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A detailed and unified account of the theory of the generalized Bloch equations is presented. The
equations apply to a two-level system weakly coupled to a heat bath and subject to a monochromatic
rotating field of arbitrary intensity. The relaxation tensor obtained is explicitly field-dependent. The
derivation is valid for general coupling to a quantum heat bath. The generalized Bloch equations are
shown to be thermodynamically consistent, as opposed to the standard Bloch equations. Different
limits of the generalized Bloch equations are examined and related to previous studies. The potential
use of the generalized Bloch equations as a probe of the bath spectral density is demonstrated for the
case of a two-level system embedded in a Debye solidl995 American Institute of Physics.

I. INTRODUCTION generalized Bloch equatiot6BE) are stated in terms of the
polarization components along the axes of a reference frame
rotating with the transverse field. These equations are explic-
M Mo, My . (M,—MS9) itly Qerive_d in the present paper, ar_1d the final result is sum-
rTEE yM X 77— T, X— T, y— — T z (1) marized in Eq.(4.34. The main differences between the
2 2 ! standard Bloch equation€SBE) and generalized versions
to describe the motion of the components of the macroscopitGBE) are: (1) the bath terms become dependent on the fre-
nuclear polarizationM, subject to an external, possibly quency and amplitude of the driving fiel(2) the relaxation
time-dependent, magnetic field7.> Bloch and Wangsnegs, matrix is not diagonal and includes coupling terms between
Redfield® and other&® later derived these equations in the the longitudinal polarization and the component rotating in
limit of weak coupling to the batland the external field. In  phase with the transverse fiel@®) the equation of motion for
these derivations the nuclear spins and the heat bath wetke polarization component rotating in phase with the trans-
considered as quantum mechanical entities, semiclassicallyerse field contains a new inhomogeneous term.
driven by the time-dependent field. The interaction with the  Analogous deviations from the behavior predicted by the
driving field was treated in the limit of linear response SBE were not reported in other branches of spectroscopy
theory! where it only affected the Hamiltonian contribution until 1983, when DeVoe and Brew@épresented experimen-
to the dynamics, and the dissipative, non-Hamiltonian contal evidence for the failure of the SBE to explain the free-
tribution remained field-independent. induction decay that follows saturation of an electronic tran-
Equations of the form of Eq(1.1) were later success- sition of Pr¥* impurity in LaF crystal. A similar failure of
fully applied to other branches of spectrosc8pyar exceed- the SBE was subsequently demonstrated by photon echo ex-
ing the original context for which they were first suggested.periments onYb vapor?* These experiments stimulated re-
In the most common usage, two of the energy levels of aearchers to consider generalizations to the standard optical
system are isolated, and a fictitious spin-1/2 is associateBloch equation€®~3¢ In this paper it will be shown that
with them?® This two-level system(TLS) paradigm has many of these treatments correspond to a certain limit of the
played a fundamental role in the development of spectrosGBE.
copy. The general features of the derivation and interpreta- From both the magnetic resonance and optical results it
tion of the Bloch equations remain similar to those in mag-is now clear that experimental capabilities enable the explo-
netic resonance, although the application to other resonancation of phenomena beyond the limit of linear response
phenomena has forced researchers to abandon the higtreory, naturally leading to the necessity to develop a theory
temperature limi{often used in magnetic resonance thepry for such circumstances. Thus, the GBE will obviate the ques-
and to consider new relaxation mechanisms’ tionable use of the SBE to interpret experiments that exploit
As early as 1955 Redfield demonstrated that the Blochntense fields.
equations fail to explain the experimental behavior of spin  The proper description of the relaxation dynamics of a
systems close to saturation, i.e. when subject to high fieldsystem simultaneously interacting with a heat bath and a
Redfield proposed a resolution of this problem in terms of aime-dependent driving field is of fundamental importance
spin temperature in the rotating fram& Bloch!® Tomita?®  for nonequilibrium thermodynamics as well as spectroscopy.
Hubbard?! and Argyres and Kellé then showed how to Phenomenological thermodynamics, which started as a
derive “generalized Bloch equations” that are valid in the theory of heat engine¥,originally sought to understand the
case of a rotating transverse field of arbitrary intensity. Thebounds imposed on processes in systems interacting with

In 1946 Bloch proposed the differential equations
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heat baths while driven by a time-dependent external ffeld. Je—
However, starting with the Boltzmann equatiSnijrevers-
ible statistical thermodynamics has been traditionally en-
gaged with systems subject to fixed boundaries. One very i|
important exception is Kubo's linear response thedf. :
However, the latter is only valid if the external time-
dependent field is considered as a small perturbation. Any
general description of the relaxation dynamics beyond the
limit of linear response must therefore be consistent with

thermodynamics. !

The Bloch equations describe a simple example of a sys- R
tem_ subject to quamu_m _dynamlcs, Whlle.stlll permitting aFIG. 1. Schematic view of the model. The TLS, with free Hamiltonian
straightforward analysis in thermodynamic terms. The re4 is coupled to a heat bath, with free Hamiltonielg, through the inter-
quirement for consistency with thermodynamics reduces iraction HamiltoniarH ., while subject to a driving terri(t) by an external
this case to the demand that, in steady state, energy will f|0\monochrom§tig rotating field. The dashed _frame delim_ina_tes the ext_ended
from the driving field into the heat bath. The reverse proces ystfguf,ﬂlrf'jgggﬁ%fnthe TLS and bath, which evolves in time according to
implying net production of work out of heat, without any '
further changes in the surroundings, is forbidden by the sec-
ond law of thermodynamics. It should be noted that thisinvolving the relation of this work to other studies are pre-
statement of the second law is made in termpaith func- sented in Sec. VIII.
tions, rather tharstatefunctions. The former can be clearly
deﬁn.eld for our model, thereby .a'lvo.iding the questionableil_ BASIC MODEL
definition of entropy far from equilibrium.

In a previous study a combination of a structure theorem  The basic model consists of a TLS, a quantum heat bath,
from semigroup theof} with the constraint imposed by the and a monochromatic rotating electromagnetic field. The
requirement for thermodynamical consistency was employedLS is simultaneously coupled to the field and the heat bath.
in order to construct an equation of motion for quantum sysSince the field is strong a semiclassical description of the
tems simultaneously interacting with heat baths and timefield is sufficient. The model is schematically depicted in
dependent field®~*° The construction of these equations Fig. 1.
was motivated by a general effort to examine the limitations ~ The state of the extended system, consisting of the TLS
imposed by quantum dynamics on the performance of heatnd the heat bath, is described by the density opepafbine
engines operated in finite time. The treatment in Refs. 42—4gynamics ofp is governed by the Liouville von Neumann
was based upon a fundamental relationship between the the&gduation
modynamical work and heat currents and the corresponding p i
quantum observablé§:*” The structure of these equations 7 = ~I[H(V).p]=—1%(t)p, 21
was similar to that of the GBE in that they involved field-
dependent bath terms, which turned out to be essential fgvhere the total Hamiltonian of the extended system is given
thermodynamic consistency. However, the relaxation equaby
t!ons of Refs. 42—45 are only valid for “slowly” varying H(t)=Hp+HS+W(t) + Hys. 2.2
fields, whereas the GBE presented here hold for “fast”
fields. Hence the two approaches are complementefy
Sec. VII). In the present paper the GBE are re-examine
from a thermodynamical point of view. HS= woP,. (2.3

The organization of this paper is as follows. The basic . .
model of a TLS coupled to a quantum-mechanical heat batff0 'S th_e positiveenergy gap between the two energy Iev_els
and to a rotating field of arbitrary intensity is presented in(the units are such that=1). In the language (.)f, magnetic
Sec. Il. The thermodynamic aspects of the model are geresonance, is the Larmor frequency of the spin’s free pre-

. . . o cession around the axis. P, is a projector defined in Eqg.
scribed in Sec. Ill. The detailed derivation of the GBEj. . ) . i !
(4.34)] is presented in Sec. IV. The conditions under which(2'6) _belqw. w(t) constltu_tes thg sem|cIaSS|ch |nt.eracft|on
the GBE reduce to the SBE or to the lized opti |—|am|Iton|an of the TLS with a single mod®tating field:

generalized optical _ _
Bloch equatior®*32are considered in Sec. V. The steady- W(t)=e[P,e™'“'+P_e'*']=2¢[ P cog wt) + P, sin(wt)].
state solution of the GBE is considered in Sec. VI. It is (2.9
shown that the GBE are consistent with the second law o}, is the field frequency, and measures the strength of the
thermodynamics. The connection to experiment is througlTLS-field interaction e will be referred to as “the amplitude
the line-shape function, which is also discussed in Sec. Vlof the field” in the rest of this paper. Also, note that 2
An example of the implications of the GBE for the case of a(actually —2e¢, according to standard usage the Rabi fre-
TLS impurity subject to a strong field and embedded in aguency. The TLS operatoR, , P_, P, andP, are defined in
Debye solid is provided in Sec. VII. Some final remarksEg. (2.6) below. For magnetic resonance and certain atomic

Hbs

. HeatBath

Hy is the free bath Hamiltonian, which remains unspecified
Jor most of this papert? is the free TLS Hamiltonian
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transitions Eq(2.4) can be realized exactly, while for other dHs W

TLS situations this equation results from making the rotating 57 = z; +“p(Hs)- (3.2
wave approximation. Note, however, that for very intense

fields such thate is comparable tow, the rotating wave The expectation value of E¢3.2) becomes the time deriva-
approximation is not expected to be valid. The choice of dive of the first law of thermodynamicgiW/dt) corresponds
rotating field yields crucial simplification of the derivation of to the energy flow due to the interaction with the driving
the GBE. Finally, since the field is circularly polarized, nega-field, i.e. to the rate of work performed on the TLS by the
tive frequencies are physically meaningful and distinct fromfield. The latter is simply the powey;:

positive ones. Changing the sign of the frequency corre-

sponds to rotating the field in the counter direction. %:<

The TLS-bath interaction Hamiltonian is defined as o

JW
—> =2ew[ —(Py) sif(wt)+(P,) cogwt)].

3.3
Hps= S{A®P,+ AT@P_+A®P,}. (25 (%(HJ) corresponds to the energy flow due to the inter-
8 is a dimensionless coupling parameter that measures tf€tion with the heat bath, i.e. to the rate of heat flow:
strength of the TLS-bath couplingy, AT and A are bath -Q:<‘—%/I’;(HS)>' (3.4)

operatorsHp, must be Hermitian; hencA, A" are Hermit- _ o
ian conjugates and is Hermitian. Without loss of general- EGS: (3.3 and (3.4) constitute the essential link between

ity, the free bath thermal averages of these operators at%uantum observables and the thermodynamical path func-
chosen to be zero: (A),=(A",=(A),=0, where tONS.

(T)p=Try(p,I") and po=e PMo/Tr, (e AMb). B=1/T is the Thg TLS in this setup will never reach a state of the'rmal
bath inverse temperature, wheFds the bath absolute tem- equilibrium dug to the constant flow Qf energy fromlthe field. '
perature measured in units of energys€1). Finally, P, , Hence, there is no advanta}ge to using state_: functions and it
P,, P_, P,, andP, are the TLS operators: becomes natural to work with the path functions of heat and
work. The TLS approaches a steady state when the energy

P=3 (| +)X(+|=]=-X=1), Py=]+X—|, flows are balanced, i.e. the power from the driving field and

the heat flow from the bath balance each other. Applying the
first law of thermodynamics, E(3.2), in steady state, im-
1 1 plies that7” 3= — Q®S. However, both directions of energy
Py= > (Py+P_), Py= o (P+—P_), (2.6)  flow are allowed by the first law: from the driving field to the
bath and vice versa. Yet, the second law of thermodynamics
whereP,| + )= +1 |=). P, andP_ are the creation and an- asserts that one can only turn work into heat, but not the
nihilation operators of the free TLS ar} andP, (P,) cor- other way around. In spectroscopic terms this statement im-
respond to the transverg®ngitudina) polarizations. plies that a steady-state stimulatechissionspectra from a
TLS immersed in a positive temperature heat batimad
allowed. Hence, in steady stat has to be positive and the
heat flowQ negative. A thermodynamically consistent theory
should comply with this constraint.

Thermodynamic considerations are based on a set of as-
sumptions independent of the axioms of quantum mechanicéy. DERIVATION OF GENERALIZED BLOCH
Therefore they can be used as a validity test of the approxEQUATIONS
mations leading to the quantum master equation.

The derivation of the GBEcf. Sec. IV) leads to a quan-
tum master equation for any TLS observabie having the
generic form

P_=[=)(+],

IIl. THERMODYNAMIC CONSIDERATIONS

The goal is to derive a consistent set of equations of
motion for the TLS observables, based on the assumptions of
weak coupling to the batlié<1), for an unrestricted field
intensity (i.e., arbitrarye). The derivation also assumes that

. IX the time scale of the relaxation of the TLS is much slower

X=i[HJ+W(t),X]+ H#%(X), (38.)  than that associated with the decay of the bath correlation

; ; ; -1
functions and the period of the field 20~ ).
where ZF is a dissipation super-operator representing the A schematic outline of the steps in the derivation is as
dissipative dynamics induced by the heat bath. The specififollows:

form of ¥, explicitly derived in Sec. IVD, is not required (a) Transformation to the rotating frame, where the ex-
for the present argument. SubstitutiRg, P,, andP, for X plicit time dependence iH is transferred from the field-TLS
would yield the GBE. interaction term\W into the TLS-bath interaction terdd .

The connection to thermodynamics is established by ex-  (b) Diagonalization of the time-independent effective
amining the energy flow in the problem. Selecting from theTLS Hamiltonian in the rotating frame and expressing the
total Hamiltonian, Eq(2.2), the terms that depend only on total Hamiltonian in terms of projectors in the new diagonal-
the TLS degrees of freedom, one is left wiH£+W(t), ized representation.
which is the total energy of the TLS. Substituting (c) Transformation to the interaction picture by using the
HSEH2+W(t) for X in Eq. (3.1) leads to the equation of sum of the time-independent effective TLS Hamiltonian and
motion for the TLS energy operator: the free bath HamiltonianH3,).
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(d) Perturbation expansion to second order in the cou- 2=7
pling to the bath,8, providing an approximate Liouville i
equation for the extended systdire. bath+TLS). ®

0

(e) Reduction by performing a partial trace over the de-
grees of freedom of the bath. This is supplemented by the
assumption of a tensor product initial density operator of the
extended system, with the bath in thermal equilibrium with
respect to its free Hamiltoniat,,.

(f) Separation of time scales by assuming that the bath
fluctuations decay much faster than the TLS relaxation.

(9) Neglect of terms rotating at once or twice the field’'s
frequency.

(h) Transformation of the equations from the rotating-
Schralinger picture to the Heisenberg picture, and evaluation
of the GBE in the representation diagonal in the effective

TLS Hamiltonian in the rotating frame. , _ _
(i) Presentation of the GBE in terms of the Iongitudinal FIG. 2. A geometrical representation of the Hamlltonl&l§+W(t). The
otal field is shown as seen in ttetationaryframe, i.e. with longitudinal

pOIarization and the pOIarization components in and out Of:omponenuug and rotating transverse componerd Zhe reference frame
phase with the rotating field. The final result is presented inotating with the transverse field is also shown. Note that thexis coin-
Eq. (4.34). The details of the derivation are important in cides with the rotating transverse component.
establishing the range of validity of different limits.

Except for stepga), (b), and(g) the derivation is similar
to that of the SBE for systems not subject to time-dependent
ﬁelqs'l_&g’ll_l?-rhis is_ basically_ the spirit of this approach, (1) H in Eqg. (4.9 is the effective Hamiltonian in the
which allows for the incorporation of the concepts and tools . . - .
of standard field-free relaxation theory into the present probforatmg frame. In the field-free theory the original Hamil-

lem, once the transformation to the rotating frame is accom'Eonlan already has th',s struct.ure, SIIW.E O,‘ ) .
plished. (2) The TLS-bath interaction Hamiltonian in the rotating

frame is explicitly time-dependent, and contains terms that
oscillate with the field.
(3) Hys is not given in terms of the eigen-projectors of

I:|S (whereadH, is given in terms of the eigen-projectors of
The density operator of the extended system in the rotatHg)_

ing frame, p, is defined by:

X

A. Transformation to the rotating frame

p(t)= einztp(t)e—inzt. (4.1) B. Transformation to the eigen-representation of H AS
The Liouville equation in the rotating frame, generating the T derive the GBE it proves very convenient to trans-
dynamics ofp, is given by form to the eigen-representationdf. In this representation

B )

Fra [H(t),p]=—1%(t)p, (4.2 He=vI1, (4.6)
where,

|:| = einZtHeiinZt: Hb+ |:|S+ F'bS! (43) and

H=AwP,+e(P,+P_), Aw=wo— o, (4.4)

5 , | Hps= 8{ S (DI, + CT (e l_+ Z(HeIL}, (4.7)
o= 5 “ AP, + e “AT@P_+ A0 P,). (4.5) ® *
Aw in Eq. (4.4) is usually referred to as the detuning. A
geometrical interpretation of the transformation to the rotatwhere
ing frame is shown in Fig. 2. R

The effective total Hamiltoniaril [cf. Eq. (4.3)], is di- — JRw) T 2e?
vided into three contributionsa) the original free bath »~ V(A@)"F(2€)%, 4.8
Hamiltonian,Hy, ; (b) an effective time-independent free TLS
Hamiltonian, Hg, which combines the contributions {2

andW from the original Hamiltonian; andc) an explicitly I1, cog(02) —sirf(6/2) —sin(6) P,
time-dependent TLS-bath interaction Hamiltonih. Im_| =| —sirf(6/2) cog(6/2) —sin(6) P_
This structure is similar to that encountered in field-free 1 1 P P ’
relaxation theory~%°1 - However, three differences can be z 2 Sin(6) 2sin(9)  cosf) z
noticed. (4.9
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21 5
S(t)
()

N

cog(0/2)e't  —sirk(0/2)e 't — Lsin(g)
=| —sirf(0/2)e't  co(0/2)e ' — Lsin(g)

sin(9)e'“t sin(g)e 't cog 6) -3
A
x| AT, (4.10
A K
X
and
FIG. 3. A geometrical interpretation of the transformation to the eigen-
2 representation ofls. The latter is analogous to a transformation to a refer-
tan( 6) = € (4.11) ence frame rotated b§ around they axis of the rotating frame. Note that
Aw ’ ) both (%,y,2) and §&,y,2) are rotating frames.

v is the magnitude of the effective field in the rotating frame.

It reduces to the Rabi frequencye 2in resonancer will be
referred to as the “generalized Rabi frequency” in what fol- to an interaction picture with the time-dependent zero-order

lows. A geometrical interpretation of this transformation is Hamiltonian Ho=Hy+H2+W(t).* In the special case of
shown in Fig. 3. the rotating field, this transformation is possible even though

the zero-order Hamiltonian is explicitly time-dependent, and
the above mentioned sequence of transformations is an ef-
fective means to actually carry it out. The same transforma-
. . . . ._tion is much less amenable to an analytical treatment in the

The next step is a transformation to the interaction pic- : L

N ; ase of different types of driving fields.

ture. The general strategy is similar to that in the absence of . . .

, . . The density operator of the extended system in the inter-
the field. The effective Hamiltonian of the extended system, ..on (rotating picture is given b
H, is divided into a time-independent zero-order Hamil- P 9 y
tonian and an explicitly time-dependent perturbation:

C. Transformation to the interaction picture

ﬁ:eil:lotﬁe*il:lot. (414)
H=Ho+ Hps, (4.12
The Liouville equation forp is given by
where
. . M e s
Ho=Hp+Hs (4.13 —r = ~1Hu(0),p]=—i2(V)p, (4.19

Based on this partition, a transformation to an “interaction,ynere
picture” is performed by movingy(t) backward in time us-
ing only Hy. Note that this interaction picture is defined with

respect to the rotating frame. Hod(t) = elHotf, e~ iHot
Actually, the sequence of transformations, first to the = ~ ~
) ) — S[ & ot )
rotating frame and then to the interaction picture with respect ALVl +si(Hell_+Z (1)L},
to the rotating frame, is equivalent to a single transformation (4.19
Z(t) eletlcog(9/2) —e M Sind(912) - 1eltising) A(t)
) | =| - siR(g2) e @tico(62) — Le~ising) || AT |, (4.17)
At) e'“tsin( 9) e~ tsin( ) cog 6) A(t)
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and The TLS reduced density operatortatO in the interaction
A(t)=eiMbtAe Mot AT(t)=eiFbtATe Mot (rotating picture is given by

Try, refers to a partial trace over the bath degrees of freedom.
The state of the TLS at timg o(t), can be formally
related to its initial valueg(0), via

As a consistency test, when the field is turned aft=0),
Hos(t) reduces toH,(t)=6{e'“0'A(t)® P, +e '“dtAT(t)
QP_+A(t)®P,} as it should.

a(t)=P(t)a(0). (4.22

The route from the interaction picture Liouville equation This IS the m_tegral fofm of the reduced equation of motion.
Zhe differential form is obtained from the integral form in

D. Derivation of the quantum master equation

to the quantum master equation is similar to the method o he following manner-
deriving the master equation in the absence of the field. Th 9 :
derivation presented here is similar to that developed in Ref.
16. Therefore only a brief and schematic description of the Fr(t)=d>(t)&(0)=d)(t)d)fl(t)&(t)ER(t)&(t).
derivation is provided. dt

The rotating-field-interaction picture Liouville equation, (4.23
Eq. (4.15, presents the starting point. It is formally solved The generatoR(t) is then expanded in powers &f This
via a power series expansiond subject to a tensor product expansion is truncated at second ordersinthereby intro-

initial state for the extended system: ducing the assumption of weak coupling to the heat bath.
The first order term inS vanishes on account of the original
p(0)=pp®0c(0). (419  definiion of the bath operators (recall that

o(0) is the initial reduced density operator of the TLS, and<A>b:<AT>b:<A_>b:0)' )
py is the density operator of the bath in thermal equilibrium: ~ After truncation at second order & and subsequently
settings=1 (from this point on we will assume tha and
_ e Aro (4.20 A are appropriately “small}, the reduced equation of mo-
Po= Ty, (e Pfin) - ' tion becomes

%&z—j;dtlTrb(@(t)f/f(tl)pb)&= f;dtl{Trb(Fﬂt)fZ(tl)pb)}[H+ 1. 5]+h.c.
—fotdtl{Trb(f%(t):if*(tl)pb)}[m JI_&]+h.c— Jotdtl{Trb(f&(t)if(tl)pb)}[m JI1,5]+h.c.
—fotdtl{Trb(f;ff(t):lf(tl)pb)}[n, 1, 5]+h.c— fotdtl{Trb(f?*(t):lﬂ(tl)pb)}[n, JII_&]+h.c.
—fotdtl{Trb(f%*(t)@(tl)pb)}[n,,Hza]+h.c.— Jotdtl{Trb(@(t)f:(f(tl)pb)}[Hz,H+&]+h.c.

- | AT A F oI5+ e [ dufTr( 0 At)p )L, 1,51 +he. (4.2

where h.c. corresponds to Hermitian conjugate of the preced- (a) The decay of the bath correlation functions is very
ing term. fast on the time-scale of the TLS relaxation. Therefore the
Each of the 18 terms on the rhs of E4.24) is a product  validity of the equations is limited to the description of the
of two factors. The first factor is an integral over a tracedynamics for time-scales long compared to that associated
involving only bath operators. The second factor is a comwith the decay of the bath correlation functions. Note that
mutator involving only TLS operators. In order to conclude this assumption of time-scale separation is completely con-
the derivation, the bath factors are evaluated explicitly. Thesistent with the weak-coupling limit in that in this limit the
evaluation of the bath factors is demonstrated in some detallLS relaxation rate constants are arbitrarily small.
for the first term in Appendix A. The other bath factors may  (b) Terms rotating likee™'“! or e*2'“! can be neglected.

be evaluated in a similar manner. This is a valid approximation if the frequency of the field is
The evaluation of the bath factors involves three majorfast on the time-scale of the TLS relaxation. A very impor-
assumptions or approximations. tant consequence of this approximation is that the only re-
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maining bath correlation functions af@, ,+(7), Catx(7), induced Hamiltonian dynamics is negligible in comparison
andCx(7), where with that induced byH,.

Once evaluated by incorporating the above approxima-
tions, all bath factors turn intéexcept for trivial oscillatory
factor9 real and positive time-independent rate coefficients
denoted byy,, v,, y3...yg according to their order of ap-
(cf. Appendix A). pearance in Eq4.24). Note that each term and its Hermitian

(c) The bath factors turn out to be complex. The imagi-conjugate share the same rate coefficient. These rate coeffi-
nary part contributes to the oscillatory Hamiltonian dynam-cients are explicitly given in Appendix B.
ics, while the real part introduces a genuine non-oscillatory  For ease of interpretation the master equation is trans-
contribution into the overall dynamics, leading to relaxation.formed into the Heisenberg picture. This transformation is
The third approximation is introduced by neglecting thedescribed in detail in Appendix C. The Heisenberg equation
imaginary part of the bath factor. This means that the bathef motion for a TLS observableX, is then given by

Cag(7)=Try(A(7)Bpy) (4.29

%X=i[H2+W<t>,XJ+ %— Y DXL I+ T[T X} = yo{ [ XL 0+ T [T, X}

— ya{ [ X L+ DL X T} — ya{ [ X 0 + T[T, X} — ys{[ X, I 0+ TLL (1T, X}
— Yol X, LTI+ T T X} — AT X, M0, + T[T, X}
— vl [ X, ML+ IL, [ 11, X1} — yo{[ X, XL, 0L+ I, 11, X T} (4.26

It should be noted that E44.26) corresponds to the regular Therefore the dynamics of the TLS is completely governed

Heisenberg picture. Hence, the observaklshould be de- by the change of the other three operators, or their expecta-
fined with respect to thetationaryframe of reference. The tjon values. These three equations of motion constitute the
operatorslIl,, II_, andII, are explicitly time-dependent. GgEg.

They are related to the original operators by the transforma-  gice the specific set of three independent operators is

tion rather arbitrary, the choice is a matter of convenience. Also,

once stated in terms of one set of operators, the GBE can

- always be transformed into another set. Most of the effort
l}* involved in the evaluation of the GBE has to do with the

I evaluation of the dissipation super-operator in the quantum
11, master equation, E@¢4.26. Since the latter is given in terms
( of the operatordl, , I_, and fIZ, which constitute an in-

—iwt i ot _ i
cos'(6/2)e sinf(6/2)e sin(6) dependent set, it is most convenient to first evaluate the GBE

—| —sirf(6/2)e"*"  cos(6/2)e'“t  —sin(6) in terms of these operators, and later transform to other sets
1 g=iotgin( ) L glotsin 6) cog 6) if the need arises. For ease of interpretation a set of Hermit-
ian operators is advantageous. Hence, after obtaining the
P, equations in terms dfl, , I1_, andll, they are transformed
x| P_|. 4.27 to the setll,, II,, andIl,, where the HeArmitiariIAX and
P, I, are the following linear combinations &1, andIl_:
- 1 ~ ~ 1 . ~
=3 (L +IL), = (L-IL). (428

E. The generalized Bloch equations (GBE)

The state of the TLS can be expressed by a density op-
erator in a four-dimensional Hilbert-Schmidt operator space A A A .
defined by the scalar produch(B)=Tr{A'B}. The basis of ~'he operatordl,, Il, andll, have a straightforward geo-
this space consists of four independent operators. One gpetrical mterpirr-itatlon as polarization components along the
these operators can be chosen as the identity operator. TR&es of the £,y,2) rotating frame(cf. Fig. 3. This choice of
other three can be chosen in various ways. The identity opebservables is referred as “thié representation.”
erator does not change due to the conservation of probability. The GBE in thell representation are given by
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d 1:1*
at|
II,
A=(3Tp+Tg) —-v
( v —(N+3T,+T) O
2¢ 0 -T,
f[x a
x|, |-{ o], (4.29
I1,
where,
Fp=2(y2+ v4),
I'4= 1o,
A=vy1tys,
7="v7" s, (4.30
£=3(v3t+ 7).
a= 3 (Ye— Yat 7~ Ye),
6=7Y2= s
(T)he explicit expressions foy,...yq are given in Appendix
B.

It is convenient to write the relaxation coefficients in
terms of the following four functions:

F00=Cypr(x)(1+e ),

I2x)= % Caa(x)(1+e ),

S2(x)= 1 Cuar(x)(1—e 5,
a®(x)= 3 Cpa(x)(1—e 5%,

whereéAB(x) is the Fourier transform d€,g(t), as defined

in Appendix A. The significance of these definitions arises

from the following identities tying these coefficients to the
field-free case:

Fg(wO):T_l!

FrO 0 =—,

¢ (0) T

o0y Beo) e @32
I(wg) 2 2 )7

a%(0)=0.

T, is the field-free time constant for population relaxation

P3$9is the field-free thermal equilibrium expectation value of
P, (the field-free thermal equilibrium expectation values of

P, andPy vanish. The functiona® is new since it does not
appear in the field free case.

J. Chem. Phys., Vol. 102,
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TABLE I. The bath coefficients in th&él representations andc stand for
sin(¢) and cosg), respectively.

Fg(w— D) Fg(w) Fg(aH- v) o) I'o(v)
r, (1-c)?%4 0 (1+c)?/4 0 s?
T 0 s%12 0 c? 0
\ —s?/8 0 —s?%8 0 s2/2
7 s(c—1)/4 0 s(c+1)/4 0 -s
& 0 scl4 0 —sc/2 0

The coefficientd™,, I'g, N, » andé in Eq. (4.29 can be
written as linear combinations of p(w), I'p(w+v),
I'(w=v), T'{%(0) andT'{°(»). The expansion coefficients
in the linear combinations depend upén(cf. Eq. (4.12)).
I'y, Ty, N, » andé, written in this manner, are summarized
in Table I. Note that the arguments Bf andT'}° can in-
volve v, which depends or, and thaté is also explicitly
field-dependent. Hence, the relaxation becomes explicitly
field-dependent.

The inhomogeneous term8 and « in Eq. (4.29 are
written as linear combinations ofs%(w—v), (),
(w+v) and a®(v). As before, the coefficients of these
functions depend upof. § and «, written in this manner,
are shown in Table Il. Note that’ and o have the same
arguments a§') andI';° respectively, and that and « are
also explicitly field-dependent.

The final form of the GBE is written in terms of yet
another set of independent observabgs; P, andP,, de-
fined by

P= 1 (e71“'P,+e“'P_)=P,coq wt) + P,sin(wt),

1 : )
> (e7'“'PL—€'“'P_)=—P,sin(wt) + P,cog wt),

(4.33

Equivalent and more familiar notations fé;, ﬁ’y and IADZ (or
more precisely, their expectation valyethat were intro-
duced by Bloch are the polarization functions, v, andw.
These observables are the polarization components in a co-
ordinate system rotating with the fiel®, is the transverse
polarization along the direction of the rotating fieR), is the
transverse polarization out of phase with the rotating field,
and P, is the longitudinal polarizatior(cf. Fig. 2. This
choice of observable is referred as “tRerepresentation.”

The GBE equation in th® representation become

TABLE II. The inhomogeneous terms in the representatiors andc stand

i . . . 'for sin(¢) and cosg), respectively.
T, is the field-free time constant for pure dephasing, and

(w—v) (w) O(w+v) a°(v)
s(c—1)/4 —s/2 —s(c+1)/4 sc/2
8 —(1-c)?4 0 (1+c)?/4 s?/2
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TABLE IIl. Relaxation rates in theP representations and ¢ stand for ~ d.cC. field provides a distinctive spatial “z axis” in magnetic
sin(f) and cosg), respectively. resonance, leading to different longitudinal and transverse
relaxation times.

(3) Additional off-diagonal relaxation coefficients;,,

Fg(w—v) Fg(w) Fg(w-‘r v) o) r0(v)

Ty (1-c)/4 0 (1+c)/4 c s andrl',,, appear in the GBE. The physical significance of the
ry c(c-1)/4 2 c(ct+1)/4 c? s rotating xz plane is due to the fact that the total field lies
T, (1-c)%4 s2/2 (1+c)?/4 0 0 S . . .
r 0 0 0 sc Cec Wlthll’.] |t._Th|s results in extra .coupllng term_s be.tween the
I, s(1-c)/4 sd2  —s(1+c)la 0 0 ]E?ollgr|zat|on components that lie along the directions of the
ield.
(4) There is an extra inhomogeneous term in the gener-
alized Bloch equation foP,, namelyy, . This is due to the
|5X T, —Aw T, |5X vy existence of a non-negligible driving field in this direction.
E }E’y =| Ao -TI'y —2¢ |Sy -1 0
dt| - _ 5 V. SPECIAL LIMITS OF THE GENERALIZED BLOCH
Pz Fa 26 T2/ AP, Y2 EQUATIONS
(4.39
The relaxation coefficients,, T'y, I',, T',, andT',,, and The asymptotic limits where the GBE are reduced to the
inhomogeneous termg, and vy, are given exp|icit|y interms SBE, orto the generalized OptiCEl' Bloch equations are exam-
of the functionsI‘g, Féo’ 5% and «® in Tables IIl and IV. ined. These limits depend on the relative magnitudes of the
For comparison, the SBE written in terms of tRerep- ~ following six frequencies(or energies 2e (the Rabi fre-
resentation have the following form: quency, Aw (the detuning » (the generalized Rabi fre-
guency, wq (the TLS frequency T (the temperatune and
1 —Aw O 1/7. (the inverse correlation time of the diagonal bath fluc-
B T2 b 0 tuations, to be defined below
d [ " 1 X 0 First consider the limit|2¢|<|Aw|. In this case,
gt E)y =| Ao - T, —2e i pea | v~|Aw|, sin(@)~0, and cosf) approaches-1 or —1, cor-
P, P, _z responding tAA w being positive or negative respectively. If
0 2¢ i LB these approximations are implemented into the GBE irPthe
T, representation, they reduce to the SBE. Hence, the SBE still
(4.39  hold for considerable field intensities, as long as the field
where frequency is far enough from resonance. Such a behaviour is
expected since tuning the field frequency out of resonance is
i: i+ i (4.36 equivalent to quenching the driving field, and is often used
T, 2T, T, ' this way.

Next consider the limi{2¢|,|Aw|<wq, 1/7.. (For ex-
ample, this situation is often obtained for electronic transi-
tions, wherewy is in the optical regime.This limit implies
that v<wo~w, and hencd )(w),I')(w* v)~T' (), and

.« . ,0
(), 8% w= v)~ 8% wy). Now the coefficientd”;°(v) and
a%(v) are examined in this limit. These coefficients have the
general form:

Ti, T, and P59 were related toI'}(wo), I'y°(0) and
5% wo) in Eq. (4.32.

Comparison of the SBE, E.35), with the GBE in the
P representation, Eq(4.34), reveals the following differ-
ences:

(1) The relaxation coefficients in the GBE depend ex-
plicitly upon the amplitude and frequency of the field. The
corresponding coefficients in the SBE are field-independent. rl(v)= 3 Caa(v)(1+e B,

(2) The relaxation rates d?, and P, differ in the GBE 3
(i.e. Ty # I'y), whereas in the SBEP, and P, share the a®(v)= 2 Cua(v)(1—e PY). (5.1

same relaxation _time-constanf,. This difference arises Note that expf B)~1 if »<T. The other term in Eq(5.1).
from the fact thaP, is the polarization along the direction of = . . . .
- Caa(v), is the Fourier transform of the time-correlation

the driving field wherea®, is the polarization out of phase function C, 4 (7):
with respect to it. Thus, the driving field introduces a physi- AARES
cal distinction between the two directions in space and their

associated relaxation times, in much the same way that the Caa(»)= fodTe' "Caa(7). (5.2

Define the time-scale associated with the deca@ of(7) as

7.. Sincev<1/t., i.e. the generalized Rabi frequency is
very slow on the time-scale of the decay of the bath fluctua-
tions,C,a(7) decays to zero beforer can change apprecia-

TABLE IV. Inhomogeneous terms in tHe representatiors andc stand for
sin(¢) and cosg) respectively.

O (w—v) (o) O(w+v) a(v) bly from its value atr=0, which is 0. Hence, in this case
. sc-1)/4 _eq?2 s+ 1)/4 o2 CAA(v)ijAA(O). It should be noted that 4/ is o.f.the order
Y, (1-c)2/4 s2/2 (1+c)%4 0 of magnitude of the smaller of the two quantities, the bath

band width or the temperatufie Hencev<<1/7. implies that
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v<T. Therefore'}°(»)~I'°(0) and a(»)~0. Imple- 1 (Aw)? 1
menting these approximations into the GBE in theepre- wary:f*' W T
sentation reduces them once more to the SBE arbitrary ! 2
0). Thus, the above two special cases show that, quite gen- 1

erally, for weak fields the SBE are valid, which is a statement I T_1 '
that has been disputed by several autfire.

Next consider the less restrictive limit< wg. It is still 2l 1
true that I'(w), I (0= v)~T5(w), and X2 (Aw)?+(2€)2 T,
(), (w+ v)= 8% w,y), but now we have the possibility (5.6)
that v is on the order of 4., and sol“(’,0 v) must be kept 7~0,
distinct fromFéO(O), anda®(v) does not vanish. The relax- I,~0,
ation coefficients in thé® representation then reduce to
Y= 50( o).
[y=Ty=5z+ iz [(Aw)?T2(0)+(2€)°T 2(v)], An interesting extreme case of this limit is obtained when
1 v |2e|>|Aw|. This case is obtained either by increasing the
1 intensity of the field or by tuning the frequency closer to
r,~ T resonance, which effectively leads to the same result. The
1 GBE reduce in this extreme to the form of the SBE, but with
2eAw a modified dephasing raté',=I"y,=1/2T,, rather than
Iy~ —— [T[°%0)-T°(»)], I'y=Ty=1/2T,+1/T,, as in the SBE. Hence pure dephasing
v is seen to be quenched by the driving field when
. ~0 (5.3 |2¢[>|Aw]|,1/r.. This limit is obtainable for electronic tran-
e sitions, and indeed, arguments of this sort were used to ex-
€ plain deviations from the SBE in the free-induction decay of
Y= — a’(v), Pr3*in LaF,. %
Y Finally, consider the near-resonance limkw|<|2¢],
v~ 8% w). with |2€|/wq arbitrary. Comparable values fas, and|2¢|

can be achieved, for example, in NMR by lowering the d.c.
As a result, the coefficients associated with population relaxfield. This limit implies that cog{)~0, sin(f) approaches- 1
ation remain equal to the coefficients in the SBE. Howeverpr —1 corresponding to positive or negatieerespectively,
the rate of pure dephasing is explicitly field dependent, anéndv~|2¢|. The relaxation coefficients in tHe representa-
furthermoreI',, and v, do not vanish. tion then reduce to:

Now consider an additional restriction, such that 110 0 0

v<w,,T. If the temperature isufficiently high, then the I~ [Tplo—[2e) + T (w+[2eD]1+T g (|12€)),
imaginary part ofC,,(7) can be neglected in comparison ryw% Fg(w)+l“,’j°(|26|),
with the real part, and since the real part is everr,rEq.
(5.3 is valid with I,~3[Fp(w—|2e])+2Tp(w)+Tp(w+]26])],

I'y~0, (5.7

o= | d RgC , 5.4
a (X) fo 7 COIXT)RE Cya(7)] (5.4 Py = 3 [T |2¢)) T+ [26])],

and y,~0. In this limit our results are nearly identical to the y,~ [ 8% w—|2¢|)+28% w)+ %(w+|2¢€))],

generalized optical Bloch equations of Yam&faind Ya-

manoi and Eberl§? who considered a stochastic model of ¥x=*{ 7 [8°(w+|2¢e|)— °(w—|2€|)]+ 3 a°(|2¢])}.

bath fluctuations. The only difference between our resultsrhe + sign corresponds topositive or negative respec-

and theirs is that we have neglected a small correction to thﬁvely. For this case the coefficients associated with popula-

Rabi frequency(a correction to Hamiltonian dynamics, as {jon relaxation differ from the ones in the SBE, and are ex-

discussed in Appendix A which appears in the paper by pjicitly field-dependent. Also, in this limit the coupling

Yamanoi and Eberly as a damping coefficidifs. If one  cqefficientT,, vanishes, whereds,, does not. Finally, note

further assumes that that if | 2¢|> 1/, the pure dephasing mechanism is quenched
Can(7)=(Sw)%e 177, (5.5 and botha®(|2¢|) andT"}°(|2¢]) in Eq. (5.7) vanish.

then the results of Schenzé al,*>° Berman and Brewet
and Yamanoi and Eberi{are recovered.

Next consider the limit M. <v<wq. In this case
exp(v7) oscillates many times befor€,,(7) can change
appreciably. HenceC ,,(v) is approximately zero in such a The dynamics induced by the GBE lead the TLS to a
case. The relaxation coefficients in tRerepresentation then steady statéin the rotating framge The steady-state power,
reduce to: directly related to the homogeneous line-shape, is examined

VI. THE STEADY-STATE SOLUTION OF THE
GENERALIZED BLOCH EQUATIONS AND A
GENERALIZED THEORY FOR LINE-SHAPES

J. Chem. Phys., Vol. 102, No. 21, 1 June 1995
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in this section. The steady-state expectation values of all thbath, resulting in zero absorption in steady statich is
polarization components in thB representation are given known as complete saturatiprThis should also hold for the
explicitly in Appendix D. GBE.

The steady state is characterized by the TLS continu- The power and line-shape functions obtained from the
ously absorbing energy from the field and rejecting it into theGBE are now analyzed. The line-shape function in terms of
bath, in a manner that maintains energy balance. From the P representation can be obtained by multiplyiﬁ@S
thermodynamical point of view, the work performed on thefrom Appendix D by Z. For the purposes of this section it is
TLS by the field is completely dissipated and rejected as heahore convenient to work in thél representation. Solving
into the thermal bath, thereby increasing the entropy of théq. (4.29 for steady state and evaluating the power leads to
universe. Hence, the TLS must absorb energy from the fielthe following expression:
in steady state in order not to contradict the second law of
thermodynamics. The absorption spectrum consists of they,,)-
rate of energy absorbed by the TLS from the field, as a func- FpV2+Fp(Fé+%Fp)2727]§()\+ré+ 3 L) =N\,
tion of the field’s frequency.

From Egs.(3.3 and(4.33 the power, which is the rate
of energy absorbed by the TLS from the field, becomes: [recall thatv=\(Aw)?+2(€)?]. Equation(6.4) is a gener-

alization of Eq.(6.3), and is applicable at arbitrary field in-

) IW - N tensities and frequencies. The exact line-shape predicted by

5//):<7> =2ew(Py)=2ew(lly). (6.1 Eg. (6.4 depends upon the specific physical realization of

the bath. In principle the expression can be inverted to probe
Note that(l5y> = (f[y> since the transformation to thd  the bath properties. As an example, the line-shape in Eq.
representation amounts to a rotationéground the rotating (6.4) is evaluated for the case of a Debye solid in the next
¥ axis. It therefore leaves the component of the polarizatiorfection.

—2ewv(al’,+ 7d)

(6.9

along they axis invariant(cf. Fig. 3. The spectrum will be A few general properties of the generalized line-shape
given by the steady-state powef{w). In the plots that fol- ~ Serve as crucial consistency tests and should be pointed out:
low a line-shape function defined by: (1) The generalized line-shape converges to the standard
Lorentzian line-shapEEg. (6.3)] in weak fields(cf. Sec. V).
LS(w)=Aw)lw (6.2 (2) The generalized power is non-negative for all fre-
quencies, as is shown in Appendix E. This implies that, un-
is used. like the SBE, the generalized ones are consistent with the
Consider the power function obtained from the SBE, Eq.second law of thermodynamics for all field frequencies.
(4.39: (3) The generalized line-shape vanishes whenand
AT do, as is shown in Appendix E. Hence, the present model
i —w(2€)?PSYT, correctly describes the line-shape for arbitrary field intensi-
Aw)= (6.3 ties.

1\2 T '
2. = -1 2
(Aw)“+ Tz) +T2(26)

VII. AN ILLUSTRATIVE SPECIAL CASE: THE LINE-

The corresponding standard line-shape is Lorentzian. TheHAPE OF A TLS IMPURITY EMBEDDED IN A
peak is atw= wg, and the broadening has two contributions: DEBYE SOLID
1/T5, from dephasing; and @2 T,/T,, from power The rate coefficients in the GBE and the corresponding
broadening. line-shape depend upon the specific physical realization of
A few important properties of the power function in Eq. the bath. In this section the line-shape of a TLS coupled to a
(6.3 should be remarked upon. Debye solid is analyzed.
(1) To be consistent with thermodynamics the power  For a bath consisting of the acoustic normal modes of a
production of a TLS coupled to a positive temperature heagolid, the bath Hamiltonian is given by
bath has to be a non-negative quantity. From @) it can
be learned that the power is non-negative only for positive Hbzz wnblbnl (7.2
. Therefore it fails to comply with this fundamental ther- n
modynamical constraint for negative field frequencies. Re- + .
call that in the context of a circularly rotating driving field, Where @n, b, andb, are the frequency, and creation and

as in this model, negative frequencies are well defined ang@"nihilation operators associated with the n-th mode. Con-

. T . - . -
physically distinguishable from positive ones. This inconsis-Sider A andA’ to be linear, Snd& quadratic, in the coordi-
nates of the normal modés!

tency is not very important from the practical point of view
since the standard theory only applies for weak fields, where : et
the line-shape is very narrowly distributed around resonance. A=A"=2 (gnb,+gxb),

(2) The power vanishes when the bath coupling opera- n
tors A and A" vanish. In this limitT;— o, which from Eq. (7.2
(6.3 leads ta{w) =0. Once this coupling vanishes, there is A=, (d,b;+d* biT)(d,- b +d b;‘).
no mechanism for energy transfer between the TLS and the P#]
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{gn} and{d;} are bath-TLS coupling coefficients. Note that ~ Substituting Eq(7.5) in Egs.(4.31) yields
(A)p=(AT)p=(A)p=0. _

The analy5|s starts py evaluatlng_the_bath parame_ters Fg(x)z27rp(|x|)|g(|x|)|2cotf’(ﬁ|x|/2), (7.6
associated with the off-diagonal coupling, i.e. the coupling
associated witt\ and A™. The evaluation ofC, ,+(7) leads

to mp(X)|g(x)|?, if x>0
| ‘SO(X):[—wm—xng(—x)F, it x<0 -7
Caat(1)=2 |ga/¥{e""nT1+n(Bwy)]
n In the Debye solitf
+e'“nn(Bw,)}
X
Hfo dwp()|g(w)[de *T1+n(Bw)] 907L NN
+e'“mn(Bw)}, (7.3 3N
— X5, for 0=<x=<wp
where p(X)=1 ®p , (7.8
1 0, otherwise
n(x)= GXT]. , (7.4)

where wp, is the Debye frequency is the total number of

and p(w) is the bath mode density. Continuous frequencynormal modes angk is a coupling constant with units of
o, and coupling coefficieng(w), replace their discrete ana- square root of energy. Hence, in the Debye solid the relax-
logues,w, andg, . Note thatw andp in Eq.(7.3) are notthe  ation coefficientd™p and &° are given by
field frequency and the density operator from previous sec-
tions. B 0, if |x|>wp

The evaluation ofC, 4 +(X) yields o(x) = x |3

P — coth( B|x|/2), if |X|<wp'

27p(X)|g(x)[2[n(Bx)+1] if x>0 ° (7.9
2mp(—x)lg(—x) (-0 if x<o' P

Unlike in the field-free case, the signxxheed not be strictly
positive or negative. This is why both lines in Ed.5) are L=1 3 —r x
important, and a rotating wave approximation according to 2 ®p
whichA==,g.b,, AT==,g* bx, was not introduced. In the

latter approximationC, ,+(x) vanishes for negative, and  The diagonal coupling correlation function associated with
hence a physically unjustified bias is introduced into the ratehe bath operatoA is evaluated next. The evaluation of
coefficients. Caa(7) yields

3mp?

E:AAT(X =
0, |f |X|>wD

3

Caa(n) =20 2|dy?|diH{e " ) 7n(Bawy) + 1]IN(Bay) + 1]+ €T D n(Bwn(Bay) +2e~ (ko7
k1

X[n(Bwy) +1In(Bw))}
~2 [ “dop(@ (@) [ o’ pw)ld(w) e @ Tn(Ba) +1
0 0

X[n(Bw')+1]+e@ ) (Bw)n(Bw’)+2e @~ n(Bw)+1]n(Bw’)}. (7.10)

On the last line of Eq(7.11), continuous frequencies and »’, and coupling coefficients)(w) andd(w'), replace their
discrete analoguesy,, w, dy andd,.
The evaluation ofC,,(x) yields

éAA(X)Z877J(:de/0(w)p(w+X)|0|(w)|2|0|(w+X)|Zn(/i’w)[f1(,3(w+X))+1]+477

X fovdwp(w)p(x—w)|d(w)|2|d(x— ®)|?[n(Bw)+1][N(B(Xx—w))+1]. (7.12
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In the Debye solid TABLE V. Parameters used in plotting the line-shapes for the Debye model.
1 Also listed are the values of the field-freeT1/and 1T5.
d(x)= VW 2yX/2N , (7.13 case T u T, w UT)
and p(x) is given by Eq.(7.8). W is a dimensionless cou- A) 01 0.001 1.6-6) 0.0 0.0
pling coefficient. Substituting Eq7.8) and Eq.(7.13 in Eq. (B) 0.1 0.001 1.8-6) 0.2 1.3-6)
(7.12, which is substituted in turn into Eq4.31), yields (© 0.1 1.G-6) 1.8-12) 0.2 1.3-6)
I';°(x) and a®(x) for the Debye solid. D) 10 0.001 26-6) 0.0 0.0
The derivation of t_h_e GBE involveg two approximations EE; 1:8 1960—061) 2.25'5162)) 3:881 22.53(7_62)
that may now be explicitly expressed in terms of the Debye 10.0 0.001 2.4-5) 0.0 0.0
model: (H) 10.0 0.001 2.4-5) 0.0003 2.6-5)

(1) The rate of decay of the bath fluctuations is approxi- () 10.0 1.0-6) 2.4-10 0.0003 2.6-5)
mately wp for T>wp, or T for T<wp (recall that since
hi=kg=1,T andwp can be viewed as frequencies as well as
energies The bath correlation function decays very fast on
the time scale of the relaxation of the TLS. Hence, this ap(4) T,°(») and a°(v) experience a sharp cutoff when

proximation is valid if v=2wp . The cutoffs become
(UD |f T> (UD _ > 5
Fg,l"(’,0< T if T<wD- (714) w_wOi \/(26) +(2wD) . (720}

The line-shape was examined for various values of the
parameters. Setting,=1 means that all energies, frequen-
cies, temperatures and coupling constants are measured in
units of wg. wp is also fixed in all the examples considered,

0 0 and equals 2.

Il <o. (7.19 The temperature dependence of the line-shape is exam-
The arguments OfI‘g(w), Fg(wiv), Ti(v), (o), ined for IQW (I'=O.1),l medium T=1) aqd high T=10) .
8w+ ), anda®(») depend upon the field amplitude and values. lefer'ent relative yalues of the diagonal and nonQ|-
frequency. In the standard theory, they come with ﬁe|d_agonal coupling are considered. The values of the coupling

independent arguments, namedy and 0. The main impli- Parametersu and W where chosen so that the approxima-
cation is thatl“g(w), Fg(wiv), Ty(v), ®(w), O(w*v), tions leading to the derivations are valid. Furthermore, the

anda(v) scan throughall the bath frequencies as the field Y&IUes ofx andW where chosen so that the field-free rate
frequency is changed, and therefore provide a tool to prob&0€fficients,I'p(wg) and I'q"(0), aresimilar for different
the mode density of the bath. The most dominant feature ifeMPeratures. The explicit values pfandW that were used
the mode density of the Debye solid is the cutoftigt. The &€ Presented in Table V.

latter would lead to sharp cutoffs in the bath coefficients in The results for case) are presented in Fig. 4. Figure _4
the following cases: demonstrates how the deviations from the standard line-

(1) I'%(w) and 8°(w) experience a sharp cutoff at shape increase as the field intensifieseAt0.025 the devia-
P tions are quite small, and are manifested by a blue shift. At
o=+ (7.16 €=0.1, the blue shift increases and a distortion due to the
- v ' cutoff is added to it. Ae=0.5, the line-shape is completely
2) rg(m. v) and 8°(w+ v) experience a sharp cutoff distorted and bears no resemblance to the standard one. The
when w+v=wp. The latter equality can be reached only loss of the typical bell shape is due to the fact that the blue
whenwp> oy, at shift approaches the cutoffs. Note that unlike the standard
line-shape functiofEg. (6.3)], the line-shape obtained from
the present model changes sign as negative frequencies are
(7.17 approached, so that the power remains non-negé&iag in
accord with the second law of thermodynamics.
which lies belowwp . The line-shapes obtained for cagBs and(C) are quite
similar. They differ with respect to casA) by the additional
diagonal coupling. Therefore the results for the more ex-
treme casd€C), where the diagonal coupling is much stron-
ger, are shown in Figs. 5 and 6. For small fields the picture is
(7.19  Vvery similar to that in the standard theory, namely, a line-
shape narrowly distributed around resonance. However, in
Fig. 5, a significant wide band “off-resonance” absorption is
seen at much higher frequencies. The latter increases and
widens considerably as the field increases, and finally merges
(7.19 with the blue-shifted resonance pe@k Fig. 6). As the satu-
ration further increases, the line-shape is completely dis-

(2) The field frequencyw, is fast on the time scale of
the TLS relaxation. Hence

_1

w0+ wD+(26)2
=5 |——————

Wp— Wo

3 Fg(w— v) and 8°(w— v) experience a sharp cutoff
whenw—v=wp. If wp<wg the cutoff value is

(1)0+ (,!)D“F(ZE)Z

wWp— Wo

1
0=3

which lies abovewp . If wp> wq the cutoff value is

wo— wp+(2€)?

(l)D+ (O]

1
w=3
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€=0.025 £=0.1

—— present — present
- - - standard l - - - standard

LS

0
0.5

—— present
—— - standard

25 15 05 05 15 25 FIG. 6. Line-shapes obtained from the GBE for the same parameters as in

© Fig. 5, but for higher field intensities. The area under each line-shape is
normalized to 1. The units are such that energies and frequencies are mea-

FIG. 4. Comparison of the line-shape obtained from the SBE and the GBBured in units ofw, (i.e. wo=1).

for a TLS impurity embedded in a Debye solid. The units are such that

energies and frequencies are measured in unitepfi.e. wy=1). The

parameters used to evaluate the line-shapesaage:2, ©=0.001,W=0,

T=0.1. Note that only off-diagonal coupling is accounted for in this casetorted, and the off-diagonal coupling become dominant, lead-

(W=0). The three plots correspond to different field intensitees0.025, ing to line-shapes similar to those obtained in casg for

€=0.1,e=0.5. The deviations between the SBE and GBE results are mort.?/ery high fields.

pronounced for higher field intensities. The effects of the Debye cutoff on . . .
the line-shape is observed fer=0.1 ande=0.5. The inconsistency of the The Ilne-shapes obtained for caf® are similar to these

SBE for negative field frequencies is demonstratedefe0.5. obtained for cas€A). Cases(E) and (F) provide new fea-
tures due to the additional diagonal coupling; examining the
more extreme cas@), the results are shown in Fig. 7. For
lower fields the picture resembles that obtained for ¢Ase

T T T T
A. Full view
30.0 | e=5.0-7 1
- g=10.e-7
20.0 ~--- g=50.e-7
2]
100 [— resonance peak i
off-resonance band
0.0 - - A
00 10 20 30 40 50
®
B. Far from resonance C. Near resonance
0.75 T T T T T T
— &=5e7 .
~ &=10.6-7 ,/
0.50 ---- e=50.e-7/
(%)
-
0.25
ooo Lo dh
00 10 20 30 40 50
] ®

FIG. 5. Line-shapes obtained from the GBE for relatively low field intensi-
ties (e<5x107%). The area under each line-shape is normalized to 1. The
units are such that energies and frequencies are measured in unj<ic.

wp=1). The parameters used to evaluate the line-shapeswgre2,
n=1x10"% W=0.2, T=0.1. The line-shapes are shown on the full fre- FIG. 7. Line-shapes obtained from the GBE for various field intensities. The

quency scale in graph fote that the resonance peak was truncated at abouarea under each line-shape is normalized to 1. The units are such that ener-
one-tenth of its actual heightThe wide off-resonance absorption band gies and frequencies are measured in unitegfi.e. wo=1). The param-
aroundw=4 is magnified on graph B. The full resonance peak is shown oneters used to evaluate the line-shapes amg=2, w=1x105,

a narrow frequency scale on graph C. W=0.001,T=1.0.
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03 A. ®=1 (resonance)
2.0 T T T T
— e=le4 02
- g=0.50-4
-- e=5.e-4 0.1
9 1.0 —-e=1.0:3 2] 5
0.0 2
- £=0.005 g
0.0 Rl N ---- e=0.01
-0.2
32101 2 3 4 5 43-2-1012345¢86
® © 0.0 . . . !
060 02 04 06 08 10
€
0.4
B. ©=0.9 (red shifted) C. w=1.1 (blue shifted)
0.2 T T T T T . T T
9 00 T P N
; -
; =5 - g=0.3 8 ) g /
021 W 05 g ; g g
4 —-— g=07 ' ]
0.4 / y
43210123456 I
(0]
0.0 \ . . . 0.0 . . . )
00 02 04 06 08 1.0 00 02 04 06 08 10
€ €

FIG. 8. Line-shapes obtained from the GBE for various field intensities. The
area under each line-shape is normalized to 1. The units are such that ener-
gies and frequencies are measured in unitg)@(i.el wo= 1) The param- FIG. 9. Comparison of saturation CUI’V@DWQI‘ vs. field intensitjyobtained

eters used to evaluate the line-shapes asgy=2, w=1X1075, from the SBE and the GBE. The dashed curves correspond to the SBE and
W=0.0003,T=10.0. the continuous curves to the GBE. The units are such that energies and
frequencies are measured in unitsegf (i.e. wg=1). Graph A corresponds

to resonance, graph B corresponds to a frequency red-shifted with respect to
. . . . . resonance, and graph C corresponds to a frequency blue-shifted with respect
For higher fields, the line-shape acquires a highly toothegy, resonance. The other parameters for this plot arg=2, T=1.0,

character due to the various cutoffs. #=0.05, andw=0.
The line-shapes obtained for ca&® are similar to these
obtained for case$A) and (D). Cases(H) and (I) provide
interesting features that are, as before, due to the diagonal
coupling. As before, the more extreme cdbeis shown in  NMR signals in solids, under the conditions of satura-
Fig. 8. The pattern resembles that in Fig. 7. The “wavy” tion.® From the attempts to construct a theory for nuclear
nature of the line-shape preceding the high field “toothed”spin relaxation under the conditions of saturation, the pio-
line-shape is interesting to note. neering studies of Blo¢fl and Tomit&° are most relevant to
In conclusion, the line-shapes obtained close to saturathe present study. In both cases, the derivation of the GBE
tion show great diversity and complexity, and contain non-follows a similar procedure, where the basic idea is to trans-
local information on the density of bath modes and the naform to the rotating frame tilted by the angfewith respect
ture of the coupling with the bath. It should be notedto the originalz axis, and carry out the derivation of the
however that extracting this information might not be easymaster equation in this representation. Naturally, the ad-
and certainly requires a detailed model for the TLS-bath invances made in the theory of open quantum systems since
teraction. the papers of Bloch and Tomita were published should be
The saturation of the power is presented by plotting the
power vs. the Rabi frequency at a given frequency. The re-
sults of the GBE are presented and compared to those ob-
tained from the SBE in Figs. 9—11. Generally, the behaviour A. 0=1 {resonance)
at saturation differs significantly from that predicted by the ‘
standard theory, which is not consistent at saturation. The
saturation behaviour is a direct manifestation of the explicit g
dependence of the bath terms upon the parameters of thé
field. In saturation, the dominant term in the denominator of

the power function id",(2€)?. (2€)? factors out with the 00 L 5 2

corresponding term in the numerator, so that the power is €

proportional to @I',+ 79)/I",. The dependence of the lat- B. =0.9 (red shifted) C. o=1.1 (blue shifted)
ter upon the field parameters yields the different saturation T ;

behaviours shown in Figs. 9-11. i N ]

power
power

VIIl. RELATION TO OTHER STUDIES AND 05 |
CONCLUDING REMARKS |
The first attempt to generalize the Bloch equations to the o0 0;5 10 00 °€f5 10

domain of intense driving fields was carried out in NMR.
The motivation was provided by Redfield’s demonstration offig, 10. same as Fig. 9 but with parameters=2, T=1.0, «=0.05, and
the failure of the SBE to account for the experimentalw=0.05.
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A. @=1 (resonance) varying field. In such a case, the field may be taken as ap-
' proximately constant throughout the time interval for which
the solution of the Liouville equation is repeatedly approxi-
mated by a second-order perturbation expansion. The analy-
sis of the present work assumes that terms rotating with the
field average out throughout the very same time interval.

power

00,5 o5 - This assumption is therefore in conflict with that required for
e ' the equations of Refs. 43—45 to hold, since the field can

B. =09 (red shifted) C. @=1.1 (blue shited) either rotate fast or remain constant at this time interval, but
' ' certainly not both. Hence, the GBE presented here are ad-
equate in the “fast field” regime, whereas the approach of
Refs. 43—-45 is required for the derivation of analogous equa-
tions in the “slow field” regime.
To summarize, the main results of the present study are:
0.0 \ 0.0 : (1) a general, unified, comprehensive, and fully quantum-
0.0 0.5 1.0 0.0 05 1.0 . . . . .
. N mechanical derivation of the generalized Bloch equations;
(2) a careful analysis showing under which weak-field cir-
FIG. 11. Same as Fig. 9 but with parametetsr=2, T=10, cumstances the standard Bloch equations are védidthe
p#=1x10"°, andW=0.05. demonstration that the generalized optical Bloch equations
follow naturally in certain limits from the generalized Bloch
equations;(4) the introduction of the thermodynamic point
a?—f view as a tool for examining the generalized Bloch equa-
tions; and(5) the demonstration that line-shapes near satura-
tion can provide information about bath spectral densities. As
The more important difference between the work Ofthe use of intense fields becomes more routine, the necessity

Bloch and Tomita and the present study lies in the di1’“ferenf)]c using the generalized .BlOCh gquatlons will becpme n-
points of view. The work of Bloch and Tomita was directed creasingly apparent, as will the richness they contain.
towards applications in NMR. The present study views a

general TLS of arbitrary origin, and examines what can be

generally said about its relaxation in strong fields without

adopting specific relaxation mechanisms or employing sim-

plifying approximations. For example, Tomita employs the

high-temperature limit and exponentially decaying bath cor-ACKNOWLEDGMENTS
relation functions at a very early stage of the derivation,

gsaslﬂnmgp:oigﬂcult to see which of the results rely on thesediscussions. This research was supported by the Binational

The more modern treatments of the oroblem of relaX_United States - Israel Science Foundation and the Israel Sci-
S . . P ; . ence Foundation. The Fritz Haber Research Centers is sup-
ation in strong fields were motivated by experimental ev'_ported by the Minerva Gesellschaft riudie Forschung
dence for the failure of the SBE to explain the free-lnducnonGmbH Minchen, FRG. J.L.S. acknowledges support from

decay following saturation of an electronic transition of : X
P . . 23 . the Guggenheim and Humboldt Foundations and f(t8)
Pr=™ impurity embedded inLaF3.“° The treatments in the NSE Grant No. CHE92-19474.

spirit of the present work are mainly those in Refs. 29-32.

These treatments are even more specific then the ones in

NMR, and differ from the present study in the following

respects(l) they consider only pure-dephasing-type diago-

nal interactions with the bath, and treat population relaxatior})\PPENDlx A: THE EVALUATION OF THE BATH
phenomenologically(2) they consider a semiclassical time- FACTORS '

dependent Hamiltonian with stochastic fluctuatidgescept

for Ref. 30. We show how the generalized optical Bloch |, this appendix the evaluation of the first bath factor in

equations obtained by these authors follow naturally fromgq (4 24 is described. The other bath factors are evaluated
our more general fully quantum-mechanical results in th§q, 5 similar manner.

appropriate limits.

A different approach for the proper description of relax-
ation in systems subject to time-dependent fields was utilized
in previous studie$>~**The latter is based on the hypothesis t s e
that the relaxation dynamics is constantly guiding the system fodtlTrb(fg(t)”((tl)Pb)' (A1)
towards an equilibrium state corresponding to the instanta- . .
neous Hamiltonian. The field-dependent relaxation equatioifhe bath operator&(t) and<(t;) are given in terms of the
thus obtained should hold in the case of a sufficiently slowlyoriginal bath operators in Eq&4.17)-(4.18). Thus,

power
power

incorporated. As a result, the present treatment is more s
isfactory from the mathematical point of view, but the gen-
eral results are similar.

We thank Peter Salamon and Steve Berry for stimulating

Consider the first bath factor:
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(1) Z(ty) =€"{cod(6/2)e' ' A(t) — sird(6/2) e "“tAT(t) — L sin( ) A(t)}
X €'"1{cos'(0/2)e'"1A(t) — sir(6/2)e "1 AT(ty) — F sin( ) A(ty)}
=e?"e "W cod(9/2)e* eI T WA() A(ty) — sirP(6/2)cos(0/2)e! VA AT(ty)
— 3 sin(6)cos'(6/2)e' " A(t) A(ty) — sinP( 8/2)cosi(0/2)e~ (T WAT(H) A(ty) +sinf(9/2)e 2t (=10
X AT(t)AT(ty) + 5 sin(0)sir?(6/2)e ™ "' AT(t) A(ty) — 3 sin(6)cos(6/2)e' e~ WA(L) A(ty)
+3 sin(0)sir?(6/2)e™''e' WA AT(ty) + 7 SiP(0) A(t) A(ty)}. (A2)

For the future we note that the common faatdr! will cancel out when transforming back from the interaction picture since

e HS[IL, T1, 5] e =e 21, 11, o] . (A3)

Taking the product of EqA2) with p,, performing the trace over the bath, and integrating one obtains
fotdtl{w S(1) Z(ty) pp)}
= em[ cog(9/2)e? f Otdre’i(“’* MTC\A(7)— 3 SirP(6) f Otdre“w* MTC \At(7)— 3 sin(§)cog(0/2)e
X fotdre*i”cM(r) — 7 Sirf(0) f;dre*“w”)fcm(r) +sinf( 0/2)e*2iwtf;drei<w*V)TCAW(T)+% sin( )sin?( 6/2)
Xe*iwtf;dfe*i”cm(r)—% sin( ) cos ( a/z)eiwff;dre*“w*WCAA(T)+% sin( 6)sinf(6/2)e” "

X ftdrei<w*V>chAf(T)+% Sinz(H)jthei’”CAA(T)}. (A4)
0 0

Cas(7) with A,B=A,A" A are bath correlation functions, WhereCag(x) is the Fourier transform o€ xg(7):

defined in Eq(4.25. Note that the integration variable was "

changed front, into 7=t—t;. CAB(X):f d7e™X7Cp(7), (A6)
Two approximations are now introduced that consider- —

ably simplify Eq.(A4). and.7” denotes the Cauchy value of the integral. WHeand

(a)_t i_n the upper limit _of the in_tegrals is substituted by g 4o Hermitian conjugate€ n5(@) is both real and posi-
. This is a valid approximation if the decay of the bath tive. This occurs for correlation functions af with AT and

correlations is very fast on the time scale of the TLS relax-A with itself. However these are the only correlation func-

atlonb ing likee® ot it | q tions remaining after the second approximation. Thus, Eq.
_(b) Terms rotating likee™" or e are neglected. (1 g nrovides a convenient separation of the bath factor into
This is a valid approxmatlon if the frequency Qf the field is real and imaginary parts. The imaginary part contributes to
very fast on the_ tlme scale_ of the TLS_ relaxation. Note t_hatthe oscillatory Hamiltonian dynamics and will eventually
this apprOX|mat|0_n is _use_d in the ro_tatmg frame. IntroducmgIead to small modifications of the detuning and the Rabi
the same approximation in the stationary frame would meag.o ;o199 and are therefore neglected henceforth. The bath
a"efag”r‘]g rc])utdthe_terrp ?grrespondlng to the interaction of the, oo then turns intéexcept for a trivial oscillatory factpm
TLS with the driving field. real positive time-independent relaxation rate coefficient that

Fo!lowmg the Sec‘;!"d. app(;OXTauon, SIX of the nine introduces a non-oscillatory, dissipative, contribution into the
terms in Eq.(A4) are eliminated. The remaining terms are overall dynamics.

those associated witB,1(7), Cata(7) andCaa(7). The In conclusion, the first bath factor is approximated by
other bath factors also turn out to be associated with only

those correlation functions. Following the first approxima- t R 2t

tion the remaining integrals may be evaluated using the re- Odtl{Trb("(t)”(tl)pb)}we Y1

lation:

. where
® . 1. 1 N CAB(w) . ~ —B(w+v)~
jo dTelonCAB(T):ECAB(wO)'FZwiJf/)j_mdw o— g , yl=%sm2(6~){—CAAf(w—v)—e Blo+ )CAAT((’)+ 1/)
(A5) +e P"Cya(v)} (AT)
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is real and positive. Note that to obtain E4.7) the identity:
Cas(—x)=€ F*Cpa(x) (A8)
is used.

APPENDIX B: THE RATE COEFFICIENTS 1v;...v9

The rate coefficients,...yq are real time-independent,

Starting with Liouville equation in the Schdimger pic-
ture[Eg. (2.1)] it was transformed first to the rotating frame
[Eqg. (4.2], and afterwards to the interaction picturgg.
(4.19]. Thus, Eqg. (4.24 is given in terms of the
“Schrodinger-rotating-interaction picture.” To transform to
the Heisenberg picture, first a transformation back to the
Schralinger picture is carried out.

The transformation back from the interaction picture was

yet field-dependent. They are given in terms of the Fouriegescribed during the evaluation of the bath fact@fs Ap-

transforms of the nonvanishing bath correlation functions:

y1= 1 SIP(){—Cprt(w—v)—e BTIC, 1w+ 1)

+e_BVéAA(V)}!

¥,=1{cod(0/2)Cpr1(w+ v) +sin*(0/2)e Ao
X éAAT((U_ V) + % Slnz( e)éAA( V)},

y3=1 sin(6){coS(6/2)C \ s (@)
—Sin(0/2)e BC s 1(w) — £ cog 0)Cy4(0)},

ya=31sinf(0/2)C s +(w— )+ cod(6/2)e Al@*
- 1 .
XCAAf(w—I—v)-I-ZSlnz(ﬁ)efﬁ”CAA(v) ,

5= Si(0){ ~ Cxat(@+v)—e A" Cy 1(0—v)
+Caa()},

Yo= 3 Sin(6){ = SirP(0/2)Cy p1(w)
+co(0/2)e P“C y1(w) — % cog 6)C4(0)},

y7=4 sin(8){ — sirA(0/2)C y s t(w— v) + COL( 6/2)

X @ Blot V)éAAT(w'" v)— % cog G)efﬂ’/éAA( v},

yg=1 sin(0){c0Z(0/2)C x1(w+ v) — SINA( 6/2)

X efﬁ(a’fV)éAAf(w— 1}) — % COS( a)éAA( V)}’

y9= 3 {SINA(8)C s t(w) +sirA(0)e A“C 1 w)
+co2(9)CyA(0)}. (B1)

Note thatéAAT comes with the arguments andw * v, and
Caa comes with the argumentsand 0.

As the field is turned off g=0,m), the only surviving
terms arey,, y, andyg. y, + 1y, turns into 3 Cat(wg)
X (1+e P«0), andy, turns into3 C,,(0). These results are
expected in the case of field-free relaxation.

APPENDIX C: TRANSFORMATION OF THE
GENERALIZED MASTER EQUATION TO THE
HEISENBERG PICTURE

pendix A). The transformation back from the rotating frame
then amounts to replacing, by e '"“'P, and P_ by
eI wtp_ .

The transformation from the Schdimger picture to the
Heisenberg picture is carried out by the following identity:

%<X>ETT(:Z(O')‘X)ETr(U':%*(X)), (C1)

where ¥ is the generator of motion in the Scllinger pic-
ture and4* is the generator of motion in the Heisenberg
picture. Note that the Tr in EQC1) refer to a trace over the
Hilbert space of the TLS. The identity comes about since the
last two terms of Eq(C1) equal the time derivative of the
expectation value of the operatof, as given in the two
pictures.

% is known from the master equation in the Salinger
picture. It consists of Hamiltonian and dissipative parts:

o=%(0)=Lu(o)+ Lp(0) | (C2)

where

Zu(o)=—i[H4+W(1),0],

Zo(o)={— 1L, [, o]— y,[Tl,,1I_o]
- 73[ﬁ+,ﬁ20']— T Vg[ﬁzyﬁzo-]}"— h.c.
(C3)

f[+, ﬂ,, andﬁZ are thell operators in the rotating frame as
defined in Eq.(4.27. It is well known that the Hamiltonian
part transforms to the Heisenberg picture such that:

X)) =I[HI+W(1),X] . (C4)

The dissipative part is a sum of terms, each associated with a
commutator of the following structuréA,Bo] and its Her-
mitian conjugate. Each commutator is transformed by using
Eqg. (C1) and elementary properties of the trace:

Tr{[A,Bo]- X} =Tr{ABoX} - Tr{BoAX}
=Tr{oXAB}-Tr{cAXB}
=Tr{o-[X,A]B}. (CH

In this Appendix the generalized master equation in Eq.

(4.24) is transformed to the Heisenberg picture.

The Hermitian conjugate is similarly obtained by
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TH{[A,Ba]t- X} =Tr{o-BTAT X]}. (C6)  APPENDIX D: THE STEADY-STATE SOLUTION OF
THE GENERALIZED BLOCH EQUATIONS IN THE P
REPRESENTATION
Thus,
The steady-state solution of E4.34) is obtained by
equating the right-hand side to zero and solving for the

ok e 1 1 1 1 ...
(0 == y(X I I AT, X]) steady-state expectation valuesRyf P andP,, denoted by

— o[ X, IJML,+ TL{ 1T, X]). (C?)  P5S, PSSandPSS:
|
r
—2eAw % — (26)2 ’x +Fyyx —YZF XZ}
|555: z z
x r [,+0,, T !
(Aw)?+ r—x(26)2+rxry— 2eAw er—zx+r_y rxzrzx}
z z z
26T 24| 26T, 2% —Aw| y + T ”
Isss_ F szv Yx Xz
y o [,+0,, T !
(Aw)?+ F—X(ze)2+rxry— 2eAw ”F—“+F—y FXZFZX}
z z z
%(rxrﬁmwﬁ)— 1&(26Aw+ryrzx)}
pss= : ‘ : (D1)
Z(A 2+&22rr—2AFXLFZX&FF
o) T (2e)°+T'y y €Aw T +1- xzl zx
z z z

The terms in square brackets vanish when the SBE are valithot because of the extrae2on the numerator. It can be
since v,,I'y,,I',,=0 in such a case. The rest of the termsshown that:
then reduce to the typical “Lorentzian behaviour” familiar
from linear response theory. Beyond this limit, deviations
from Lorentzian behaviour are expected. ' Tt 1
It is interesting to examine the steady state obtained for 7— — 1. ~3 w8 (w). (D3)
extreme levels of saturation. In such a case, the leading terms X
in the numerator and denominator are those corresponding to
the highest order k. The following asymptotic values are

then obtained: The last equality is obtained in a similar manner to that in the

equation fonPSSm Eq.(D2). The line-shape then turns out to

be proport|onal toC, ot(w) and scanning through the fre-

. Vx 1 ’_(,8(25)) guencies at extreme saturation may provide information on
tan ,

the full dynamics of the bath fluctuations.

PSS PS —0. (D2)

The last equality on the first line is obtained by letting APPENDIX E: GENERAL PROPERTIES OF THE

[sin(@)|~1, cos@)~0, w* v~=*|2¢| and v~|2¢|. It there- GENERALIZED POWER FUNCTION

fore seems that for extremely intense fieldsch thate far

exceedsv) the steady-state polarization lies along the rotat-  In this Appendix it is shown thata) the generalized

ing driving field and its magnitude is what one would expectpower function vanishes whek and A" do; (b) the gener-

in thermal equilibrium for a stationary field whose magni- alized power function is non-negative for all frequencies.

tude equals the rotating field amplitude. Consider the numerator on the rhs of K6.4). Substi-
Finally, note that the power is given b)EZ;PSS Hence, tuting fora, I',, 7 andé their explicit definitions from Eq.

aIthoughPSS vanishes at extreme saturation, the power does$4.30, one obtams
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—2ewv(al’' g+ 7o)
=2weX 1 si(0)[Cyrt(w+1)Cypt(w—1)(1—e 289 +1 Cy 1(w)Cxa(v)(1+e A" (1—e P*) ]+ 1 [1-cog6)]?
X[ Caat(@—1)Caa(1)(1— #9)+ 3 Cypt(@)Copt(w—p)(1+e A~ ") (1—e #9) ]+ [1+cog §) ]2

X[2 Cpat(@+1)Caa(v)e P (1—e P + 1 Cyrt(@)Capt(w+ v)(1+e Aoty (1—e Aoyl (E1)

As A and AT vanish, so dcf:AAT(w) and éAAT(wi v), so  Sec. V and the corresponding line-shape converges to that

that the power also vanishes. Sincg,+ andC,, are non-  predicted by the SBE.

negative the numerator, E(E1), is also positive for all field In conclusion the power is always positive within the

frequencies, including negative ones! approximations of the model. Hence, the model is consistent
A similar general proof for the non-negativity of the de- with the second law of thermodynamics.

nominator on the rhs of Eq6.4) is impossible. To see this,

note that all the bath parameters appearing in the denomina-

tor are either functions ofv and 0 or ofw+v and v (cf.

1
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