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A detailed and unified account of the theory of the generalized Bloch equations is presented. The
equations apply to a two-level system weakly coupled to a heat bath and subject to a monochromatic
rotating field of arbitrary intensity. The relaxation tensor obtained is explicitly field-dependent. The
derivation is valid for general coupling to a quantum heat bath. The generalized Bloch equations are
shown to be thermodynamically consistent, as opposed to the standard Bloch equations. Different
limits of the generalized Bloch equations are examined and related to previous studies. The potential
use of the generalized Bloch equations as a probe of the bath spectral density is demonstrated for the
case of a two-level system embedded in a Debye solid. ©1995 American Institute of Physics.
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I. INTRODUCTION

In 1946 Bloch proposed the differential equations

dM

dt
5gM3H2

Mx

T2
x̂2

My

T2
ŷ2

~Mz2Mz
eq!

T1
ẑ ~1.1!

to describe the motion of the components of the macrosco
nuclear polarization,M , subject to an external, possibl
time-dependent, magnetic field,H.1 Bloch and Wangsness,2

Redfield,3 and others4–6 later derived these equations in th
limit of weak coupling to the bathand the external field. In
these derivations the nuclear spins and the heat bath w
considered as quantum mechanical entities, semiclassic
driven by the time-dependent field. The interaction with t
driving field was treated in the limit of linear respons
theory,7 where it only affected the Hamiltonian contributio
to the dynamics, and the dissipative, non-Hamiltonian co
tribution remained field-independent.

Equations of the form of Eq.~1.1! were later success-
fully applied to other branches of spectroscopy,8,9 far exceed-
ing the original context for which they were first suggeste
In the most common usage, two of the energy levels o
system are isolated, and a fictitious spin-1/2 is associa
with them.10 This two-level system~TLS! paradigm has
played a fundamental role in the development of spectr
copy. The general features of the derivation and interpre
tion of the Bloch equations remain similar to those in ma
netic resonance, although the application to other resona
phenomena has forced researchers to abandon the h
temperature limit~often used in magnetic resonance theor!,
and to consider new relaxation mechanisms.11–17

As early as 1955 Redfield demonstrated that the Blo
equations fail to explain the experimental behavior of sp
systems close to saturation, i.e. when subject to high fie
Redfield proposed a resolution of this problem in terms o
spin temperature in the rotating frame.5,18 Bloch,19 Tomita,20

Hubbard,21 and Argyres and Kelley22 then showed how to
derive ‘‘generalized Bloch equations’’ that are valid in th
case of a rotating transverse field of arbitrary intensity. T
J. Chem. Phys. 102 (21), 1 June 1995 0021-9606/95/102(21)/
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generalized Bloch equations~GBE! are stated in terms of the
polarization components along the axes of a reference fra
rotating with the transverse field. These equations are exp
itly derived in the present paper, and the final result is su
marized in Eq.~4.34!. The main differences between th
standard Bloch equations~SBE! and generalized versions
~GBE! are:~1! the bath terms become dependent on the f
quency and amplitude of the driving field;~2! the relaxation
matrix is not diagonal and includes coupling terms betwe
the longitudinal polarization and the component rotating
phase with the transverse field;~3! the equation of motion for
the polarization component rotating in phase with the tran
verse field contains a new inhomogeneous term.

Analogous deviations from the behavior predicted by t
SBE were not reported in other branches of spectrosco
until 1983, when DeVoe and Brewer23 presented experimen-
tal evidence for the failure of the SBE to explain the fre
induction decay that follows saturation of an electronic tra
sition of Pr31 impurity in LaF3 crystal. A similar failure of
the SBE was subsequently demonstrated by photon echo
periments onYb vapor.24 These experiments stimulated re
searchers to consider generalizations to the standard op
Bloch equations.25–36 In this paper it will be shown that
many of these treatments correspond to a certain limit of
GBE.

From both the magnetic resonance and optical result
is now clear that experimental capabilities enable the exp
ration of phenomena beyond the limit of linear respon
theory, naturally leading to the necessity to develop a the
for such circumstances. Thus, the GBE will obviate the qu
tionable use of the SBE to interpret experiments that exp
intense fields.

The proper description of the relaxation dynamics of
system simultaneously interacting with a heat bath and
time-dependent driving field is of fundamental importan
for nonequilibrium thermodynamics as well as spectrosco
Phenomenological thermodynamics, which started as
theory of heat engines,37 originally sought to understand the
bounds imposed on processes in systems interacting w
85418541/21/$6.00 © 1995 American Institute of Physics
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8542 Geva, Kosloff, and Skinner: Relaxation of a two-level system
heat baths while driven by a time-dependent external field38

However, starting with the Boltzmann equation,39 irrevers-
ible statistical thermodynamics has been traditionally e
gaged with systems subject to fixed boundaries. One ve
important exception is Kubo’s linear response theory.7,40

However, the latter is only valid if the external time-
dependent field is considered as a small perturbation. A
general description of the relaxation dynamics beyond t
limit of linear response must therefore be consistent wi
thermodynamics.

The Bloch equations describe a simple example of a sy
tem subject to quantum dynamics, while still permitting
straightforward analysis in thermodynamic terms. The r
quirement for consistency with thermodynamics reduces
this case to the demand that, in steady state, energy will fl
from the driving field into the heat bath. The reverse proce
implying net production of work out of heat, without any
further changes in the surroundings, is forbidden by the se
ond law of thermodynamics. It should be noted that th
statement of the second law is made in terms ofpath func-
tions, rather thanstatefunctions. The former can be clearly
defined for our model, thereby avoiding the questionab
definition of entropy far from equilibrium.

In a previous study a combination of a structure theore
from semigroup theory41 with the constraint imposed by the
requirement for thermodynamical consistency was employ
in order to construct an equation of motion for quantum sy
tems simultaneously interacting with heat baths and tim
dependent fields.42–45 The construction of these equation
was motivated by a general effort to examine the limitation
imposed by quantum dynamics on the performance of he
engines operated in finite time. The treatment in Refs. 42–
was based upon a fundamental relationship between the th
modynamical work and heat currents and the correspond
quantum observables.46,47 The structure of these equations
was similar to that of the GBE in that they involved field
dependent bath terms, which turned out to be essential
thermodynamic consistency. However, the relaxation equ
tions of Refs. 42–45 are only valid for ‘‘slowly’’ varying
fields, whereas the GBE presented here hold for ‘‘fas
fields. Hence the two approaches are complementary~cf.
Sec. VIII!. In the present paper the GBE are re-examine
from a thermodynamical point of view.

The organization of this paper is as follows. The bas
model of a TLS coupled to a quantum-mechanical heat ba
and to a rotating field of arbitrary intensity is presented
Sec. II. The thermodynamic aspects of the model are d
scribed in Sec. III. The detailed derivation of the GBE@Eq.
~4.34!# is presented in Sec. IV. The conditions under whic
the GBE reduce to the SBE or to the generalized optic
Bloch equations29,30,32are considered in Sec. V. The steady
state solution of the GBE is considered in Sec. VI. It i
shown that the GBE are consistent with the second law
thermodynamics. The connection to experiment is throu
the line-shape function, which is also discussed in Sec. V
An example of the implications of the GBE for the case of
TLS impurity subject to a strong field and embedded in
Debye solid is provided in Sec. VII. Some final remark
J. Chem. Phys., Vol. 102
.
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involving the relation of this work to other studies are pre
sented in Sec. VIII.

II. BASIC MODEL

The basic model consists of a TLS, a quantum heat ba
and a monochromatic rotating electromagnetic field. Th
TLS is simultaneously coupled to the field and the heat bat
Since the field is strong a semiclassical description of th
field is sufficient. The model is schematically depicted in
Fig. 1.

The state of the extended system, consisting of the TL
and the heat bath, is described by the density operatorr. The
dynamics ofr is governed by the Liouville von Neumann
equation

]r

]t
52 i @H~ t !,r#[2 iL~ t !r, ~2.1!

where the total Hamiltonian of the extended system is give
by

H~ t !5Hb1Hs
01W~ t !1Hbs. ~2.2!

Hb is the free bath Hamiltonian, which remains unspecifie
for most of this paper.Hs

0 is the free TLS Hamiltonian

Hs
05v0Pz. ~2.3!

v0 is thepositiveenergy gap between the two energy level
~the units are such that\51!. In the language of magnetic
resonancev0 is the Larmor frequency of the spin’s free pre-
cession around thez axis. Pz is a projector defined in Eq.
~2.6! below.W(t) constitutes the semiclassical interaction
Hamiltonian of the TLS with a single moderotating field:

W~ t !5e@P1e
2 ivt1P2e

ivt#52e@Px cos~vt !1Py sin~vt !#.

~2.4!
v is the field frequency, ande measures the strength of the
TLS-field interaction.e will be referred to as ‘‘the amplitude
of the field’’ in the rest of this paper. Also, note that 2e
~actually22e, according to standard usage! is the Rabi fre-
quency. The TLS operatorsP1 , P2 , Px andPy are defined in
Eq. ~2.6! below. For magnetic resonance and certain atom

FIG. 1. Schematic view of the model. The TLS, with free Hamiltonian
Hs
0 is coupled to a heat bath, with free HamiltonianHb , through the inter-

action HamiltonianHbs , while subject to a driving termW(t) by an external
monochromatic rotating field. The dashed frame deliminates the extend
system consisting of the TLS and bath, which evolves in time according
the Liouville equation.
, No. 21, 1 June 1995
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8543Geva, Kosloff, and Skinner: Relaxation of a two-level system
transitions Eq.~2.4! can be realized exactly, while for othe
TLS situations this equation results from making the rotati
wave approximation. Note, however, that for very inten
fields such thate is comparable tov0 the rotating wave
approximation is not expected to be valid. The choice o
rotating field yields crucial simplification of the derivation o
the GBE. Finally, since the field is circularly polarized, neg
tive frequencies are physically meaningful and distinct fro
positive ones. Changing the sign of the frequency cor
sponds to rotating the field in the counter direction.

The TLS-bath interaction Hamiltonian is defined as

Hbs5d$L^P11L†
^P21D^Pz%. ~2.5!

d is a dimensionless coupling parameter that measures
strength of the TLS-bath coupling.L, L† and D are bath
operators.Hbs must be Hermitian; henceL, L† are Hermit-
ian conjugates andD is Hermitian. Without loss of general
ity, the free bath thermal averages of these operators
chosen to be zero: ^L&b5^L†&b5^D&b50, where
^G&b[Trb(rbG) and rb[e2bHb/Trb(e

2bHb). b51/T is the
bath inverse temperature, whereT is the bath absolute tem
perature measured in units of energy (kB51!. Finally, Pz ,
P1 , P2 , Px , andPy are the TLS operators:

Pz5
1
2 ~ u1&^1u2u2&^2u!, P15u1&^2u,

P25u2&^1u,

Px5
1

2
~P11P2!, Py5

1

2i
~P12P2!, ~2.6!

wherePzu6&56 1
2 u6&. P1 andP2 are the creation and an

nihilation operators of the free TLS andPx andPy (Pz) cor-
respond to the transverse~longitudinal! polarizations.

III. THERMODYNAMIC CONSIDERATIONS

Thermodynamic considerations are based on a set of
sumptions independent of the axioms of quantum mechan
Therefore they can be used as a validity test of the appro
mations leading to the quantum master equation.

The derivation of the GBE~cf. Sec. IV! leads to a quan-
tum master equation for any TLS observable,X, having the
generic form

Ẋ5 i @Hs
01W~ t !,X#1

]X

]t
1LD* ~X!, ~3.1!

whereLD* is a dissipation super-operator representing t
dissipative dynamics induced by the heat bath. The spec
form of LD* , explicitly derived in Sec. IVD, is not required
for the present argument. SubstitutingPx , Py , andPz for X
would yield the GBE.

The connection to thermodynamics is established by
amining the energy flow in the problem. Selecting from t
total Hamiltonian, Eq.~2.2!, the terms that depend only o
the TLS degrees of freedom, one is left withHs

01W(t),
which is the total energy of the TLS. Substitutin
Hs[Hs

01W(t) for X in Eq. ~3.1! leads to the equation of
motion for the TLS energy operator:
J. Chem. Phys., Vol. 102
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dHs

dt
5

]W

]t
1LD* ~Hs!. ~3.2!

The expectation value of Eq.~3.2! becomes the time deriva-
tive of the first law of thermodynamics.^]W/]t& corresponds
to the energy flow due to the interaction with the driving
field, i.e. to the rate of work performed on the TLS by the
field. The latter is simply the power,P :

P5 K ]W

]t L 52ev@2^Px& sin~vt !1^Py& cos~vt !#.

~3.3!

^LD* (Hs)& corresponds to the energy flow due to the inter
action with the heat bath, i.e. to the rate of heat flow:

Q̇5^LD* ~Hs!&. ~3.4!

Eqs. ~3.3! and ~3.4! constitute the essential link between
quantum observables and the thermodynamical path fun
tions.

The TLS in this setup will never reach a state of therma
equilibrium due to the constant flow of energy from the field
Hence, there is no advantage to using state functions and
becomes natural to work with the path functions of heat an
work. The TLS approaches a steady state when the ener
flows are balanced, i.e. the power from the driving field an
the heat flow from the bath balance each other. Applying th
first law of thermodynamics, Eq.~3.2!, in steady state, im-
plies thatP ss52Q̇ss. However, both directions of energy
flow are allowed by the first law: from the driving field to the
bath and vice versa. Yet, the second law of thermodynamic
asserts that one can only turn work into heat, but not th
other way around. In spectroscopic terms this statement im
plies that a steady-state stimulatedemissionspectra from a
TLS immersed in a positive temperature heat bath isnot
allowed. Hence, in steady stateP has to be positive and the
heat flowQ̇ negative. A thermodynamically consistent theory
should comply with this constraint.

IV. DERIVATION OF GENERALIZED BLOCH
EQUATIONS

The goal is to derive a consistent set of equations o
motion for the TLS observables, based on the assumptions
weak coupling to the bath~d!1!, for an unrestricted field
intensity ~i.e., arbitrarye!. The derivation also assumes that
the time scale of the relaxation of the TLS is much slowe
than that associated with the decay of the bath correlatio
functions and the period of the field (2pv21).

A schematic outline of the steps in the derivation is a
follows:

~a! Transformation to the rotating frame, where the ex
plicit time dependence inH is transferred from the field-TLS
interaction termW into the TLS-bath interaction termHbs.

~b! Diagonalization of the time-independent effective
TLS Hamiltonian in the rotating frame and expressing the
total Hamiltonian in terms of projectors in the new diagonal
ized representation.

~c! Transformation to the interaction picture by using the
sum of the time-independent effective TLS Hamiltonian and
the free bath Hamiltonian (Hb….
, No. 21, 1 June 1995
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8544 Geva, Kosloff, and Skinner: Relaxation of a two-level system
~d! Perturbation expansion to second order in the co
pling to the bath,d, providing an approximate Liouville
equation for the extended system~i.e. bath1TLS!.

~e! Reduction by performing a partial trace over the d
grees of freedom of the bath. This is supplemented by
assumption of a tensor product initial density operator of t
extended system, with the bath in thermal equilibrium w
respect to its free Hamiltonian,Hb.

~f! Separation of time scales by assuming that the b
fluctuations decay much faster than the TLS relaxation.

~g! Neglect of terms rotating at once or twice the field
frequency.

~h! Transformation of the equations from the rotatin
Schrödinger picture to the Heisenberg picture, and evaluat
of the GBE in the representation diagonal in the effecti
TLS Hamiltonian in the rotating frame.

~i! Presentation of the GBE in terms of the longitudin
polarization and the polarization components in and out
phase with the rotating field. The final result is presented
Eq. ~4.34!. The details of the derivation are important i
establishing the range of validity of different limits.

Except for steps~a!, ~b!, and~g! the derivation is similar
to that of the SBE for systems not subject to time-depend
fields.1–6,9,11–17This is basically the spirit of this approach
which allows for the incorporation of the concepts and too
of standard field-free relaxation theory into the present pro
lem, once the transformation to the rotating frame is acco
plished.

A. Transformation to the rotating frame

The density operator of the extended system in the ro
ing frame,r̂, is defined by:

r̂~ t !5eivPztr~ t !e2 ivPzt. ~4.1!

The Liouville equation in the rotating frame, generating t
dynamics ofr̂, is given by

]r̂

]t
52 i @Ĥ~ t !,r̂ #[2 i L̂~ t !r̂, ~4.2!

where,

Ĥ5eivPztHe2 ivPzt5Hb1Ĥs1Ĥbs, ~4.3!

Ĥs5DvPz1e~P11P2!, Dv5v02v, ~4.4!

Ĥbs5d$eivtL^P11e2 ivtL†
^P21D^Pz%. ~4.5!

Dv in Eq. ~4.4! is usually referred to as the detuning.
geometrical interpretation of the transformation to the rot
ing frame is shown in Fig. 2.

The effective total Hamiltonian,Ĥ @cf. Eq. ~4.3!#, is di-
vided into three contributions:~a! the original free bath
Hamiltonian,Hb ; ~b! an effective time-independent free TLS
Hamiltonian, Ĥs, which combines the contributions ofHs

0

andW from the original Hamiltonian; and~c! an explicitly
time-dependent TLS-bath interaction Hamiltonian,Ĥbs.

This structure is similar to that encountered in field-fre
relaxation theory.1–6,9,11–17However, three differences can b
noticed.
J. Chem. Phys., Vol. 102
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~1! Ĥ in Eq. ~4.3! is the effective Hamiltonian in the
rotating frame. In the field-free theory the original Hamil-
tonian already has this structure, sinceW50.

~2! The TLS-bath interaction Hamiltonian in the rotating
frame is explicitly time-dependent, and contains terms tha
oscillate with the field.

~3! Ĥbs is not given in terms of the eigen-projectors of
Ĥs ~whereasHbs is given in terms of the eigen-projectors of
Hs
0
….

B. Transformation to the eigen-representation of H ˆ
s

To derive the GBE it proves very convenient to trans-

form to the eigen-representation ofĤs. In this representation

Ĥs5nPz ~4.6!

and

Ĥbs5d$Ĝ ~ t ! ^ P11Ĝ †~ t ! ^ P21D̂~ t ! ^ Pz%, ~4.7!

where

n5A~Dv!21~2e!2, ~4.8!

S P1

P2

Pz

D 5S cos2~u/2! 2sin2~u/2! 2sin~u!

2sin2~u/2! cos2~u/2! 2sin~u!

1
2 sin~u! 1

2 sin~u! cos~u!
D S P1

P2

Pz
D ,

~4.9!

FIG. 2. A geometrical representation of the HamiltonianHs
01W(t). The

total field is shown as seen in thestationary frame, i.e. with longitudinal
componentv0 and rotating transverse component 2e. The reference frame
rotating with the transverse field is also shown. Note that thex̂ axis coin-
cides with the rotating transverse component.
, No. 21, 1 June 1995
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8545Geva, Kosloff, and Skinner: Relaxation of a two-level system
S Ĝ ~ t !

Ĝ †~ t !

D̂~ t !
D

5S cos2~u/2!eivt 2sin2~u/2!e2 ivt
2 1

2 sin~u!

2sin2~u/2!eivt cos2~u/2!e2 ivt
2 1

2 sin~u!

sin~u!eivt sin~u!e2 ivt cos~u!
D

3S L

L†

D
D , ~4.10!

and

tan~u!5
2e

Dv
. ~4.11!

n is the magnitude of the effective field in the rotating fram
It reduces to the Rabi frequency, 2e, in resonance.n will be
referred to as the ‘‘generalized Rabi frequency’’ in what fo
lows. A geometrical interpretation of this transformation
shown in Fig. 3.

C. Transformation to the interaction picture

The next step is a transformation to the interaction p
ture. The general strategy is similar to that in the absence
the field. The effective Hamiltonian of the extended syste
Ĥ, is divided into a time-independent zero-order Ham
tonian and an explicitly time-dependent perturbation:

Ĥ5Ĥ01Ĥbs, ~4.12!

where

Ĥ05Hb1Ĥs. ~4.13!

Based on this partition, a transformation to an ‘‘interactio
picture’’ is performed by movingr̂(t) backward in time us-
ing only Ĥ0. Note that this interaction picture is defined wit
respect to the rotating frame.

Actually, the sequence of transformations, first to t
rotating frame and then to the interaction picture with resp
to the rotating frame, is equivalent to a single transformat
J. Chem. Phys., Vol. 102
.

-

-
of
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-

n

e
ct
n

to an interaction picture with the time-dependent zero-orde
HamiltonianH05Hb1Hs

01W(t).19 In the special case of
the rotating field, this transformation is possible even though
the zero-order Hamiltonian is explicitly time-dependent, and
the above mentioned sequence of transformations is an e
fective means to actually carry it out. The same transforma
tion is much less amenable to an analytical treatment in the
case of different types of driving fields.

The density operator of the extended system in the inter
action ~rotating! picture is given by

r̃5ei Ĥ0tr̂e2 i Ĥ0t. ~4.14!

The Liouville equation forr̃ is given by

]r̃

]t
52 i @H̃bs~ t !,r̃ #52 i L̃~ t !r̃, ~4.15!

where

H̃bs~ t !5ei Ĥ0tĤbse
2 i Ĥ0t

5d$G̃ ~ t ! ^ P11G̃ †~ t ! ^ P21D̃~ t ! ^ Pz%,

~4.16!

FIG. 3. A geometrical interpretation of the transformation to the eigen-
representation ofĤs . The latter is analogous to a transformation to a refer-
ence frame rotated byu around theŷ axis of the rotating frame. Note that
both (x̂,ŷ,ẑ) and (x9 ,y9 ,z9 ) are rotating frames.
S G̃ ~ t !

G̃ †~ t !

D̃~ t !
D 5S ei ~v1n!tcos2~u/2! 2e2 i ~v2n!tsin2~u/2! 2 1

2 e
intsin~u!

2ei ~v2n!tsin2~u/2! e2 i ~v1n!tcos2~u/2! 2 1
2 e

2 intsin~u!

eivtsin~u! e2 ivtsin~u! cos~u!
D S L~ t !

L†~ t !

D~ t !
D , ~4.17!
, No. 21, 1 June 1995



n

h

d
t

n

m.

.

h.

8546 Geva, Kosloff, and Skinner: Relaxation of a two-level system
and

L~ t !5eiHbtLe2 iHbt, L†~ t !5eiHbtL†e2 iHbt,

D~ t !5eiHbtDe2 iHbt. ~4.18!

As a consistency test, when the field is turned off (e50),
H̃bs(t) reduces toH̃bs(t)5d$eiv0tL(t)^P11e2 iv0tL†(t)
^P21D(t)^Pz% as it should.

D. Derivation of the quantum master equation

The route from the interaction picture Liouville equatio
to the quantum master equation is similar to the method
deriving the master equation in the absence of the field. T
derivation presented here is similar to that developed in R
16. Therefore only a brief and schematic description of t
derivation is provided.

The rotating-field-interaction picture Liouville equation
Eq. ~4.15!, presents the starting point. It is formally solve
via a power series expansion ind, subject to a tensor produc
initial state for the extended system:

r~0!5rb^ s~0!. ~4.19!

s(0) is the initial reduced density operator of the TLS, a
rb is the density operator of the bath in thermal equilibrium

rb5
e2bHb

Trb~e
2bHb!

. ~4.20!
J. Chem. Phys., Vol. 102
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The TLS reduced density operator att.0 in the interaction
~rotating! picture is given by

s̃~ t !5Trb~ r̃~ t !!. ~4.21!

Trb refers to a partial trace over the bath degrees of freedo
The state of the TLS at timet, s̃(t), can be formally

related to its initial value,s̃~0!, via

s̃~ t !5F~ t !s̃~0!. ~4.22!

This is the integral form of the reduced equation of motion
The differential form is obtained from the integral form in
the following manner:

d

dt
s̃~ t !5Ḟ~ t !s̃~0!5Ḟ~ t !F21~ t !s̃~ t ![R~ t !s̃~ t !.

~4.23!

The generatorR(t) is then expanded in powers ofd. This
expansion is truncated at second order ind, thereby intro-
ducing the assumption of weak coupling to the heat bat
The first order term ind vanishes on account of the original
definition of the bath operators ~recall that
^L&b5^L†&b5^D&b50).

After truncation at second order ind, and subsequently
settingd51 ~from this point on we will assume thatL and
D are appropriately ‘‘small’’!, the reduced equation of mo-
tion becomes
d

dt
s̃52E

0

t

dt1Trb~L̃~ t !L̃~ t1!rb!s̃5E
0

t

dt1$Trb~G̃ ~ t !G̃ ~ t1!rb!%@P1 ,P1s̃#1h.c.

2E
0

t

dt1$Trb~G̃ ~ t !G̃ †~ t1!rb!%@P1 ,P2s̃#1h.c.2E
0

t

dt1$Trb~G̃ ~ t !D̃~ t1!rb!%@P1 ,Pzs̃#1h.c.

2E
0

t

dt1$Trb~G̃
†~ t !G̃ ~ t1!rb!%@P2 ,P1s̃#1h.c.2E

0

t

dt1$Trb~G̃
†~ t !G̃ †~ t1!rb!%@P2 ,P2s̃#1h.c.

2E
0

t

dt1$Trb~G̃
†~ t !D̃~ t1!rb!%@P2 ,Pzs̃#1h.c.2E

0

t

dt1$Trb~D̃~ t !G̃ ~ t1!rb!%@Pz ,P1s̃#1h.c.

2E
0

t

dt1$Trb~D̃~ t !G̃ †~ t1!rb!%@Pz ,P2s̃#1h.c.2E
0

t

dt1$Trb~D̃~ t !D̃~ t1!rb!%@Pz ,Pzs̃#1h.c., ~4.24!
e

t
y

o

d

-

-

where h.c. corresponds to Hermitian conjugate of the prece
ing term.

Each of the 18 terms on the rhs of Eq.~4.24! is a product
of two factors. The first factor is an integral over a trac
involving only bath operators. The second factor is a com
mutator involving only TLS operators. In order to conclud
the derivation, the bath factors are evaluated explicitly. Th
evaluation of the bath factors is demonstrated in some de
for the first term in Appendix A. The other bath factors ma
be evaluated in a similar manner.

The evaluation of the bath factors involves three maj
assumptions or approximations.
d-

e
-

e
ail

r

~a! The decay of the bath correlation functions is very
fast on the time-scale of the TLS relaxation. Therefore the
validity of the equations is limited to the description of the
dynamics for time-scales long compared to that associate
with the decay of the bath correlation functions. Note that
this assumption of time-scale separation is completely con
sistent with the weak-coupling limit in that in this limit the
TLS relaxation rate constants are arbitrarily small.

~b! Terms rotating likee6 ivt or e62ivt can be neglected.
This is a valid approximation if the frequency of the field is
fast on the time-scale of the TLS relaxation. A very impor-
tant consequence of this approximation is that the only re
, No. 21, 1 June 1995
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8547Geva, Kosloff, and Skinner: Relaxation of a two-level system
maining bath correlation functions areCLL†(t), CL†L(t),
andCDD(t), where

CAB~t!5Trb~A~t!Brb! ~4.25!

~cf. Appendix A!.
~c! The bath factors turn out to be complex. The imag

nary part contributes to the oscillatory Hamiltonian dynam
ics, while the real part introduces a genuine non-oscillato
contribution into the overall dynamics, leading to relaxatio
The third approximation is introduced by neglecting th
imaginary part of the bath factor. This means that the ba
r

.

o

o
il

J. Chem. Phys., Vol. 102
-
-
ry
.

h-

induced Hamiltonian dynamics is negligible in compariso
with that induced byĤs.

Once evaluated by incorporating the above approxim
tions, all bath factors turn into~except for trivial oscillatory
factors! real and positive time-independent rate coefficien
denoted byg1 , g2 , g3...g9 according to their order of ap-
pearance in Eq.~4.24!. Note that each term and its Hermitian
conjugate share the same rate coefficient. These rate co
cients are explicitly given in Appendix B.

For ease of interpretation the master equation is tran
formed into the Heisenberg picture. This transformation
described in detail in Appendix C. The Heisenberg equati
of motion for a TLS observable,X, is then given by
d

dt
X5 i @Hs

01W~ t !,X#1
]X

]t
2g1$@X,P̂1#P̂11P̂2@P̂2 ,X#%2g2$@X,P̂1#P̂21P̂1@P̂2,X#%

2g3$@X,P̂1#P̂z1P̂z@P̂2,X#%2g4$@X,P̂2#P̂11P̂2@P̂1,X#%2g5$@X,P̂2#P̂21P̂1@P̂1,X#%

2g6$@X,P̂2#P̂z1P̂z@P̂1,X#%2g7$@X,P̂z#P̂11P̂2@P̂z,X#%

2g8$@X,P̂z#P̂21P̂1@P̂z,X#%2g9$@X,P̂z#P̂z1P̂z@P̂z,X#%. ~4.26!
d
a-
e

is
,
n
rt

m

E
ts
it-
he

e

It should be noted that Eq.~4.26! corresponds to the regula
Heisenberg picture. Hence, the observableX should be de-
fined with respect to thestationary frame of reference. The
operatorsP̂1, P̂2, and P̂z are explicitly time-dependent
They are related to the original operators by the transform
tion

S P̂1

P̂2

P̂z

D
5S cos2~u/2!e2 ivt 2sin2~u/2!eivt 2sin~u!

2sin2~u/2!e2 ivt cos2~u/2!eivt 2sin~u!

1
2 e

2 ivtsin~u! 1
2 e

ivtsin~u! cos~u!
D

3S P1

P2

Pz
D . ~4.27!

E. The generalized Bloch equations (GBE)

The state of the TLS can be expressed by a density
erator in a four-dimensional Hilbert-Schmidt operator spa
defined by the scalar product (A•B)5Tr$A†B%. The basis of
this space consists of four independent operators. One
these operators can be chosen as the identity operator.
other three can be chosen in various ways. The identity
erator does not change due to the conservation of probab
a-

p-
ce

of
The
p-
ity.

Therefore the dynamics of the TLS is completely governe
by the change of the other three operators, or their expect
tion values. These three equations of motion constitute th
GBE.

Since the specific set of three independent operators
rather arbitrary, the choice is a matter of convenience. Also
once stated in terms of one set of operators, the GBE ca
always be transformed into another set. Most of the effo
involved in the evaluation of the GBE has to do with the
evaluation of the dissipation super-operator in the quantu
master equation, Eq.~4.26!. Since the latter is given in terms
of the operatorsP̂1 , P̂2 , andP̂z , which constitute an in-
dependent set, it is most convenient to first evaluate the GB
in terms of these operators, and later transform to other se
if the need arises. For ease of interpretation a set of Herm
ian operators is advantageous. Hence, after obtaining t
equations in terms ofP̂1 , P̂2 , andP̂z they are transformed
to the setP̂x , P̂y , and P̂z , where the HermitianP̂x and
P̂y are the following linear combinations ofP̂1 andP̂2 :

P̂x5
1
2 ~P̂11P̂2!, P̂y5

1

2i
~P̂12P̂2!. ~4.28!

The operatorsP̂x , P̂y and P̂z have a straightforward geo-
metrical interpretation as polarization components along th
axes of the (x9 ,y9 ,z9 ) rotating frame~cf. Fig. 3!. This choice of
observables is referred as ‘‘theP representation.’’

The GBE in theP representation are given by
, No. 21, 1 June 1995
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d

dt S P̂x

P̂y

P̂z

D
5S l2~ 1

2 Gp1Gd8! 2n h

n 2~l1 1
2 Gp1Gd8! 0

2j 0 2Gp

D
3S P̂x

P̂y

P̂z

D 2S a

0

d
D , ~4.29!

where,

Gp52~g21g4!,

Gd85g9 ,

l5g11g5 ,

h5g71g8 , ~4.30!

j5 1
2 ~g31g6!,

a5 1
2 ~g62g31g72g8!,

d5g22g4.

~The explicit expressions forg1...g9 are given in Appendix
B.!

It is convenient to write the relaxation coefficients in
terms of the following four functions:

Gp
0~x![C̃LL†~x!~11e2bx!,

Gd8
0~x![ 1

4 C̃DD~x!~11e2bx!,
~4.31!

d0~x![ 1
2 C̃LL†~x!~12e2bx!,

a0~x!5 1
4 C̃DD~x!~12e2bx!,

whereC̃AB(x) is the Fourier transform ofCAB(t), as defined
in Appendix A. The significance of these definitions arise
from the following identities tying these coefficients to th
field-free case:

Gp
0~v0!5

1

T1
,

Gd8
0~0!5

1

T28
,

~4.32!

2
d0~v0!

Gp
0~v0!

52
1

2
tanhS bv0

2 D[Pz
eq ,

a0~0!50.

T1 is the field-free time constant for population relaxation
T28 is the field-free time constant for pure dephasing, an
Pz
eq is the field-free thermal equilibrium expectation value o

Pz ~the field-free thermal equilibrium expectation values o
Px andPy vanish!. The functiona0 is new since it does not
appear in the field free case.
J. Chem. Phys., Vol. 102
s
e

,
d
f
f

The coefficientsGp , Gd8, l, h andj in Eq. ~4.29! can be
written as linear combinations ofGp

0(v), Gp
0(v1n),

Gp
0(v2n), Gd8

0(0) andGd8
0(n). The expansion coefficients

in the linear combinations depend uponu ~cf. Eq. ~4.11!!.
Gp , Gd8, l, h andj, written in this manner, are summarized
in Table I. Note that the arguments ofGp

0 andGd8
0 can in-

volve n, which depends one, and thatu is also explicitly
field-dependent. Hence, the relaxation becomes explicit
field-dependent.

The inhomogeneous termsd and a in Eq. ~4.29! are
written as linear combinations ofd0(v2n), d0(v),
d0(v1n) and a0(n). As before, the coefficients of these
functions depend uponu. d anda, written in this manner,
are shown in Table II. Note thatd0 anda0 have the same
arguments asGp

0 andGd8
0 respectively, and thatd anda are

also explicitly field-dependent.
The final form of the GBE is written in terms of yet

another set of independent observables:P̂x , P̂y and P̂z , de-
fined by

P̂x5
1
2 ~e2 ivtP11eivtP2!5Pxcos~vt !1Pysin~vt !,

P̂y5
1

2i
~e2 ivtP12eivtP2!52Pxsin~vt !1Pycos~vt !,

P̂z5Pz. ~4.33!

Equivalent and more familiar notations forP̂x , P̂y andP̂z ~or
more precisely, their expectation values! that were intro-
duced by Bloch1 are the polarization functionsu, v, andw.
These observables are the polarization components in a c
ordinate system rotating with the field.P̂x is the transverse
polarization along the direction of the rotating field,P̂y is the
transverse polarization out of phase with the rotating field
and P̂z is the longitudinal polarization~cf. Fig. 2!. This
choice of observable is referred as ‘‘theP representation.’’

The GBE equation in theP representation become

TABLE I. The bath coefficients in theP representation.s andc stand for
sin(u) and cos(u), respectively.

Gp
0(v2n) Gp

0(v) Gp
0(v1n) Gd8

0(0) Gd8
0(n)

Gp (12c)2/4 0 (11c)2/4 0 s2

Gd8 0 s2/2 0 c2 0
l 2s2/8 0 2s2/8 0 s2/2
h s(c21)/4 0 s(c11)/4 0 2s
j 0 sc/4 0 2sc/2 0

TABLE II. The inhomogeneous terms in theP representation.s andc stand
for sin(u) and cos(u), respectively.

d0(v2n) d0(v) d0(v1n) a0(n)

a s(c21)/4 2s/2 2s(c11)/4 sc/2
d 2(12c)2/4 0 (11c)2/4 s2/2
, No. 21, 1 June 1995
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8549Geva, Kosloff, and Skinner: Relaxation of a two-level system
d

dt S P̂x
P̂y
P̂z
D 5S 2Gx 2Dv Gxz

Dv 2Gy 22e

Gzx 2e 2Gz

D S P̂xP̂y
P̂z
D 2S gx

0

gz

D .
~4.34!

The relaxation coefficientsGx , Gy , Gz , Gxz , andGzx , and
inhomogeneous termsgx andgz are given explicitly in terms
of the functionsGp

0 , Gd8
0 , d0 anda0 in Tables III and IV.

For comparison, the SBE written in terms of theP rep-
resentation have the following form:

d

dt S P̂x
P̂y
P̂z
D 5S 2

1

T2
2Dv 0

Dv 2
1

T2
22e

0 2e 2
1

T1

D S P̂xP̂y
P̂z
D 1S 0

0

Pz
eq

T1

D ,
~4.35!

where

1

T2
5

1

2T1
1

1

T28
. ~4.36!

T1 , T28 and Pz
eq were related toGp

0(v0), Gd8
0(0) and

d0(v0) in Eq. ~4.32!.
Comparison of the SBE, Eq.~4.35!, with the GBE in the

P representation, Eq.~4.34!, reveals the following differ-
ences:

~1! The relaxation coefficients in the GBE depend e
plicitly upon the amplitude and frequency of the field. Th
corresponding coefficients in the SBE are field-independe

~2! The relaxation rates ofP̂x and P̂y differ in the GBE
~i.e. Gx Þ Gy), whereas in the SBE,P̂x and P̂y share the
same relaxation time-constant,T2 . This difference arises
from the fact thatP̂x is the polarization along the direction o
the driving field whereasP̂y is the polarization out of phase
with respect to it. Thus, the driving field introduces a phys
cal distinction between the two directions in space and th
associated relaxation times, in much the same way that

TABLE III. Relaxation rates in theP representation.s and c stand for
sin(u) and cos(u), respectively.

Gp
0(v2n) Gp

0(v) Gp
0(v1n) Gd8

0(0) Gd8
0(n)

Gx (12c)/4 0 (11c)/4 c2 s2

Gy c(c21)/4 s2/2 c(c11)/4 c2 s2

Gz (12c)2/4 s2/2 (11c)2/4 0 0
Gxz 0 0 0 sc 2sc
Gzx s(12c)/4 sc/2 2s(11c)/4 0 0

TABLE IV. Inhomogeneous terms in theP representation.s andc stand for
sin(u) and cos(u) respectively.

d0(v2n) d0(v) d0(v1n) a0(n)

gx s(c21)/4 2sc/2 s(c11)/4 s/2
gz (12c)2/4 s2/2 (11c)2/4 0
J. Chem. Phys., Vol. 102
-
e
nt.

i-
eir
the

d.c. field provides a distinctive spatial ‘‘z axis’’ in magnetic
resonance, leading to different longitudinal and transvers
relaxation times.

~3! Additional off-diagonal relaxation coefficients,Gxz

andGzx , appear in the GBE. The physical significance of the
rotating xz plane is due to the fact that the total field lies
within it. This results in extra coupling terms between the
polarization components that lie along the directions of the
field.

~4! There is an extra inhomogeneous term in the gener
alized Bloch equation forP̂x , namelygx . This is due to the
existence of a non-negligible driving field in this direction.

V. SPECIAL LIMITS OF THE GENERALIZED BLOCH
EQUATIONS

The asymptotic limits where the GBE are reduced to the
SBE, or to the generalized optical Bloch equations are exam
ined. These limits depend on the relative magnitudes of th
following six frequencies~or energies!: 2e ~the Rabi fre-
quency!, Dv ~the detuning!, n ~the generalized Rabi fre-
quency!, v0 ~the TLS frequency!, T ~the temperature!, and
1/tc ~the inverse correlation time of the diagonal bath fluc-
tuations, to be defined below!.

First consider the limit u2eu!uDvu. In this case,
n'uDvu, sin(u)'0, and cos(u) approaches11 or 21, cor-
responding toDv being positive or negative respectively. If
these approximations are implemented into the GBE in theP
representation, they reduce to the SBE. Hence, the SBE st
hold for considerable field intensities, as long as the field
frequency is far enough from resonance. Such a behaviour
expected since tuning the field frequency out of resonance
equivalent to quenching the driving field, and is often used
this way.

Next consider the limitu2eu,uDvu!v0 , 1/tc . ~For ex-
ample, this situation is often obtained for electronic transi-
tions, wherev0 is in the optical regime.! This limit implies
that n!v0'v, and henceGp

0(v),Gp
0(v6n)'Gp

0(v0), and
d0(v),d0(v6n)'d0(v0). Now the coefficientsGd8

0(n) and
a0(n) are examined in this limit. These coefficients have the
general form:

Gd8
0~n![ 1

4 C̃DD~n!~11e2bn!,

a0~n![ 1
4 C̃DD~n!~12e2bn!. ~5.1!

Note that exp(2bn)'1 if n!T. The other term in Eq.~5.1!,
C̃DD(n), is the Fourier transform of the time-correlation
functionCDD(t):

C̃DD~n!5E
2`

`

dteintCDD~t!. ~5.2!

Define the time-scale associated with the decay ofCDD(t) as
tc . Since n!1/tc , i.e. the generalized Rabi frequency is
very slow on the time-scale of the decay of the bath fluctua
tions,CDD(t) decays to zero beforent can change apprecia-
bly from its value att50, which is 0. Hence, in this case
C̃DD(n)'C̃DD(0). It should be noted that 1/tc is of the order
of magnitude of the smaller of the two quantities, the bath
band width or the temperatureT. Hencen!1/tc implies that
, No. 21, 1 June 1995
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8550 Geva, Kosloff, and Skinner: Relaxation of a two-level system
n!T. Therefore Gd8
0(n)'Gd8

0(0) and a0(n)'0. Imple-
menting these approximations into the GBE in theP repre-
sentation reduces them once more to the SBE~for arbitrary
u). Thus, the above two special cases show that, quite g
erally, for weak fields the SBE are valid, which is a stateme
that has been disputed by several authors.30,31

Next consider the less restrictive limitn!v0 . It is still
true that Gp

0(v),Gp
0(v6n)'Gp

0(v0), and
d0(v),d0(v6n)'d0(v0), but now we have the possibility
that n is on the order of 1/tc , and soGd8

0(n) must be kept
distinct fromGd8

0(0), anda0(n) does not vanish. The relax
ation coefficients in theP representation then reduce to

Gx'Gy5
1

2T1
1

1

n2
@~Dv!2Gd8

0~0!1~2e!2Gd8
0~n!#,

Gz'
1

T1
,

Gxz'
2eDv

n2
@Gd8

0~0!2Gd8
0~n!#,

~5.3!
Gzx'0,

gx'
e

n
a0~n!,

gz'd0~v0!.

As a result, the coefficients associated with population rel
ation remain equal to the coefficients in the SBE. Howev
the rate of pure dephasing is explicitly field dependent, a
furthermore,Gxz andgx do not vanish.

Now consider an additional restriction, such th
n!v0 ,T. If the temperature issufficientlyhigh, then the
imaginary part ofCDD(t) can be neglected in compariso
with the real part, and since the real part is even int, Eq.
~5.3! is valid with

Gd8
0~x!5E

0

`

dt cos~xt!Re@CDD~t!#, ~5.4!

andgx'0. In this limit our results are nearly identical to th
generalized optical Bloch equations of Yamanoi28 and Ya-
manoi and Eberly,29 who considered a stochastic model o
bath fluctuations. The only difference between our resu
and theirs is that we have neglected a small correction to
Rabi frequency~a correction to Hamiltonian dynamics, a
discussed in Appendix A!, which appears in the paper b
Yamanoi and Eberly as a damping coefficientG23. If one
further assumes that

CDD~t!5~dv!2e2utu/tc, ~5.5!

then the results of Schenzleet al.,30 Berman and Brewer,32

and Yamanoi and Eberly34 are recovered.
Next consider the limit 1/tc!n!v0 . In this case

exp(int) oscillates many times beforeCDD(t) can change
appreciably. Hence,C̃DD(n) is approximately zero in such a
case. The relaxation coefficients in theP representation then
reduce to:
J. Chem. Phys., Vol. 102
en-
nt

x-
r,
nd

t

f
lts
the

Gx'Gy5
1

2T1
1

~Dv!2

~Dv!21~2e!2
1

T28
,

Gz'
1

T1
,

Gxz'
2eDv

~Dv!21~2e!2
1

T28
,

~5.6!
gx'0,

Gzx'0,

gz'd0~v0!.

An interesting extreme case of this limit is obtained when
u2eu@uDvu. This case is obtained either by increasing the
intensity of the field or by tuning the frequency closer to
resonance, which effectively leads to the same result. Th
GBE reduce in this extreme to the form of the SBE, but with
a modified dephasing rateGx5Gy51/2T1 , rather than
Gx5Gy51/2T111/T28, as in the SBE. Hence pure dephasing
is seen to be quenched by the driving field when
u2eu@uDvu,1/tc . This limit is obtainable for electronic tran-
sitions, and indeed, arguments of this sort were used to ex
plain deviations from the SBE in the free-induction decay of
Pr31 in LaF3.

23

Finally, consider the near-resonance limituDvu!u2eu,
with u2eu/v0 arbitrary. Comparable values forv0 and u2eu
can be achieved, for example, in NMR by lowering the d.c.
field. This limit implies that cos(u)'0, sin(u) approaches11
or 21 corresponding to positive or negativee respectively,
andn'u2eu. The relaxation coefficients in theP representa-
tion then reduce to:

Gx'
1
4 @Gp

0~v2u2eu!1Gp
0~v1u2eu!#1Gd8

0~ u2eu!,

Gy'
1
2 Gp

0~v!1Gd8
0~ u2eu!,

Gz'
1
4 @Gp

0~v2u2eu!12Gp
0~v!1Gp

0~v1u2eu!#,

Gxz'0, ~5.7!

Gzx'6 1
4 @Gp

0~v2u2eu!2Gp
0~v1u2eu!#,

gz'
1
4 @d0~v2u2eu!12d0~v!1d0~v1u2eu!#,

gx'6$ 1
4 @d0~v1u2eu!2d0~v2u2eu!#1 1

2 a0~ u2eu!%.

The 6 sign corresponds to 2e positive or negative respec-
tively. For this case the coefficients associated with popula
tion relaxation differ from the ones in the SBE, and are ex-
plicitly field-dependent. Also, in this limit the coupling
coefficientGxz vanishes, whereasGzx does not. Finally, note
that if u2eu@1/tc the pure dephasing mechanism is quenched
and botha0(u2eu) andGd8

0(u2eu) in Eq. ~5.7! vanish.

VI. THE STEADY-STATE SOLUTION OF THE
GENERALIZED BLOCH EQUATIONS AND A
GENERALIZED THEORY FOR LINE-SHAPES

The dynamics induced by the GBE lead the TLS to a
steady state~in the rotating frame!. The steady-state power,
directly related to the homogeneous line-shape, is examine
, No. 21, 1 June 1995
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8551Geva, Kosloff, and Skinner: Relaxation of a two-level system
in this section. The steady-state expectation values of all
polarization components in theP representation are given
explicitly in Appendix D.

The steady state is characterized by the TLS contin
ously absorbing energy from the field and rejecting it into t
bath, in a manner that maintains energy balance. From
thermodynamical point of view, the work performed on th
TLS by the field is completely dissipated and rejected as h
into the thermal bath, thereby increasing the entropy of
universe. Hence, the TLS must absorb energy from the fi
in steady state in order not to contradict the second law
thermodynamics. The absorption spectrum consists of
rate of energy absorbed by the TLS from the field, as a fu
tion of the field’s frequency.

From Eqs.~3.3! and ~4.33! the power, which is the rate
of energy absorbed by the TLS from the field, becomes:

P5K ]W

]t L 52ev^P̂y&52ev^P̂y&. ~6.1!

Note that ^P̂y& 5 ^P̂y& since the transformation to theP
representation amounts to a rotation byu around the rotating
ŷ axis. It therefore leaves the component of the polarizat
along theŷ axis invariant~cf. Fig. 3!. The spectrum will be
given by the steady-state power,P (v). In the plots that fol-
low a line-shape function defined by:

LS~v!5P ~v!/v ~6.2!

is used.
Consider the power function obtained from the SBE, E

~4.35!:

P ~v!5
2v~2e!2Pz

eq/T2

~Dv!21S 1T2D
2

1
T1
T2

~2e!2
. ~6.3!

The corresponding standard line-shape is Lorentzian. T
peak is atv5v0 , and the broadening has two contribution
1/T2

2 , from dephasing; and (2e)2 T1 /T2 , from power
broadening.

A few important properties of the power function in Eq
~6.3! should be remarked upon.

~1! To be consistent with thermodynamics the pow
production of a TLS coupled to a positive temperature h
bath has to be a non-negative quantity. From Eq.~6.3! it can
be learned that the power is non-negative only for posit
v. Therefore it fails to comply with this fundamental the
modynamical constraint for negative field frequencies. R
call that in the context of a circularly rotating driving field
as in this model, negative frequencies are well defined a
physically distinguishable from positive ones. This incons
tency is not very important from the practical point of vie
since the standard theory only applies for weak fields, wh
the line-shape is very narrowly distributed around resonan

~2! The power vanishes when the bath coupling ope
torsL andL† vanish. In this limitT1→`, which from Eq.
~6.3! leads toP (v)50. Once this coupling vanishes, there
no mechanism for energy transfer between the TLS and
J. Chem. Phys., Vol. 102
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bath, resulting in zero absorption in steady state~which is
known as complete saturation!. This should also hold for the
GBE.

The power and line-shape functions obtained from th
GBE are now analyzed. The line-shape function in terms o
the P representation can be obtained by multiplyingP̂y

ss

from Appendix D by 2e. For the purposes of this section it is
more convenient to work in theP representation. Solving
Eq. ~4.29! for steady state and evaluating the power leads t
the following expression:

P ~v!5
22evn~aGp1hd!

Gpn
21Gp~Gd81

1
2 Gp!

222hj~l1Gd81
1
2 Gp!2l2Gp

~6.4!

@recall thatn5A(Dv)212(e)2]. Equation~6.4! is a gener-
alization of Eq.~6.3!, and is applicable at arbitrary field in-
tensities and frequencies. The exact line-shape predicted
Eq. ~6.4! depends upon the specific physical realization o
the bath. In principle the expression can be inverted to prob
the bath properties. As an example, the line-shape in E
~6.4! is evaluated for the case of a Debye solid in the nex
section.

A few general properties of the generalized line-shap
serve as crucial consistency tests and should be pointed o

~1! The generalized line-shape converges to the standa
Lorentzian line-shape@Eq. ~6.3!# in weak fields~cf. Sec. V!.

~2! The generalized power is non-negative for all fre-
quencies, as is shown in Appendix E. This implies that, un
like the SBE, the generalized ones are consistent with th
second law of thermodynamics for all field frequencies.

~3! The generalized line-shape vanishes whenL and
L† do, as is shown in Appendix E. Hence, the present mod
correctly describes the line-shape for arbitrary field intens
ties.

VII. AN ILLUSTRATIVE SPECIAL CASE: THE LINE-
SHAPE OF A TLS IMPURITY EMBEDDED IN A
DEBYE SOLID

The rate coefficients in the GBE and the correspondin
line-shape depend upon the specific physical realization
the bath. In this section the line-shape of a TLS coupled to
Debye solid is analyzed.

For a bath consisting of the acoustic normal modes of
solid, the bath Hamiltonian is given by

Hb5(
n

vnbn
†bn, ~7.1!

wherevn , bn
† and bn are the frequency, and creation and

annihilation operators associated with the n-th mode. Con
siderL andL† to be linear, andD quadratic, in the coordi-
nates of the normal modes:11,12

L5L†5(
n

~gnbn1gn* bn
†!,

~7.2!
D5(

iÞ j

~dibi1di* bi
†!~djbj1dj* bj

†!.
, No. 21, 1 June 1995
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$gn% and $di% are bath-TLS coupling coefficients. Note th
^L&b5^L†&b5^D&b50.

The analysis starts by evaluating the bath parame
associated with the off-diagonal coupling, i.e. the coupl
associated withL andL†. The evaluation ofCLL†(t) leads
to

CLL†~t!5(
n

ugnu2$e2 ivnt@11n~bvn!#

1eivntn~bvn!%

→E
0

`

dvr~v!ug~v!u2$e2 ivt@11n~bv!#

1eivtn~bv!%, ~7.3!

where

n~x!5
1

ex21
, ~7.4!

and r(v) is the bath mode density. Continuous frequen
v, and coupling coefficient,g(v), replace their discrete ana
logues,vn andgn . Note thatv andr in Eq. ~7.3! are notthe
field frequency and the density operator from previous s
tions.

The evaluation ofC̃LL†(x) yields

C̃LL†~x!5H 2pr~x!ug~x!u2@n~bx!11# if x.0

2pr~2x!ug~2x!u2n~2bx! if x,0
. ~7.5!

Unlike in the field-free case, the sign ofx need not be strictly
positive or negative. This is why both lines in Eq.~7.5! are
important, and a rotating wave approximation according
whichL5(ngnbn, L†5(ngn* bn

†, was not introduced. In the
latter approximation,C̃LL†(x) vanishes for negativex, and
hence a physically unjustified bias is introduced into the r
coefficients.
J. Chem. Phys., Vol. 1
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Substituting Eq.~7.5! in Eqs.~4.31! yields

Gp
0~x!52pr~ uxu!ug~ uxu!u2coth~buxu/2!, ~7.6!

d0~x!5H pr~x!ug~x!u2, if x.0

2pr~2x!ug~2x!u2, if x,0
. ~7.7!

In the Debye solid11

g~x!5mA x

2N
,

r~x!5H 3NvD
3 x2, for 0<x<vD

0, otherwise

, ~7.8!

wherevD is the Debye frequency,N is the total number of
normal modes andm is a coupling constant with units of
square root of energy. Hence, in the Debye solid the rela
ation coefficientsGp

0 andd0 are given by

Gp
0~x!5H 0, if uxu.vD

3pm2U xvD
U3coth~buxu/2!, if uxu<vD

,

~7.9!

d0~x!5H 0, if uxu.vD

3

2
pm2F x

vD
G3, if uxu<vD

. ~7.10!

The diagonal coupling correlation function associated wit
the bath operatorD is evaluated next. The evaluation of
CDD(t) yields
CDD~t!5(
kÞ l

2udku2udl u2$e2 i ~vk1v l !t@n~bvk!11#@n~bv l !11#1ei ~vk1v l !tn~bvk!n~bv l !12e2 i ~vk2v l !t

3@n~bvk!11#n~bv l !%

→2 E
0

`

dvr~v!ud~v!u2E
0

`

dv8r~v8!ud~v8!u2$e2 i ~v1v8!t@n~bv!11#

3@n~bv8!11#1ei ~v1v8!tn~bv!n~bv8!12e2 i ~v2v8!t@n~bv!11#n~bv8!%. ~7.11!

On the last line of Eq.~7.11!, continuous frequencies,v andv8, and coupling coefficients,d(v) andd(v8), replace their
discrete analogues,vk , v l , dk anddl .

The evaluation ofC̃DD(x) yields

C̃DD~x!58pE
0

`

dvr~v!r~v1x!ud~v!u2ud~v1x!u2n~bv!@n~b~v1x!!11#14p

3E
0

n

dvr~v!r~x2v!ud~v!u2ud~x2v!u2@n~bv!11#@n~b~x2v!!11#. ~7.12!
02, No. 21, 1 June 1995
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In the Debye solid

d~x!5AW
1
2Ax/2N , ~7.13!

and r(x) is given by Eq.~7.8!. W is a dimensionless cou-
pling coefficient. Substituting Eq.~7.8! and Eq.~7.13! in Eq.
~7.12!, which is substituted in turn into Eq.~4.31!, yields
Gd8

0(x) anda0(x) for the Debye solid.
The derivation of the GBE involves two approximation

that may now be explicitly expressed in terms of the Deby
model:

~1! The rate of decay of the bath fluctuations is approx
mately vD for T.vD , or T for T,vD ~recall that since
\5kB51, T andvD can be viewed as frequencies as well a
energies!. The bath correlation function decays very fast o
the time scale of the relaxation of the TLS. Hence, this a
proximation is valid if

Gp
0 ,Gd8

0!H vD if T.vD

T if T,vD
. ~7.14!

~2! The field frequency,v, is fast on the time scale of
the TLS relaxation. Hence

Gp
0 ,Gd8

0!v. ~7.15!

The arguments ofGp
0(v), Gp

0(v6n), Gd8(n), d0(v),
d0(v6n), anda0(n) depend upon the field amplitude and
frequency. In the standard theory, they come with field
independent arguments, namelyv0 and 0. The main impli-
cation is thatGp

0(v), Gp
0(v6n), Gd8(n), d0(v), d0(v6n),

anda0(n) scan throughall the bath frequencies as the field
frequency is changed, and therefore provide a tool to pro
the mode density of the bath. The most dominant feature
the mode density of the Debye solid is the cutoff atvD . The
latter would lead to sharp cutoffs in the bath coefficients
the following cases:

~1! Gp
0(v) andd0(v) experience a sharp cutoff at

v56vD. ~7.16!

~2! Gp
0(v1n) and d0(v1n) experience a sharp cutoff

when v1n5vD . The latter equality can be reached onl
whenvD.v0 , at

v5 1
2 Fv01vD1~2e!2

vD2v0
G , ~7.17!

which lies belowvD .

~3! Gp
0(v2n) and d0(v2n) experience a sharp cutoff

whenv2n5vD . If vD,v0 the cutoff value is

v5 1
2 Fv01vD1~2e!2

vD2v0
G , ~7.18!

which lies abovevD . If vD.v0 the cutoff value is

v5 1
2 Fv02vD1~2e!2

vD1v0
G . ~7.19!
J. Chem. Phys., Vol. 102
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~4! Gd8
0(n) and a0(n) experience a sharp cutoff when

n52vD . The cutoffs become

v5v06A~2e!21~2vD!2 . ~7.20!

The line-shape was examined for various values of the
parameters. Settingv051 means that all energies, frequen-
cies, temperatures and coupling constants are measured i
units ofv0 . vD is also fixed in all the examples considered,
and equals 2v0 .

The temperature dependence of the line-shape is exam
ined for low (T50.1), medium (T51) and high (T510)
values. Different relative values of the diagonal and nondi-
agonal coupling are considered. The values of the coupling
parametersm andW where chosen so that the approxima-
tions leading to the derivations are valid. Furthermore, the
values ofm andW where chosen so that the field-free rate
coefficients,Gp

0(v0) and Gd8
0(0), are similar for different

temperatures. The explicit values ofm andW that were used
are presented in Table V.

The results for case~A! are presented in Fig. 4. Figure 4
demonstrates how the deviations from the standard line-
shape increase as the field intensifies. Ate50.025 the devia-
tions are quite small, and are manifested by a blue shift. At
e50.1, the blue shift increases and a distortion due to the
cutoff is added to it. Ate50.5, the line-shape is completely
distorted and bears no resemblance to the standard one. Th
loss of the typical bell shape is due to the fact that the blue
shift approaches the cutoffs. Note that unlike the standard
line-shape function@Eq. ~6.3!#, the line-shape obtained from
the present model changes sign as negative frequencies ar
approached, so that the power remains non-negative~6.2!, in
accord with the second law of thermodynamics.

The line-shapes obtained for cases~B! and~C! are quite
similar. They differ with respect to case~A! by the additional
diagonal coupling. Therefore the results for the more ex-
treme case~C!, where the diagonal coupling is much stron-
ger, are shown in Figs. 5 and 6. For small fields the picture is
very similar to that in the standard theory, namely, a line-
shape narrowly distributed around resonance. However, in
Fig. 5, a significant wide band ‘‘off-resonance’’ absorption is
seen at much higher frequencies. The latter increases an
widens considerably as the field increases, and finally merges
with the blue-shifted resonance peak~cf. Fig. 6!. As the satu-
ration further increases, the line-shape is completely dis-

TABLE V. Parameters used in plotting the line-shapes for the Debye model.
Also listed are the values of the field-free 1/T1 and 1/T28.

case T m 1/T1 W 1/T28

~A! 0.1 0.001 1.8~26! 0.0 0.0
~B! 0.1 0.001 1.8~26! 0.2 1.3~26!
~C! 0.1 1.0~26! 1.8~212! 0.2 1.3~26!
~D! 1.0 0.001 2.5~26! 0.0 0.0
~E! 1.0 0.001 2.5~26! 0.001 2.3~26!
~F! 1.0 1.0~26! 2.5~212! 0.001 2.3~26!
~G! 10.0 0.001 2.4~25! 0.0 0.0
~H! 10.0 0.001 2.4~25! 0.0003 2.6~25!
~I! 10.0 1.0~26! 2.4~210! 0.0003 2.6~25!
, No. 21, 1 June 1995
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8554 Geva, Kosloff, and Skinner: Relaxation of a two-level system
FIG. 4. Comparison of the line-shape obtained from the SBE and the G
for a TLS impurity embedded in a Debye solid. The units are such th
energies and frequencies are measured in units ofv0 ~i.e. v051). The
parameters used to evaluate the line-shapes are:vD52, m50.001,W50,
T50.1. Note that only off-diagonal coupling is accounted for in this cas
(W50). The three plots correspond to different field intensities:e50.025,
e50.1, e50.5. The deviations between the SBE and GBE results are mo
pronounced for higher field intensities. The effects of the Debye cutoff o
the line-shape is observed fore50.1 ande50.5. The inconsistency of the
SBE for negative field frequencies is demonstrated fore50.5.

FIG. 5. Line-shapes obtained from the GBE for relatively low field intens
ties (e<531026). The area under each line-shape is normalized to 1. T
units are such that energies and frequencies are measured in units ofv0 ~i.e.
v051). The parameters used to evaluate the line-shapes arevD52,
m5131026, W50.2, T50.1. The line-shapes are shown on the full fre
quency scale in graph A~note that the resonance peak was truncated at abo
one-tenth of its actual height!. The wide off-resonance absorption band
aroundv54 is magnified on graph B. The full resonance peak is shown o
a narrow frequency scale on graph C.
J. Chem. Phys., Vol. 102
torted, and the off-diagonal coupling become dominant, lead
ing to line-shapes similar to those obtained in case~A! for
very high fields.

The line-shapes obtained for case~D! are similar to these
obtained for case~A!. Cases~E! and ~F! provide new fea-
tures due to the additional diagonal coupling; examining th
more extreme case~F!, the results are shown in Fig. 7. For
lower fields the picture resembles that obtained for case~A!.
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-
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n

FIG. 6. Line-shapes obtained from the GBE for the same parameters as
Fig. 5, but for higher field intensities. The area under each line-shape
normalized to 1. The units are such that energies and frequencies are m
sured in units ofv0 ~i.e. v051).

FIG. 7. Line-shapes obtained from the GBE for various field intensities. Th
area under each line-shape is normalized to 1. The units are such that en
gies and frequencies are measured in units ofv0 ~i.e. v051). The param-
eters used to evaluate the line-shapes are:vD52, m5131026,
W50.001,T51.0.
, No. 21, 1 June 1995
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8555Geva, Kosloff, and Skinner: Relaxation of a two-level system
For higher fields, the line-shape acquires a highly tooth
character due to the various cutoffs.

The line-shapes obtained for case~G! are similar to these
obtained for cases~A! and ~D!. Cases~H! and ~I! provide
interesting features that are, as before, due to the diago
coupling. As before, the more extreme case~I! is shown in
Fig. 8. The pattern resembles that in Fig. 7. The ‘‘wavy
nature of the line-shape preceding the high field ‘‘toothe
line-shape is interesting to note.

In conclusion, the line-shapes obtained close to satu
tion show great diversity and complexity, and contain no
local information on the density of bath modes and the n
ture of the coupling with the bath. It should be note
however that extracting this information might not be ea
and certainly requires a detailed model for the TLS-bath
teraction.

The saturation of the power is presented by plotting t
power vs. the Rabi frequency at a given frequency. The
sults of the GBE are presented and compared to those
tained from the SBE in Figs. 9–11. Generally, the behavio
at saturation differs significantly from that predicted by th
standard theory, which is not consistent at saturation. T
saturation behaviour is a direct manifestation of the expli
dependence of the bath terms upon the parameters of
field. In saturation, the dominant term in the denominator
the power function isGp(2e)2. (2e)2 factors out with the
corresponding term in the numerator, so that the powe
proportional to (aGp1hd)/Gp . The dependence of the lat
ter upon the field parameters yields the different saturat
behaviours shown in Figs. 9–11.

VIII. RELATION TO OTHER STUDIES AND
CONCLUDING REMARKS

The first attempt to generalize the Bloch equations to
domain of intense driving fields was carried out in NMR
The motivation was provided by Redfield’s demonstration
the failure of the SBE to account for the experiment

FIG. 8. Line-shapes obtained from the GBE for various field intensities. T
area under each line-shape is normalized to 1. The units are such that
gies and frequencies are measured in units ofv0 ~i.e. v051). The param-
eters used to evaluate the line-shapes are:vD52, m5131026,
W50.0003,T510.0.
J. Chem. Phys., Vol. 102
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NMR signals in solids, under the conditions of satura
tion.18 From the attempts to construct a theory for nuclea
spin relaxation under the conditions of saturation, the pio
neering studies of Bloch19 and Tomita20 are most relevant to
the present study. In both cases, the derivation of the GB
follows a similar procedure, where the basic idea is to tran
form to the rotating frame tilted by the angleu with respect
to the originalz axis, and carry out the derivation of the
master equation in this representation. Naturally, the a
vances made in the theory of open quantum systems sin
the papers of Bloch and Tomita were published should b

he
ner-
FIG. 9. Comparison of saturation curves~power vs. field intensity! obtained
from the SBE and the GBE. The dashed curves correspond to the SBE a
the continuous curves to the GBE. The units are such that energies a
frequencies are measured in units ofv0 ~i.e. v051). Graph A corresponds
to resonance, graph B corresponds to a frequency red-shifted with respec
resonance, and graph C corresponds to a frequency blue-shifted with resp
to resonance. The other parameters for this plot are:vD52, T51.0,
m50.05, andW50.

FIG. 10. Same as Fig. 9 but with parametersvD52, T51.0,m50.05, and
W50.05.
, No. 21, 1 June 1995
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8556 Geva, Kosloff, and Skinner: Relaxation of a two-level system
incorporated. As a result, the present treatment is more
isfactory from the mathematical point of view, but the ge
eral results are similar.

The more important difference between the work
Bloch and Tomita and the present study lies in the differe
points of view. The work of Bloch and Tomita was directe
towards applications in NMR. The present study views
general TLS of arbitrary origin, and examines what can
generally said about its relaxation in strong fields withou
adopting specific relaxation mechanisms or employing si
plifying approximations. For example, Tomita employs th
high-temperature limit and exponentially decaying bath c
relation functions at a very early stage of the derivatio
making it difficult to see which of the results rely on thes
assumptions.

The more modern treatments of the problem of rela
ation in strong fields were motivated by experimental e
dence for the failure of the SBE to explain the free-inducti
decay following saturation of an electronic transition
Pr31 impurity embedded inLaF3.

23 The treatments in the
spirit of the present work are mainly those in Refs. 29–3
These treatments are even more specific then the one
NMR, and differ from the present study in the followin
respects:~1! they consider only pure-dephasing-type diag
nal interactions with the bath, and treat population relaxat
phenomenologically;~2! they consider a semiclassical time
dependent Hamiltonian with stochastic fluctuations~except
for Ref. 30!. We show how the generalized optical Bloc
equations obtained by these authors follow naturally fro
our more general fully quantum-mechanical results in t
appropriate limits.

A different approach for the proper description of rela
ation in systems subject to time-dependent fields was utiliz
in previous studies.43–45The latter is based on the hypothes
that the relaxation dynamics is constantly guiding the syst
towards an equilibrium state corresponding to the instan
neous Hamiltonian. The field-dependent relaxation equat
thus obtained should hold in the case of a sufficiently slow

FIG. 11. Same as Fig. 9 but with parametersvD52, T51.0,
m5131026, andW50.05.
J. Chem. Phys., Vol. 102
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varying field. In such a case, the field may be taken as a
proximately constant throughout the time interval for which
the solution of the Liouville equation is repeatedly approxi
mated by a second-order perturbation expansion. The ana
sis of the present work assumes that terms rotating with t
field average out throughout the very same time interva
This assumption is therefore in conflict with that required fo
the equations of Refs. 43–45 to hold, since the field ca
either rotate fast or remain constant at this time interval, b
certainly not both. Hence, the GBE presented here are a
equate in the ‘‘fast field’’ regime, whereas the approach o
Refs. 43–45 is required for the derivation of analogous equ
tions in the ‘‘slow field’’ regime.

To summarize, the main results of the present study ar
~1! a general, unified, comprehensive, and fully quantum
mechanical derivation of the generalized Bloch equation
~2! a careful analysis showing under which weak-field cir
cumstances the standard Bloch equations are valid;~3! the
demonstration that the generalized optical Bloch equatio
follow naturally in certain limits from the generalized Bloch
equations;~4! the introduction of the thermodynamic point
of view as a tool for examining the generalized Bloch equa
tions; and~5! the demonstration that line-shapes near satur
tion can provide information about bath spectral densities. A
the use of intense fields becomes more routine, the neces
of using the generalized Bloch equations will become in
creasingly apparent, as will the richness they contain.
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APPENDIX A: THE EVALUATION OF THE BATH
FACTORS

In this appendix the evaluation of the first bath factor in
Eq. ~4.24! is described. The other bath factors are evaluate
in a similar manner.

Consider the first bath factor:

E
0

t

dt1Trb~G̃ ~ t !G̃ ~ t1!rb). ~A1!

The bath operatorsG̃ (t) andG̃ (t1) are given in terms of the
original bath operators in Eqs.~4.17!-~4.18!. Thus,
, No. 21, 1 June 1995
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G̃ ~ t !G̃ ~ t1!5eint$cos2~u/2!eivtL~ t !2sin2~u/2!e2 ivtL†~ t !2 1
2 sin~u!D~ t !%

3eint1$cos2~u/2!eivt1L~ t1!2sin2~u/2!e2 ivt1L†~ t1!2 1
2 sin~u!D~ t1!%

5e2inte2 in~ t2t1!$cos4~u/2!e2ivte2 iv~ t2t1!L~ t !L~ t1!2sin2~u/2!cos2~u/2!eiv~ t2t1!L~ t !L†~ t1!

2 1
2 sin~u!cos2~u/2!eivtL~ t !D~ t1!2sin2~u/2!cos2~u/2!e2 iv~ t2t1!L†~ t !L~ t1!1sin4~u/2!e22ivteiv~ t2t1!

3L†~ t !L†~ t1!1 1
2 sin~u!sin2~u/2!e2 ivtL†~ t !D~ t1!2 1

2 sin~u!cos2~u/2!eivte2 iv~ t2t1!D~ t !L~ t1!

1 1
2 sin~u!sin2~u/2!e2 ivteiv~ t2t1!D~ t !L†~ t1!1 1

4 sin
2~u!D~ t !D~ t1!%. ~A2!

For the future we note that the common factore2int will cancel out when transforming back from the interaction picture since

e2 i Ĥst
†P1,P1s̃]ei Ĥst5e22int@P1 ,P1ŝ# . ~A3!

Taking the product of Eq.~A2! with rb , performing the trace over the bath, and integrating one obtains

E
0

t

dt1$Trb~G̃ ~ t !G̃ ~ t1!rb!%

5e2intH cos4~u/2!e2ivtE
0

t

dte2 i ~v1n!tCLL~t!2 1
4 sin

2~u!E
0

t

dtei ~v2n!tCLL†~t!2 1
2 sin~u!cos2~u/2!eivt

3E
0

t

dte2 intCLD~t!2 1
4 sin

2~u!E
0

t

dte2 i ~v1n!tCL†L~t!1sin4~u/2!e22ivtE
0

t

dtei ~v2n!tCL†L†~t!1 1
2 sin~u!sin2~u/2!

3e2 ivtE
0

t

dte2 intCL†D~t!2 1
2 sin~u!cos2~u/2!eivtE

0

t

dte2 i ~v1n!tCDL~t!1 1
2 sin~u!sin2~u/2!e2 ivt

3E
0

t

dtei ~v2n!tCDL†~t!1 1
4 sin

2~u!E
0

t

dte2 intCDD~t!J . ~A4!
CAB(t) with A,B5L,L†,D are bath correlation functions
defined in Eq.~4.25!. Note that the integration variable wa
changed fromt1 into t5t2t1 .

Two approximations are now introduced that consid
ably simplify Eq.~A4!.

~a! t in the upper limit of the integrals is substituted b
`. This is a valid approximation if the decay of the ba
correlations is very fast on the time scale of the TLS rela
ation.

~b! Terms rotating likee6 ivt or e62ivt are neglected.
This is a valid approximation if the frequency of the field
very fast on the time scale of the TLS relaxation. Note th
this approximation is used in the rotating frame. Introduci
the same approximation in the stationary frame would me
averaging out the term corresponding to the interaction of
TLS with the driving field.

Following the second approximation, six of the nin
terms in Eq.~A4! are eliminated. The remaining terms a
those associated withCLL†(t), CL†L(t) andCDD(t). The
other bath factors also turn out to be associated with o
those correlation functions. Following the first approxim
tion the remaining integrals may be evaluated using the
lation:

E
0

`

dteiv0tCAB~t!5
1

2
C̃AB~v0!1

1

2p i
P E

2`

`

dv
C̃AB~v!

v2v0
,

~A5!
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whereC̃AB(x) is the Fourier transform ofCAB(t):

C̃AB~x!5E
2`

`

dteixtCAB~t!, ~A6!

andP denotes the Cauchy value of the integral. WhenA and
B are Hermitian conjugates,C̃AB(v) is both real and posi-
tive. This occurs for correlation functions ofL with L† and
D with itself. However these are the only correlation func-
tions remaining after the second approximation. Thus, Eq.
~1.5! provides a convenient separation of the bath factor into
real and imaginary parts. The imaginary part contributes to
the oscillatory Hamiltonian dynamics and will eventually
lead to small modifications of the detuning and the Rabi
frequency20 and are therefore neglected henceforth. The bath
factor then turns into~except for a trivial oscillatory factor! a
real positive time-independent relaxation rate coefficient that
introduces a non-oscillatory, dissipative, contribution into the
overall dynamics.

In conclusion, the first bath factor is approximated by

E
0

t

dt1$Trb~G̃ ~ t !G̃ ~ t1!rb!%'e2intg1 ,

where

g15
1
8 sin

2~u!$2C̃LL†~v2n!2e2b~v1n!C̃LL†~v1n!

1e2bnC̃DD~n!% ~A7!
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is real and positive. Note that to obtain Eq.~A.7! the identity:

C̃AB~2x!5e2bxC̃BA~x! ~A8!

is used.

APPENDIX B: THE RATE COEFFICIENTS g1...g9

The rate coefficientsg1...g9 are real time-independent
yet field-dependent. They are given in terms of the Four
transforms of the nonvanishing bath correlation functions

g15
1
8 sin

2~u!$2C̃LL†~v2n!2e2b~v1n!C̃LL†~v1n!

1e2bnC̃DD~n!%,

g25
1
2 $cos4~u/2!C̃LL†~v1n!1sin4~u/2!e2b~v2n!

3C̃LL†~v2n!1 1
4 sin

2~u!C̃DD~n!%,

g35
1
2 sin~u!$cos2~u/2!C̃LL†~v!

2sin2~u/2!e2bvC̃LL†~v!2 1
2 cos~u!C̃DD~0!%,

g45
1
2 H sin4~u/2!C̃LL†~v2n!1cos4~u/2!e2b~v1n!

3C̃LL†~v1n!1
1

4
sin2~u!e2bnC̃DD~n!J ,

g55
1
8 sin

2~u!$2C̃LL†~v1n!2e2b~v2n!C̃LL†~v2n!

1C̃DD~n!%,

g65
1
2 sin~u!$2sin2~u/2!C̃LL†~v!

1cos2~u/2!e2bvC̃LL†~v!2 1
2 cos~u!C̃DD~0!%,

g75
1
2 sin~u!$2sin2~u/2!C̃LL†~v2n!1cos2~u/2!

3e2b~v1n!C̃LL†~v1n!2 1
2 cos~u!e2bnC̃DD~n!%,

g85
1
2 sin~u!$cos2~u/2!C̃LL†~v1n!2sin2~u/2!

3e2b~v2n!C̃LL†~v2n!2 1
2 cos~u!C̃DD~n!%,

g95
1
2 $sin2~u!C̃LL†~v!1sin2~u!e2bvC̃LL†~v!

1cos2~u!C̃DD~0!%. ~B1!

Note thatC̃LL† comes with the argumentsv andv6n, and
C̃DD comes with the argumentsn and 0.

As the field is turned off (u50,p), the only surviving
terms areg2 , g4 and g9 . g2 1 g4 turns into 1

2 C̃LL†(v0)
3(11e2bv0), andg9 turns into

1
2 C̃DD(0). These results are

expected in the case of field-free relaxation.

APPENDIX C: TRANSFORMATION OF THE
GENERALIZED MASTER EQUATION TO THE
HEISENBERG PICTURE

In this Appendix the generalized master equation in E
~4.24! is transformed to the Heisenberg picture.
J. Chem. Phys., Vol. 102
er
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Starting with Liouville equation in the Schro¨dinger pic-
ture @Eq. ~2.1!# it was transformed first to the rotating frame
@Eq. ~4.2!#, and afterwards to the interaction picture@Eq.
~4.15!#. Thus, Eq. ~4.24! is given in terms of the
‘‘Schrödinger-rotating-interaction picture.’’ To transform to
the Heisenberg picture, first a transformation back to the
Schrödinger picture is carried out.

The transformation back from the interaction picture was
described during the evaluation of the bath factors~cf. Ap-
pendix A!. The transformation back from the rotating frame
then amounts to replacingP1 by e2 ivtP1 and P2 by
eivtP2 .

The transformation from the Schro¨dinger picture to the
Heisenberg picture is carried out by the following identity:

d

dt
^X&[Tr~L~s!•X![Tr~s•L* ~X!!, ~C1!

whereL is the generator of motion in the Schro¨dinger pic-
ture andL* is the generator of motion in the Heisenberg
picture. Note that the Tr in Eq.~C1! refer to a trace over the
Hilbert space of the TLS. The identity comes about since th
last two terms of Eq.~C1! equal the time derivative of the
expectation value of the operatorX, as given in the two
pictures.

L is known from the master equation in the Schro¨dinger
picture. It consists of Hamiltonian and dissipative parts:

ṡ5L~s!5LH~s!1LD~s! , ~C2!

where

LH~s!52 i @Hs
01W~ t !,s#,

LD~s!5$2g1@P̂1,P̂1s#2g2@P̂1,P̂2s#

2g3@P̂1,P̂zs#2•••2g9@P̂z,P̂zs#%1h.c.

~C3!

P̂1, P̂2, andP̂z are theP̂ operators in the rotating frame as
defined in Eq.~4.27!. It is well known that the Hamiltonian
part transforms to the Heisenberg picture such that:

LH
* ~X!5 i @Hs

01W~ t !,X# . ~C4!

The dissipative part is a sum of terms, each associated with
commutator of the following structure:@A,Bs# and its Her-
mitian conjugate. Each commutator is transformed by usin
Eq. ~C1! and elementary properties of the trace:

Tr$@A,Bs#•X%5Tr$ABsX%2Tr$BsAX%

5Tr$sXAB%2Tr$sAXB%

5Tr$s•@X,A#B%. ~C5!

The Hermitian conjugate is similarly obtained by
, No. 21, 1 June 1995
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Tr$@A,Bs#†•X%5Tr$s•B†@A†,X#%. ~C6!

Thus,

LD* ~X!52g1~@X,P̂1#P̂11P̂2@P̂2,X# !•••

2g9~@X,P̂z#P̂z1P̂z@P̂z,X# !. ~C7!
g

c
i

e
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APPENDIX D: THE STEADY-STATE SOLUTION OF
THE GENERALIZED BLOCH EQUATIONS IN THE P
REPRESENTATION

The steady-state solution of Eq.~4.34! is obtained by
equating the right-hand side to zero and solving for the
steady-state expectation values ofP̂x, P̂y andP̂z, denoted by
P̂x
ss, P̂y

ss and P̂z
ss:
P̂x
ss5

22eDv
gz

Gz
2F ~2e!2

gx

Gz
1Gygx1

gzGxz

Gz
G

~Dv!21
Gx

Gz
~2e!21GxGy2F2eDv

Gxz1Gzx

Gz
1

Gy

Gz
GxzGzxG ,

P̂y
ss5

2eGx

gz

Gz
1F2eGzx

gx

Gz
2DvS gx1Gxz

gz

Gz
D G

~Dv!21
Gx

Gz
~2e!21GxGy2F2eDv

Gxz1Gzx

Gz
1

Gy

Gz
GxzGzxG ,

P̂z
ss5

2
gz

Gz
~GxGy1~Dv!2!2Fgx

Gz
~2eDv1GyGzx!G

~Dv!21
Gx

Gz
~2e!21GxGy2F2eDv

Gxz1Gzx

Gz
1

Gy

Gz
GxzGzxG . ~D1!
e

n

The terms in square brackets vanish when the SBE are va
sincegx ,Gxz ,Gzx'0 in such a case. The rest of the term
then reduce to the typical ‘‘Lorentzian behaviour’’ familiar
from linear response theory. Beyond this limit, deviation
from Lorentzian behaviour are expected.

It is interesting to examine the steady state obtained f
extreme levels of saturation. In such a case, the leading ter
in the numerator and denominator are those corresponding
the highest order ine. The following asymptotic values are
then obtained:

P̂x
ss→2

gx

Gx
'2

1

2
tanhS b~2e!

2 D ,
P̂x
ss,P̂y

ss→0. ~D2!

The last equality on the first line is obtained by lettin
usin(u)u'1, cos(u)'0, v6n'6u2eu and n'u2eu. It there-
fore seems that for extremely intense fields~such thate far
exceedsv0! the steady-state polarization lies along the rota
ing driving field and its magnitude is what one would expe
in thermal equilibrium for a stationary field whose magn
tude equals the rotating field amplitude.

Finally, note that the power is given by 2ev P̂y
ss. Hence,

althoughP̂y
ss vanishes at extreme saturation, the power do
lid,
s

s

or
ms
to

t-
t
-

s

not because of the extra 2e on the numerator. It can be
shown that:

P→
Gxgz1Gzxgx

Gx
'

1

2
vd0~v!. ~D3!

The last equality is obtained in a similar manner to that in th
equation forP̂x

ss in Eq. ~D2!. The line-shape then turns out to
be proportional toC̃LL†(v) and scanning through the fre-
quencies at extreme saturation may provide information o
the full dynamics of the bath fluctuations.

APPENDIX E: GENERAL PROPERTIES OF THE
GENERALIZED POWER FUNCTION

In this Appendix it is shown that~a! the generalized
power function vanishes whenL andL† do; ~b! the gener-
alized power function is non-negative for all frequencies.

Consider the numerator on the rhs of Eq.~6.4!. Substi-
tuting for a, Gp , h andd their explicit definitions from Eq.
~4.30!, one obtains
, No. 21, 1 June 1995
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22evn~aGp1hd!

52ve2$ 1
4 sin

2~u!@C̃LL†~v1n!C̃LL†~v2n!~12e22bv!1 1
2 C̃LL†~v!C̃DD~n!~11e2bn!~12e2bv!#1 1

2 @12cos~u!#2

3@ 1
4 C̃LL†~v2n!C̃DD~n!~12e2bv!1 1

2 C̃LL†~v!C̃LL†~v2n!~11e2b~v2n!!~12e2bv!#1 1
2 @11cos~u!#2

3@ 1
4 C̃LL†~v1n!C̃DD~n!e2bn~12e2bv!1 1

4 C̃LL†~v!C̃LL†~v1n!~11e2b~v1n!!~12e2bv!#%. ~E1!
-

n

i

a
t

c

n
a

h

in

b

o

As L andL† vanish, so doC̃LL†(v) and C̃LL†(v6n), so
that the power also vanishes. SinceC̃LL† and C̃DD are non-
negative the numerator, Eq.~E1!, is also positive for all field
frequencies, including negative ones!

A similar general proof for the non-negativity of the de
nominator on the rhs of Eq.~6.4! is impossible. To see this,
note that all the bath parameters appearing in the denomi
tor are either functions ofv and 0 or ofv6n and n ~cf.
Tables I and II!. The denominator may be broken into sepa
rate products, each consisting of three bath paramete
These products may be grouped according to their cons
tency ofv and 0 dependent bath parameters andv6n and
n dependent bath parameters. The sum of members of e
group should separately be non-negative if the denomina
is to be non-negative, since the group’s members are ind
pendent of one another.

Consider the group of terms containing threev6n and
n dependent bath parameters. The sum of these terms
Gp(

1
4 Gp

22l2!. SinceGp>0, the non-negativity of this term
is equivalent to the non-negativity of (14 Gp

22l2). The latter
is given by

1
4 Gp

22l25 1
4 cos~u!@cos4~u/2!Gp

02~v1n!2sin4~u/2!

3Gp
02~v2n!#1 1

2 sin
2~u!Gd8

0@cos2~u/2!

3Gp
0~v1n!1sin2~u/2!Gp

0~v2n!#. ~E2!

Thus, the contribution of this independent group is not ne
essarily non-negative. The same conclusion is arrived
when considering the other groups.

The way out of this seeming inconsistency is by a
analysis of the denominator in light of the approximation th
g1...g9,,v, which was introduced in the derivation of the
master equation. To see this note that the first term in t
denominator,Gpn

2, is positive sinceGp.0. Note that this
term is the only one in the denominator that is first order
the bath parameters (Gp) and second order in the field pa-
rameters (Dv and e). The other terms are of third order in
the bath parameters. A few cases are now considered.

~1! uDvu;v. In such a case,uDvu..Gp ,Gd8,h,j and
l, and hence the sign of the denominator is determined
the sign of the first positive term.

~2! Dv50. There are two possibilities in this case.
~a! u2eu;v0. In such a case,u2eu..Gp ,Gd8,h,j,l.

Hence, the sign of the denominator is determined by that
the term proportional in (2e)2.

~b! u2eu,,uv0u. In such a case 2e may be of the same
order of magnitude or smaller thanGp ,Gd8,h,j andl. How-
ever, the limitDv50,u2eu,,v0 was already considered in
J. Chem. Phys., Vol. 102
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Sec. V and the corresponding line-shape converges to that
predicted by the SBE.

In conclusion the power is always positive within the
approximations of the model. Hence, the model is consistent
with the second law of thermodynamics.
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