con- 
stant volumes along the two isochores ( V, > Vb ). A com- 
parison of the ideal-gas adiabat equation: 
Tn/Tb = (V,/Vb)‘-r, to that of the spin-l/2 system: 
TJT,, = w,/ob, leads by way of analogy to the following 
Otto cycle efficiency for the spin-l/2 engine: 
7:;: = 1 - wq /w, . This is identical, as expected, to vsud 
[ Eq. (3.1) I. The entropy production given in Eq. (3.2) for 
the sudden limit cycle is also identical to that of the Otto 
cycle operating between the same polarizations and for the 
same reason. 

IV. THE STEP CYCLE 

03 (“)4 a2 01 
4 , e I 

3: : .__.__ :2 i 

i-- 3l ‘\, ; I , 1 , , \ 

&;; ” 
‘y-IE, ; 

. . . I \ 0 I , 1’ ‘*, : 
. _ . . _ _ 

P “1 

All the points along the reversible isotherm correspond 
to equilibrium states, while only the two edges of the sudden 
limit isotherm correspond to equilibrium states. The step 
isotherm lies between these two extremes: a finite number, 
N + 1, of equilibrium states (including the edges) are dis- 
tributed along it. A cycle composed of such step branches, 
with an ideal gas as the working fluid, was one of the first 
models analyzed in finite-time thermodynamics by Andre- 
sen et al. lo Each step going from the nth equilibrium state to 
the (n + 1) th equilibrium state involves two substeps: first a 
sudden change of w from o, to w, + , , during which S re- 
mains constant and equal to 

S,, = - 4 tanh(&,/2), 

followed by thermal relaxation of S to its new equilibrium 
value 

FIG. 2. The cycle at the sudden limit (thick solid line) in the (0,s) plane. 
The sub-branches I- 1’ and 1’ -+ 1 converge in reality and were separated 
because of the limitations of the plot. The same holds for the sub-branches 
3 - 3’and 3’- 3. The reversible isotherms at temperatures& andS, are also 
shown (thick dashed lines). 

S n+I = - 4 tanh(&,+ ,/2) 
(p is the temperature of the heat bath). 

Let wo, 64, w~,...,w,,, be the values of the field at the 
equilibrium points along the step isotherm. Such a step iso- 
therm is shown in Fig. 3. w. and @,--the values at the 
edges-are considered as constraints, while 
WI9 w2 ,...,wN _ I are the variables whose value at the point of 
maximum work production we seek. The total work along 
the isotherm is given by 

ON N-l 

w(a, 44 ,-@N- 1 ) = 
s 

Sdw= 1 S,(w,+, -a,,). 
00 It=0 

(4.1) 
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w 

sO 

%J 

FIG. 3. The step isotherm for the case of increasing the field in Nsteps from 
o, to oN (thick solid line). The corresponding reversible isotherm is also 
shown (thick dashed line 1. 

The values of o , ,..., wN- , at the extremum of Wean be ob- 
tained by solving the following set of N- 1 coupled and 
nonlinear equations: 

aw 1 
- = - 
acd, 2 

tanh@,/2) - tanh(&,, _ , /2) 

Pm m+ 112 -&J2 - 
cosh2(/3w,/2) I 

= 0, (4.2) 

where m = 1,2,...,N - 1. Unlike their ideal-gas analog, these 
equations cannot be solved analytically. However, since us- 
ing the equation of state of an ideal gas is equivalent to taking 
the classical limit, the same procedure is adopted for the 
spin-l/2 fluid. Now, spin-l/2 systems do not have a real 
classical limit. They do have a high-temperature limit which 
is usually referred to as “classical” in a loose manner. Taking 
this limit (&.I,, < 1 for every n), Eq. (4.2) simplifies to 

Wnzt1 -mm =w, --0,-l, 

which is readily solved by 
(4.3) 

*In = w. + mhw, (4.4) 
where Aw = (wN - w. )/N. Substituting these values back 
into Eq. (4.1) and taking the classical limit gives W *, the 
extremal value of W at this limit: 

w*= --g/q a,---w,)(o,+~o -Am). (4.5) 
All the results in the remainder of this section refer to the 
classical limit. Note that Aw -+ 0 as N-+ CO, so that 

W* + -+?cob -o;>, 
which is indeed the reversible work performed along the iso- 
therm. 

A step cycle composed of two step isotherms corre- 
sponding to heat baths at temperatures flh and PC (fl,, <PC ) 
and two adiabats S = S, and S = S’, connecting them 
(S, < S’, ) is shown in Fig. 4. Let NC and Nh be the numbers 
of steps along the cold and hot step isotherms, respectively. 
We would like to find the values of NC and N,, at the point of 
maximum work production per cycle, under the constraint 
NC + N,, = N where N, the total number of steps at both 
isotherms, is considered constant. 

S2 

Sl 

FIG. 4. The step cycle composed of two step isotherms at temperatures 8, 
and #I, and two adiabats at the polarizations S, and S, (solid line). The 
corresponding reversible isotherms at temperatures P,, and 6, are also 
shown (thick dashed lines). 

Applying JZq. (4.5) to both isotherms, we obtain the 
following Lagrangian: 

UNoN,) = -+4 (w, -a,) ( 
02 +a, - @2 -@I 

Ntl > 

-$/A( a.4 -0,) 04 +o, - 
a4 - w3 

NC > 

-A(N-NC -N,), (4.6) 
where R is a Lagrange multiplier. The values of NC and Nh at 
the extremum are obtained from the solution of the follow- 
ing equations: 

aL -Ab* --@I )* -= 
JNh N’h 

+A 

-8(S* -s,)*+A=o, 
= AN; 

(4.7a) 

dL 
-= 

JNC 

-Pcb4 -@312 +* 

Nf 

-8(S* -s,)*+A=o. 

= PJf 
(4.7b) 

The solution implies that the point of maximum work pro- 
duction is achieved when the total number of steps, N, is 
distributed in such a way that 

(4.8) 

Andresen et al.” obtained the same result for the ideal-gas 
step cycle as a second-order approximation in l/N, and 
l/N,, , i.e., approaching the reversible operation scheme. For 
the spin-l/2 step cycle Eq. (4.8) is valid at the classical limit 
which does not involve any assumption concerning closeness 
to reversible operation. 

The step-cycle scheme does not involve time explicitly. 
The relaxation period at each step is infinitely long, in princi- 
ple, since equilibrium is only reached asymptotically. How- 
ever, a characteristic finite relaxation time can be defined, 
and in this sense the total number of steps Nmay be regarded 
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as a substitute for the total time period of the cycle. An opti- 
mization of the total work per cycle under the constraint of 
constant N is therefore equivalent to the optimization of 
power. If so, the term (fi,/flc ) “* appears again in the con- 
text of maximum power. [It first appeared in the Curzon- 
Ahlbom efficiency at maximum power, Eq. ( 1. 1 ).] The in- 

teresting question of whether this is a pure incident or not 
will be discussed in the next section. It becomes even more 
interesting if we recall that the step cycle is, in fact, very 
different from the Curzon-Ahlborn cycle. For example, its 
efficiency at maximum power is not at all that given by Eq. 
( 1.1). Instead, it is given by 

?g,“, = (s, +s,,(l-&/p,)+ [G2 -S,)/N][l-(P,/P,)“*l 
* (S, -tS,) + [G2 -W/N][l + (M~c)“*l (4.9) 

The effectiveness of the step cycle at maximum power is giv- 
en by 

wstep 
max 1-L 1 -= 

WE, N 1 - (&J’& ) “* 

x tanh-‘(2S,) -tanh-‘(2S’,) 

tanh-‘(ZS,) + tanh-‘(2S2) * 
(4.10) 

As N- CO the effectiveness approaches 1 from below as l/N. 
The entropy production per cycle is given at maximum pow- 
er by 

A.0 ‘t=f = 
CYLlC 2(s2 y1)’ [(p,/p,,“‘- (pJ/pc)“*]. 

(4.11) 

V. THE CYCLE OF THE CURZON-AHLBORN TYPE, 
BASED UPON THE SEMIGROUP FORMALISM 
A. The equation of motion in the semigroup formalism 

In order to discuss the engine’s performance we must 
solve the equation of motion that determines the time evolu- 
tion of S. This should be done for the case of a spin-l/2 
system coupled mechanically to the given w( t) and thermal- 
ly to a heat bath of temperature p. The inclusion of thermal 
coupling raises the problem of non-Hamiltonian evolution. 
No explicit equation of motion that can claim universal va- 
lidity can be written in such a case. The semigroup ap- 
proach6 provides one pragmatic way out of this dilemma. 
The general scheme is as follows. 

( 1) Assume Hamiltonian evolution of the extended sys- 
tem consisting of the system and the bath. 

(2) Mask the Hilbert space of the bath by performing a 
partial trace and obtain the reduced dynamical map of the 
system: A(t). 

(3) Impose axiomatically the semigroup condition on 
these reduced dynamical maps. The main assumption asso- 
ciated with this condition is Markovity in the following 
sense: A(t, + t2) = A(t, )A(t2). It is then shown that all 
the possible dynamical semigroup maps are generated by an 
equation of motion of a general form which, when given in 
the Heisenberg picture, reads as follows: 

jI = I[H,X] + 5 + T,(X), 

30(X) = c raw: [XV,] + [Vt,,X]V,). (5.1) 
a 

c 

X, V,, VL, and H are operators in the Hilbert space of the 
system. H is the effective Hamiltonian of the system when 
coupled to the bath and may be substituted by the Hamilto- 
nian of the isolated system in the weak-coupling limit. V, 
and Vh are Hermitian conjugates and like Hare not given by 
the theory. ya are phenomenological positive coefficients. 
Equations of the form of Eq. (5.1) were obtained for the 
asymptotic time evolution, in the weak-coupling limit, in the 
singular bath limit, and in several specific cases where the 
reduction scheme can be performed.” 

In our case “the bath” is a heat bath of constant tem- 
perature fl and “the system” is the working fluid. V, are 
chosen to be the spin creation and annihilation operators: 
S, =S,+iS,andS- =S,-zS,,,andH=wS,.Equa- 
tion (5.1) is transformed by this setting into 

jL=iw[S,,X] +y+y+ (S- [XS+ ] + [S- J]S+ ) 

+y- (S, [KS- ] -I- [S, ,X]S- 1. (5.2) 

Substituting X = S, in Eq. (5.2) and taking the expectation 
value results in the polarization relaxation equation, 

s= (ED) = - 2(y+ + y- IS- (y- - y+ 1. 
(5.3) 

If w is constant, y+ and y- are also constants, and the 
solution of Eq. (5.3) is given by 

S(t) =S, + [S(O) -Seq]e-2’Y+ cy-)t, (5.4) 
where 

s =-_1.r--y+ 
eq 

2 Y- +Y+ 

is the asymptotic value of S. This asymptotic polarization 
must correspond to the value at thermal equilibrium: 

S, = - t tanh(&/2). 
Comparison of these two expressions for S’, yields the de- 
tailed balance relation: 

y-/y+ =e”. (5.5) 
y+ and y- must satisfy Eq. (5.5) in order to bring the 
system to the correct equilibrium state asymptotically. A 
second relation is needed in order to determine the specific 
route to the asymptotic target, i.e., the individual values of 
Yt and y- . The dynamical information associated with 
such a relation must be based upon a much more detailed 
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and therefore restrictive model of the bath and of the way it 
couples to the spin system. 

Now, if w is explicitly time dependent, as it is in the 
problem we study, the asymptotic target, i.e., 

S, = - 1 tanh[@(t)/2], 

is also time dependent. In other words, we control S by 
changing w in much the same way we would guide a horse by 
pulling a carrot. This implies an instantaneous detailed bal- 
ance relation that must be satisfied by y + and y _ (now also 
explicitly time dependent) : 

y- /y+ = e*“). (5.6) 
In order to proceed, the specific time dependence of y + and 
y _ must be set. Since y + and y _ are constant for constant 
w, it is natural to suppose that their time dependence stems 
solely from that of o. We assume the simplest possibility 
complying with Eq. (5.6)) that is, 

Y+ = &?@J, y- = ae” + q)&, (5.7) 
where q and a are constant parameters to be obtained from a 
more detailed model of the bath. Since y + ,y _ > 0, a > 0 
must hold. Since for j3- 03, y + +O and y- -+ 00 so that 
y _ /y + = eB”, 0 > q > - 1 must hold. Substituting Eq. 
(5.7) into Eq. (5.3), one obtains 

S= -aeq8”[2(1 +e@)S+ (eS”- l)]. (5.8) 

In Eq. (5.8), w(t) is imposed and S( f) is sought. Since 
w(t) is assumed monotonic, t(w) is a single-valued function, 
so that Scan be written as a function of w, S(w), rather than 
S(t) [S(w) is really the irreversible isotherm]. Now, the 
scheme in the model discussed in Sec. V B runs in the oppo- 
site direction: S(w) is imposed and t(w) is sought. Substitut- 
ing S = cj(dS/do) into Eq. (5.8) and solving fort by sepa- 
ration of variables, we obtain the following expression for the 
total time r it takes the engine to pass from wi to w/ along a 
given polarization path S( w ) : 

t= -’ (dS/dw)do 
oi eqB”[2(1 +eS”)S+eS”- l] ’ 

(5.9) a 
The semigroup heat transfer law is obtained from 

0 = ok [ eq. (2.4b) ] by substituting Eq. (5.8) into it. We let 
/3’ be the current temperature of the working fluid so that 

S= - 1 tanh(P’w/2). 

This results in 

Q = wS = awe@’ 
(,S’d2 _ e(B - W/2)0) 

cosh(fl’w/2) ’ 
(5.10) 

which is very different from any of the phenomenological 
laws treated in the past. This is because Eq. (5.10) is by no 
means limited to the vicinity of equilibrium, Expanding 0 in 
fl’ around fl’ = /3 to the first order in (p ’ - /3) yields the 
corresponding linear law of irreversible thermodynamics 
which applies near equilibrium: 

& 
&gecq + 1/2mJ 

cash (&u/2 ) 
(8’ -8). (5.11) 

The explicit expression for the heat transfer coefficient, 

L = am2ecq+ “*‘@‘/cosh(/3w/2), 

reveals that even near equilibrium L is not at all constant. 
Rather, it depends uponfi and w, which means that L is also 
time dependent. L can be taken as approximately constant 
only if it does not change much within the allowed region of 
p and w. Thus, we see that phenomenological heat transfer 
laws might be sufficient from a practical point of view, but 
are very restrictive from a more general point of view. 

B. The engine of the Curzon-Ahlborn type 
1. The cycle 

The cycle of the Curzon-Ahlborn type is characterized 
in the following way: while thermally coupled to the heat 
bath of constant temperature fl,,, the working fluid’s tem- 
perature is also constant and equalsP ;; and while thermally 
coupled to the cold bath of constant temperature p,, the 
working fluid’s temperature is also constant and equals p r. 
These two irreversible isotherms are connected by two 
adiabats: s=s, and S=S, (S, <S,). Cycle 
1’ -t 2’ + 3’ -, 4’ + 1’ in Fig. 5 is of the Curzon-Ahlborn type, 
while cycle 1 + 2 -+ 3 -+ 4 + 1 in the same figure is the reversi- 
ble cycle operated with the same values offl,, , @,, S, , and S, . 
The efficiency of the cycle of the Curzon-Ahlborn type is 
1 - @;/pi. If the engine is to generate positive power 
0, >/3; >p;, >fi,, must hold. For 0, =p: .P;, =flh the 
reversible cycle is obtained and therefore maximum effi- 
ciency and zero power. For p 5 = p I, we have a short circuit 
and therefore zero power and zero efficiency. We seek, as we 
always do in the Curzon-Ahlborn problem, the values ofp i 
and/3 t, between these two extremes for which the power has 
a maximum. 

2. The power 
The average power per cycle of the engine, P, is given by 

p= - Wtot/(& +th), (5.12) 

where W,,, is the total work per cycle, and t, and t, are the 

co 

3 3’ 2, 2 - - -I- - ---, 

‘,% pc “\\\_ 

P- 

‘%: txk 

c I! 
Pil 

\ \ 

- - _ . - - $. . - - 
4 4’ 1’ 

h 

-___ 
1 

FIG. 5. The cycle l’-2’-3’+4’-1’ is of the Curzon-Ahlborn type. /3; 
and/3: are the temperatures of the working fluid when thermally coupled to 
the hot (fib) and cold (Be) baths, respectively. The values of the field at l’, 
2’, 3’. and 4’ are given by o; = -2tanh-‘(2$)/p;, 
o; = - Ztanh-‘(2&)/~;, o; = - 2 tanh-‘(2$)//3:, and 
o; = -2tanh-‘(2S,)/Bf.Thecycle1-2-3-4-1isthereversiblecy- 
cle operating with the same p,, &, S, , and S,. 
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periods of time the working fluid spends along the cold and 
hot isotherms, respectively. The time spent along the adia- 
bats is negligible since the adiabats are reversible irrespective 
of w( t) (cf. Sec. II C). - W,,, is also the work produced by 
a reversible cycle operating between fi E, and p f . It is ob- 
tained using Eqs. (2.4a), (2.7), and (2.8): 

- wet = (WI, - WS)F(S,,S*), (5.13a) 
where 

F(S, ,S, ) = In 
cosh[tanh-‘(2S2)] 

cosh[tanh-‘(ZS,)] I 

+ 2S, tanh-‘(2S,) - W; tanh-‘(2S,) 
(5.13b) 

is the total entropy input along the hot branch which is equal 
to the total entropy output along the cold branch (en- 
doreversibility). t, is obtained by substituting 
S(w) = - 1 tanh(Bi&2), wi = o; and cur = w; into Eq. 
(5.9). Changing the integration variable to x = fl ;w, we ob- 
tain 

tr, =1 
I 

- Ztmh- ‘(2$) 

2a- Ztanh-‘(2S,) 
[e’““‘(e”“‘-e”)(l +e-“)I -‘dx, 

(5.14a) 

where a,, = PI, /B ;. t, is obtained in a similar manner by 
substituting S(o) = - 1 tanh@:w/2), wi = o;, and 
wJ = w; into Eq. (5.9) and changing the integration vari- 
able to x = B :o: 

t, Z-L 
I 

--Z-h-‘O,S,) 

2a- 2 tanh - ‘(2s;) 
[eqac’(eOLp-eX)(l+e-“)I-‘dx, 

(5.14b) 
where a, = flJ,/p:. For simplicity, the same values of a and 
q are assumed for both hot and cold isotherms. Substituting 
Eqs. (5.13) and (5.14) intoEq. (5.12), weobtain 

P= 
2aF(S,S,) (&--$-) 

1 e - WP e - WhX 
- 

2tanh“(*S*) 1 +e-” epg - e” eahx - e” > 
dx 

(5.15) 

This is the quantity whose maximum as a function ofp: and 
B ; we seek, for given B,, , fi,, S, , and S, . We were unable to 
evaluate the integral in the denominator of Eq. (5.15) (re- 
ferred to from now on as the “time integral”) in closed form 
for the general case. The maximization in the general case 
was therefore carried out numerically and will be presented 
in Sec. V B 4. A complete analytical solution was found in 
the high-temperature limit (the “classical” limit) and will 
be presented in Sec. V B 3. Before we turn to those solutions 
we would like to draw attention to some of the general prop- 
erties of the power function in Eq. ( 5.15). 

( 1) The factor 2aF(S, ,S, ) is a constant in the optimiz- 
ation scheme pursued. It therefore does not have any effect 
on the values ofp ;, and p 5 at maximum power. Note, how- 
ever, that those values are still dependent upon the values of 
S, and S, since the latter appear in the limits of the time 

integral as well. a, on the other hand, appears in the above- 
mentioned factor only and does not affect the values of 0; 
anda I, at maximum power at all. The linear dependence of P 
upon a exhibits a self-evident physical trend. 

(2) t, is a homogeneous function of zeroth order in ,0, 
and pr [Eq. (5.14b)], and so is t, in ph and PI, [Eq. 
(5.14a) 1. W,,, is homogeneous of the first order in pi and 

PI, [Eq. (5.13) I. P is therefore homogeneous of the first 
order in P,, P,, , P 5, and p I,. Maximizing P, for given fit and 
P,,, will therefore provide in a straightforward manner the 
solution for any other /?,, and fi, corresponding to the same 
fib/P, ratio. This property allows for the reduction of one 
degree of freedom (P,, /P, instead of ,L$, and fl, ). It also im- 
plies that the efficiency, 1 -p,i//3;, and time ratio, t,/t,, 
depend on the temperatures ratiofi,,/P, only and not on the 
specific values of fi,, and fi,. 

(3) The integrand of the integrals in Eqs. (5.14) be- 
haves very differently along different regions of the x axis. 
(a) For small x the integrand’s absolute value rises rapidly 
as x decreases. When x approaches 0 from above the inte- 
grand approaches infinity asymptotically like 
l/[ 2(a - 1)x] (a is a, for the cold branch and ah for the 
hot branch). When the engine operates between very small 
polarizations S, and S, , the time integral is evaluated in this 
region. The limit of very small polarizations corresponds to 
that of very high temperatures. This subregion may there- 
fore be referred to as “classical.” We therefore see that P is 
independent of q in the classical limit (i.e., independent of 
the specific model of the bath), and that S, = 0 will cause 
the time integral to diverge (one cannot reach the popula- 
tion inversion threshold in finite time via thermal coupling 
to a non-negative temperature bath). We note that since 
1 tanh - ’ ( 2s) 1 assumes large values only when S is very close 
to - l/2, the classical limit can be expected to have a rea- 
sonable validity over a large polarization range. 
(b) For large x the integrand’s absolute value decreases 
moderately as x increases. When x goes to infinity, it decays 
asymptotically to zero like e - (’ -cQ’)~ for the hot branch or 
e -Q’- q)X for the cold branch. When the engine operates 
between very large polarizations (S, ,S, -+ - l/2), the time 
integral is evaluated in this region, which corresponds to 
very low temperatures and may therefore be regarded as 
“quantum mechanical.” The power clearly depends on q in 
this region. Also note that the time integral converges even 
when S, = - l/2. 

(4) - W,,, converges when S, approaches - l/2: 

lim ( - w,,,) 
-%- -4 

=(-$-2) [ln(2) - 2S2 tanh-‘(ZS;)] 

+ln[cosh(tanh-‘(2S,))]. (5.16) 

The time integral also converges in this limit. A cycle with 
S, = - l/2 (and therefore w; = w; = CO ) can therefore be 
pictured. Such a cycle is constructed out of two isotherms 
and only one adiabat: S = S, (the isotherms meet at 
w = 03 ). We stress again that the cycle in this limit produces 
finite power. 
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. 

3. The maximization of po wer in the high-temperature 
limit 

Substituting S(w) = - $ tanh(p’w/2) into Eq. (5.9), 
we obtain 

P(v) = 

(5.17) 

Each of the terms in the denominator can be approximated 
by e” = 1 + x for /3w,/3’0 ( 1, i.e., in the high-temperature 
limit. We then obtain 

t=$ dw 1 
=4&a-11) 

(5.18) 
2((r - 1)w 

where a = p /fi ‘. The integrand of the time integral in the 
high-temperature limit is identical to its asymptotic form at 
very small polarizations (cf. Sec. V B 2)) which is consistent 
since this is the same limit. Substituting the appropriate wi 
and wr into Eq. (5.18) and replacing tanh - ’ (2S) by 2S 
(since the polarizations are assumed very small), we obtain 
t, and t, in closed form in the high-temperature limit: 

(5.19a) 

t 
h (5.19b) 

Note also that in this limit t, and t, can be written as prod- 
ucts of a common polarization term, In (S, /S, ) , and a tem- 
perature term l/ [ 4a (a - 1) 1. This property is unique to the 
classical limit and implies the independence of the values of 
fl:, 6 i, and t,/th at maximum power from S, and S, . Ex- 
panding to the second-order correction, e” = 1 + x + &x2, 
will wash out this property. From Eq. (5.18) one can also 
obtain the explicit form of o(t), in the high-temperature 
limit, that keeps the working fluid’s temperaturea’ constant 
along the isothermal path: 

w(t) = w(0)e-4”(1-aa)r. (5.20) 

SubstitutingEqs. (5.19) and (5.13) intoEq. (5.12), weob- 
tain the power in the high-temperature limit in closed form: 

,=4aF(S,,W (PS -P;>(Pc -8:)(Ph -8;) 
* ln(S,/S2 1 (BJPh -Px)B:P;, 

(5.21) 
We maximize P by a method similar to that used by Chen 
and Yan.3(a) We first express P as a function of Pf and 
v= 1 -p;/fli,ratherthanof/?randflL asinEq. (5.21): 

p= 4aF(S,,S,) v(& --Pi) [bh --fl:(l -r])] 

ln(sl/s2) (1 -??)flf’[Ph -flc(l -v)] . 

(5.22) 

We then solve (cTP/$? L ) ] I) = 0 to find the value of fl i that 
maximizes P for a given 7: 

P:= 2&Ph (5.23) 

Substituting Eq. (5.23) into Eq. (5.22), we obtain the 
maximum power as a function of efficiency: 

(5.24) 

where rev = 1 -P/J&. 
Chen and Yan obtained a very similar expression for 

Newtonian engines:3’“’ 

P(v) = [(Kh)l/2K$Jlf*]2 rl jh [ 
1 

- --y3,(1-1?) ’ 1 
(5.25) 

where K,, and K, are the Newtonian thermal conductivities 
along the hot and cold branches, respectively. The efficiency 
at maximum power is the same for both models since the v- 
dependent term in the two power functions is identical. It is 
given by the well-known Curzon-Ahlborn efficiency: 

?? max = 1 - (P//p, ) “2. (5.26) 
The values of p ;, and fl f at maximum power are readily 
obtained by substituting Eq. (5.26) into Eq. (5.23): 

P’ “max = & (PC 1 “2 + (Ph 1 “‘P, ’ 

P’ WJ3h (Ph 1 “2 
h’max = & (fl, ) “2 + (,@h ) “‘p, ’ 

(5.27a) 

(5.27b) 

Substituting Eqs. (5.27) into Eqs. (5.19), the time ratio, 
t,/t,, and the cycle period, t, + t, , at maximum power, are 
obtained: 

(5.28) 

I * 

(5.29) 

The average rate of entropy production, 
- (p, Qh + /3, Q, )/( t, + th ), at maximum power is also 

readily obtained in this limit from Eqs. (5.29) and (2.4b): 

2a(S: -S:) 
In (S, IS2 ) 

x [ (&&,)“‘- (flh/p,)“‘]* (5.30) 
The effectiveness, W,,, / W,,, , at maximum power is simply 
given by 

(5.31) 

at this limit ( W,, is the total work per cycle produced by a 
reversible engine operating between the same S, , S, , PC, and 
ph ) . Finally, the maximum power itself is obtained by sub- 
stituting Eq. (5.26) into Eq. (5.24) : 

P nlax = (5.32) 

Thus, in the high-temperature limit, the spin-l/2 engine 
has a power function [ Eq. (5.24) ] very similar to that of 
Newtonian engines [ Eq. (5.25) 1. Its efficiency at maximum 
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power, at this limit, is therefore the same as that of Newtoni- 
an engines, namely the Curzon-Ahlbom efficiency [Eq. 
(5.26) 1. Do these results come about because the semigroup 
heat transfer law turns into a Newtonian heat transfer law in 
the high-temperature limit? This is an important question. 
Indeed, whatever the answer is, a firm relationship had al- 
ready been established by the results obtained so far between 
Newtonian engines and the classical limit of the spin-l/2 
quantum engine. However, a positive answer will also imply 
that the validity of our results is just as limited as the validity 
of the results obtained for Newtonian heat engines. A nega- 
tiveanswer, on the other hand, will suggest that the Curzon- 
Ahlbom efficiency and related quantities are really classical 
limit figures, whose validity is not necessarily limited to 
Newtonian engines. In order to find the answer we take the 
high-temperature limit of 0 [ Eq. (5.10) ] and obtain 

Q=ao’(j?‘-p). (5.33) 

This might appear to be the linear law of irreversible thermo- 
dynamics, which is the same as Newton’s law at high tem- 
peratures, but it is not. This is because u is explicitly time 
dependent and its time dependence is actually governed by 
/?‘?‘Ll. (5.20) 1. Substituting Eq. (5.20) into Eq. (5.33), we 

~=aw2(0)e-*(1--B/B’)r(p’-P). (5.34) 

This reduces to a real linear law only if we add another limit 
besides the high-temperature limit, namely that of /?’ very 
close to,& I/? ’ - /3 I+3 ‘. These two limits must indeed hold 
for Newtonian heat conduction to be valid. The answer to 
the question above is therefore negative. The high-tempera- 
ture limit, “the classical limit,” is the only limit required for 
the Curzon-Ahlbom efficiency to hold, atleast for the spin- 
l/2 engine. Proximity to thermal equilibrium, which is ex- 
plicitly assumed if Newtonian heat conduction is to hold, is 
not necessary. The Curzon-Ahlbom efficiency is therefore 
probably more general than its original derivation’ suggests. 

The time ratio in Eq. (5.28) should also be pointed out. 
It is the same as the number ofsteps ratio at maximum power 
found for the step cycle in the same high-temperature limit 
[ Eq. (4.8) 1. This is quite surprising since the two cycles are 
very different from each other and indeed no other quantity 
associated with maximum power possesses such a similarity. 
If one looks for a relation characterizing the point of maxi- 
mum power for a large class of irreversible Carnot-type cy- 
cles, the time ratio is clearly a better candidate than the effi- 
ciency. 

For a Newtonian engine, the time ratio at maximum 
power was found to be2 

tc/fh = K/,/K,, (5.35) 
where ~~ and K~ are the thermal conductivities along the hot 
and cold branches, respectively. This seems to contradict the 
suggestion raised in the last paragraph, but it does not. Ther- 
mal conductivity has a clear meaning only with relation to 
Newtonian conduction. The closest expression to thermal 
conductivity in the semigroup heat transfer law is apP’co2 
[cf. Eq. (5.33)]. This is not a constant and we therefore 
average it over the whole branch such that 

3063 

s @f 
K= apP’w2dw/(wf - Wi) 

by deflnitiwdn. We then obtain Kh/K, = (,8hp~)/(,8cp~). At 
the maximum power point, 
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(5.36) 

We can therefore conclude that by exploring the phenome- 
nological thermal conductivity by means of a less phenome- 
nological theory we get the same time ratio: 
tc&, = 6$,/p, ) “2, even for Newtonian engines. 

4. The maximization of power in the general case, 
numerical results 

The high-temperature limit performance at maximum 
power depends on the values of/?= and & only. The number 
of free parameters can be further reduced to one, namely 
fib/B, , if we utilize the homogeneous property of the power 
function (cf. Sec. V B 2). Other parameters, besides ph/fl=, 
appear to affect the performance at maximum power when 
we go beyond this limit, namely S, , S, , and q. 

The optimization problem is solved numerically in the 
following manner: For given values of flh, fl,, S, , S, , and q 
the power function [Eq. (5.15)] is evaluated for different 
values of p I, and p f (fl, <j? L <p f < /3, ) , and the values of 
p ;, and /3; at maximum power are sorted out. The main 
numerical effort lies in the evaluation of the time integral 
[the denominator in Eq. (5.15) 1, established by open Che- 
byshev Gaussian quadrature (supplemented by Lagguere 
Gaussian quadrature for the evaluation of the exponential 
tail in the asymptotic case: S, = - l/2). 

The results are exhibited in the following manner: For 
given values of q, S, /S, , and flh /P, we plot the quantity of 
interest at maximum power vs S, (O>S, > - l/2). We plot 
curves corresponding to different values of S, /S, on the 
same figure (0 < S,/S, < 1 ), which is equivalent to scanning 
the allowed region of the (S, ,S, ) plane. The values for 
S, = 0 correspond to the high-temperature limit (which is 
the same as the low polarization limit). 

We define new relative and renormalized variables that 
allow for a quick comparison of the performance in the 
quantum region to the performance in the classical limit. We 
follow these variables as functions of the above-mentioned 
parameters. The efficiency and time ratio at maximum pow- 
er are the most informative quantities and the new variables 
are defined accordingly by 

(5.37) 
where “cl” refers to the value of the same quantity at maxi- 
mum power in the high-temperatures limit, and “max” indi- 
cates that the value of the quantity inside the preceding par- 
entheses is given at maximum power. 

The effect of ph/P, is demonstrated in Figs. 6 and 7, 
where +j and +, respectively, are plotted for different values of 
/3,,/P, and for q = - 0.5. The affect of q is demonstrated in 
Figs. 8 and 9, where, similarly, q and Tare plotted for differ- 
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FIG. 6. +j as a function of S, and S, for 
different values of B,,/P, and q = - 0.5. 

-0.09 I The different curves in each plot corre- 
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spond to different values of S, /S, by the 
following key: (A) -S,/S, =0.113; 
(A) -q/s* =0.350; (0) -s,/s, 
= 0.628; (m) - S, /S, = 0.797; (0) 
- S, /S, = 0.990. Note that the depend- 

ence on the temperature ratio essentially 
amounts to a change in scale. 

-0.5 Sl 0 

ent values of q and for Bh /P, = 0.2. 
The following conclusions can be drawn from the re- 

sults in Figs. 6-9. 
( 1) The relative deviations of the values of 7*=X and 

( f&h 1 max from the corresponding values at the classical 
limit are very minor over most of the polarization range. 
Very large polarizations are required for a significant differ- 
ence to appear. This is attributed to the fact that the function 
tanh - ‘(x) (appearing in the limits of the time integral) 
assumes large values only when x is very close to 1 (cf. Sec. 
V B 2). 

-0.25 
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(2) The sensitivity of +j and ? towards an increase in the 
polarization is lower for higher values of fl,, /PC. This is be- 
cause the maximal value of ar decreases as flh /P, increases 
( 1 < ar <fiC/jJh ), which results in relatively small expo- 
nents in the time integral. The classical approximation is 
therefore more valid for higher polarizations, and the devia- 
tions from the classical limit are therefore smaller. 

(3) Both q and ;i depend heavily on q, i.e., on the specif- 
ic-heat bath. This is qualitatively different from the classical 
limit maximum power performance, upon which q did not 
have any affect (cf. Sec. V B 3 ) . The dependence on q mani- 

-0.15 I 

FIG. 7. ? as a function of S, and S, for 
different values of S,,/flC and q = - 0.5. 
The different curves in each plot corre- 
spond to different values of S, /S, by the 

-0.5 Sl 0 following key: (A) -S,/S, =0.113; 
(A) - s,/s, = 0.350; (0) - s,/s* 
= 0.628; (W) - S, /S, = 0.797; (0) 
- S, /S, = 0.990. Note that the depend- 

ence on the temperature ratio essentially 
amounts to a change in scale. 

q = -0.5 

-0.0024 t 
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J. Chem. Phys., Vol. 96, No. 4,15 February 1992 



E. Geva and R. Kosloffz Quantum-mechanical heat engine 3065 
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o- -0.09L FIG. 8. 9 as a function of S, and S, for 
different values of qand&/B, = 0.2. The 

0 
different curves in each plot correspond to 
different values of S, /S, by the following 

-0.24 -0.3 
-0.5 0 -0.5 

fests itself most astonishingly by a change of sign of +j (be- 
tween q = - 0.2 and q = - 0.3 for ,B,,/P, = 0.2) and + 
(around q = - 0.6 for fl,,/,6c = 0.2). The transition in- 
volves a gradual inversion in order of the different curves, 
corresponding to different values of S, /S,, such that the 
lowest curve becomes the highest and vice versa. This must 
involve curve crossing. The actual behavior in the transition 
zone turns out to involve a temporal loss of the monotonicity 
characterizing the curves before and after the transition 
takes place. 

The origin of this surprising q dependence is exposed 
when we compare the integrand in Eqs. (5.14) for different 

values of q, with its classical limit which is independent of q 
[ Eq. (5.18) I. The absolute value of the integrand will be 
simply referred to as “the integrand” in what follows. For 
4’ - 1 the integrand approaches the classical limit from 
above as x decreases. For q-0 the integrand approaches the 
classical limit from beIow as x decreases. Changing q from 
- 1 to 0 must therefore involve a transition from one type of 

behavior to the other. 
The space under the curve is a measure of the time spent 

along the isothermal path [ Eq. (5.14) 1. This time become 
longer as q decreases since, as has already been seen, the heat 
exchange slows down as q becomes more negative [Eq. 

0 0 

;t ;t 
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-0.8 f 1 
-0.5 S, 0 

0.15 1 t 

;t 

0 

-0.2 4 1 
-0.5 Sl 0 

key: (A) -s,/s, =0.113; (A) 
- s, /s* = 0.350; 0 - s, As* 
= 0.628; (W) - S,/S, = 0.797; (0) 
- s, /s, = 0.990. 

-0.64 J I 
-0.5 0 

0.6 

FIG. 9. i: as a function of S, and S, for dif- 
ferent values of q and @,,/P, = 0.2. The dif- 
ferent curves in each plot correspond to dif- 
ferent values of S, /S, by the following key: 
(A) -&As, =0.113; (A) -s,/s* 
= 0.350; (0) - S,/S, = 0.628; (H) 
- s, /s, = 0.797; (0) - s, /s* = 0.990. 
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(5.10)]. The classical heat flow may therefore be faster or 
slower than the heat flow in the quantum region, depending 
on the value of q. The efficiency and time ratio at maximum 
power are measured relative to their values in the classical 
limit. The sign shift in Figs. 8 and 9 is accounted for by the 
shift in the rate of heat flow relative to the classical limit 
which is associated with the change of q. 

that these two systems differ in many respects13 does not 
seem to make a difference in the classical limit. It is very 
tempting to propose that this result can be generalized to all 
fluids of the “ideal-gas” type (i.e., containing noninteracting 
systems). 

Now, we can also understand why q,,,,, decreases as q 
changes from 0 to - 1 (Fig. 8). The heat exchange slows 
down as q become more negative, Less heat is pumped into 
the engine for a given temperature difference. Increasing the 
temperature difference increases the amount of heat pumped 
in and reduces the efficiency. The net effect is probably that 
of increasing power. Maximum power is therefore obtained 
at lower efficiencies. 

A remark concerning the parameters q and a is in order. 
The parametrization of the bath in terms of q and a chosen 
here is the simplest possible. The physical meaning of q and a 
remains obscure to a large extent. Explicit expressions for 
y + and y _ can be obtained in the weak-coupling limit in 
terms of correlation functions of the bath.6’b’ To this end 
one must solve for the dynamics of the bath. This can be 
accomplished analytically for two bath types, namely the 
harmonic bath (e.g., a radiation field) and the Ising bath 
(e.g., the Heisenberg ferromagnet).6’b’ In the former a 
turns out to be proportional to o3 on account of the mode 
density in three dimensions (3D). The assumption of con- 
stant a is therefore not valid unless a 1D bath is discussed. q 
approaches - 1 for PO k 2 in this case, and is meaningless 
for high temperatures (where it is eliminated from the equa- 
tions anyway). The main physical conclusion that the per- 
formance is affected by the nature of the bath seems to be 
independent of the parametrization used. A better under- 
standing of this phenomenon will be achieved by analyzing 
systems with specific bath models of the two types men- 
tioned above. 

II. Typical results of finite-time thermodynamics, such 
as Eqs. (4.8) and (5.26)) are obtained for quantum-mechan- 
ical engines in the classical limit. Going beyond this limit 
makes both a qualitative and a quantitative difference. 
Quantitatively, the numerical values of the operation param- 
eters at maximum power are not given by the classical ex- 
pressions. Qualitatively, the details of the model, which were 
blurred by the classical limit, now make a difference: 
WC/N, )lm.x will not be the same for two step cycles, one 
with spin-l/2 systems and the other with particles in a box as 
the working fluid; qmaX and ( t,/t, ) max depend on the specif- 
ic-heat bath, etc. This signals the great diversity and com- 
plexity of the field of far-from-equilibrium quantum-me- 
chanical finite-time thermodynamics. The approach of the 
quantum-mechanical engine towards the classical limit re- 
ceived quantitative consideration only for the spin-l/2 en- 
gine of the Curzon-Ahlborn type (cf. Sec. V B 4). The clas- 
sical approximation was found to apply reasonably well for 
most of the polarization range. Replacing the spin- l/2 sys- 
tems with harmonic oscillators results in a time integral of a 
slightly different form [the term ( 1 + e - “) in Eqs. (5.14) is 
replaced by (1 - evX)]. l2 The behavior beyond the classi- 
cal limit is therefore different but the two models converge 
again in the opposite limit of low temperature. The interpre- 
tation is straightforward: most of the population lies in the 
first two levels at low temperatures and the oscillator may be 
regarded as a two-level system. The classical approximation 
also applies reasonably well for most of the oscillator popula- 
tion range. 

(4) The classical equality: ( tc/th ) = 1 - vmax [cf. Eqs. 
(5.26) and (5.28) 1, no longer holds in the general case, since 
? and q respond very differently to an increase in the polar- 
ization. Qualitatively, this results from the different and 
much more complex dependence of the time integral on fl;, 
and p : in the general case [ Eq. (5.15) ] compared with the 
classical limit [ Eq. (5.19) 1. 

Vi. SUMMARY 

III. The discrete nature of the working fluid’s energy 
(where the quantum-mechanical nature of the engine lies, cf. 
Sec. II C) mostly affects the isotherms in the region of large 
polarization. The impact upon the power function lies in the 
time integral. The latter originated from a quantum-me- 
chanical equation of motion for which the discrete nature of 
energy is already built in. We discussed the operation at large 
polarizations in Sec. V B 4. The deviations from the classical 
limit, demonstrated there, are therefore the direct conse- 
quence of the discrete nature of energy, i.e., of quantum me- 
chanics per se. 

In the Introduction, three general questions were pre- 
sented as motivating this research. We conclude by examin- 
ing the extent to which the spin-l/2 model engine provided 
us with answers to these questions. 

Encouraged by the results of the present study, we in- 
tend to pursue the line of research initiated here. The model 
discussed above may be expanded in many directions, a few 
of which are listed below. 

I. All the results of the Curzon-Ahlborn analysis can be 
fully reproduced for the spin- l/2 engine in the classical limit 
(cf. Sec. V B 3). Proximity to thermal equilibrium, implicit- 
ly implied by the use of Newtonian heat conduction in the 
original derivation, is not required. Furthermore, by replac- 
ing the Newtonian conduction with the less phenomenologi- 
cal semigroup relaxation law, new relations appear, such as 
the time ratio in Eq. (5.28). All these conclusions remain 
valid when the spin- l/2 fluid is replaced by a fluid contain- 
ing many noninteracting harmonic oscillators.‘* The fact 

1. The working fluid may consist of other simple quantum- 
mechanical systems. Harmonic oscillators and other spin 
systems may serve as examples. Systems having three or 
more energy levels may be operated as lasers, so that connec- 
tions with the results in Ref. 5 may be established. A com- 
parison between systems differing with respect to the dimen- 
sion of the Hilbert space, the response to changes in the 
external field, etc. (e.g., spin systems vs harmonic oscilla- 
tors) is also of interest. 
2. Objective functions other than power and constraints dif- 
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ferent from those discussed above may be used. We have 
already started studying the performance of the spin- l/2 en- 
gine when operated so as to minimize the entropy produc- 
tion. The more difficult task of finding the optimal path by 
the methods of optimal control theory is also of interest. 
3. The magnetic field may rotate. This should impose new 
quantum-mechanical effects originating from the noncom- 
mutability of the observables and is important for engines 
driven by a radiation field. 
4. The specific nature of the bath has a pronounced effect in 
the quantum-mechanical region. It seems that in order to 
understand it better more specific models for the baths, con- 
taining more physical essence, should be used. The effect of 
allowing baths with negative temperatures should also be 
studied. 
5. Internal interactions within the working fluid may be in- 
cluded. For example, in the case of the spin-l/2 engine dis- 
cussed above this can be accomplished by an Ising model. 
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