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Abstract
An experiment based on a trapped ytterbium ion validates the inertial theorem for the SU(2)
algebra. The qubit is encoded within the hyperfine states of the atom and controlled by RF fields.
The inertial theorem generates analytical solutions for non-adiabatically driven systems that are
‘accelerated’ slowly, bridging the gap between the sudden and adiabatic limits. These solutions are
shown to be stable to small deviations, both experimentally and theoretically. By encoding a
two-level system into hyperphine structure of a trapped ytterbium, we explore the high control
over the system dynamics in order to validate range of applicability of the inertial theorem in our
system. For large deviations from the inertial condition, the experimental results show that the
phase remains accurate while the amplitude diverges, so the inertial theorem has good robustness
in the phase estimate. As a result, we experimentally showed that the inertial solutions pave the
way to rapid quantum control of closed, as well as open quantum systems.

1. Introduction

Progress in contemporary quantum technology requires precise control of quantum dynamics [1–20]. To
answer the demand, a ‘universal’ vocabulary of control techniques has emerged. They have been applied
across a broad range of experimental platforms, such as NV-centers [21–23], trapped ions [2, 24, 25], and
Josephson devices [26–28]. These techniques are encapsulated within the theoretical framework of
quantum control theory [1, 29–31].

This theory formulates the control problem by addressing three main topics:

(a) Controllability, i.e., the conditions on the dynamics that allow obtaining the objective.

(b) Constructive mechanisms of control, the problem of synthesis.

(c) Optimal control strategies and quantum speed limits.

The first issue controllability of unitary dynamics of closed quantum system has been formulated
employing Lie algebra techniques [30, 32, 33]. In this case, the Hamiltonian of the system is separated into

© 2021 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft

https://doi.org/10.1088/1367-2630/ac2710
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-8883-790X
https://orcid.org/0000-0002-5785-4248
https://orcid.org/0000-0001-6815-8929
https://orcid.org/0000-0002-6989-7958
https://orcid.org/0000-0001-6201-2523
mailto:roie.dann@mail.huji.ac.il
mailto:jmcui@ustc.edu.cn
mailto:hyf@ustc.edu.cn
mailto:cfli@ustc.edu.cn
mailto:ac_santos@df.ufscar.br
mailto:ronnie@fh.huji.ac.il


New J. Phys. 23 (2021) 093048 C-K Hu et al

drift and control terms
Ĥ (t) = Ĥ0 +

∑
j

gj (t) Ĝj, (1)

where Ĥ0 is the free system Hamiltonian, {gj(t)} are the control fields and {Ĝj} are control operators. The

system is unitary controllable provided that the Lie algebra, spanned by the nested commutators of Ĥ0 and
Ĝj, is full rank [30, 32–34].

When addressing the quantum control challenge, it is reassuring that a solution exists, nevertheless, the
practical problem of finding a control protocol has not been solved. For this task a pragmatic approach has
been developed, formulating the control problem as an optimization problem, leading to optimal control
theory [1, 35–37]. This approach has achieved significant success in solving specific control problems.
However, the drawback is that obtaining the control protocol relies on a specific numerical scheme which
might be difficult to obtain and to generalize [38].

The present study is devoted to the experimental study of constructive mechanisms of control.
Experimental realization based on quantum control impose additional requirements: (i) the control
protocol should be robust under experimental errors and (ii) the mechanism should be clear and simple to
generalize. These considerations have singled out the adiabatic protocols which have dominated the control
field, across all platforms [39, 40]. Adiabatic methods are based on the adiabatic theorem which loosely
states that the system will follow an eigenvalue of the instantaneous Hamiltonian, provided that the change
in time is slow relative to the time associated with the relevant energy gaps [41, 42]. The fact that the
Hamiltonian is an invariant of the dynamics enables a simple implementation of the control protocol by
choosing the initial and final states as eigenstates of the Hamiltonian. The adiabatic condition on the change
in the Hamiltonian will then generate the desired transition. The robustness of such a protocol stems from
the redundancy in the intermediate Hamiltonian, which allow variations in the protocol, provided the
changes are sufficiently slow. This implies that the adiabatic protocol timescale is large relative to the system
free dynamics. The relatively long protocol durations mean that the adiabatic protocols become prone to
environmental noise. This fact is one of the major disadvantages of the adiabatic method.

The present study is devoted to an experimental exploration for rapid alternative control protocol,
which are based on the inertial theorem [43]. Such protocols are termed inertial protocols and are based on
time-dependent invariants of the dynamics, beyond the adiabatic approximation. They serves as natural
replacements of the instantaneous Hamiltonian of the adiabatic protocols. The inertial theorem follow a
similar procedure as the standard adiabatic theorem [44]. As a consequence, the inertial and adiabatic
solutions share a similar structure, which implies that the positive features of robustness and simplicity are
maintained without paying the price of long timescales.

The experimental demonstration of the theory is based on the SU(2) algebra, which is realized by
171Yb+ ion confined in a Paul trap [45]. Trapped ions are characterized by long coherence times, multiple
degrees of freedom such as internal and external states, both of which are well controlled. Therefore it is one
of the leading platforms employed to realize quantum information processing. Specifically the ytterbium
ion is well suited to demonstrate of the inertial theorem for the following reasons. The ion can be efficiently
cooled by lasers to a single quantum state. In addition, an effective two level system can be identified and
manipulated by a RF pulse generator, which can produce controlled pulses. These pulses allow realizing a
verity of inertial protocols with very high fidelity. Finally, an efficient readout is obtained by fluorescence
detection. The system is well isolated and the typical timescale of dissipation is much longer then the
protocol time.

2. Inertial theory and solution

For a quantum control scheme to be generic, it has to rely on simple principles that apply across many
platforms. The control procedure requires the formulation of a dynamical map Λt from an initial state ρ̂ (0),
to the final state ρ̂(t) = Λt ρ̂(0) = Ûρ̂(0)Û†. The dynamical map is generated by the control Hamiltonian
equation (1):

i
∂

∂t
Û(t) = Ĥ(t)Û(t) with Û(0) = Î, (2)

where the convention � = 1 is used throughout this paper.
The major obstacle in generating such a map from a time-dependent control Hamiltonian is the

time-ordering operation, resulting from the fact that [Ĥ(t), Ĥ(t′)] �= 0. The adiabatic control circumvents
this problem by employing a slow drive gj(t), allowing an approximate description in terms of the
instantaneous eigenstates [42, 46–49]. At the other extreme, the sudden limit, the control is so fast that it
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overshadows the dynamics generated by the drift Hamiltonian Ĥ0. This leads to an instantaneous change of
the Hamiltonian, while leaving the system’s state unaffected.

The inertial dynamics and control paradigm serves as a compromise between the two extremes. It is
based on the inertial theorem [43], which introduces an explicit solution of the dynamical map Λt under
certain restrictions. The theorem is formulated in Liouville space, a vector space of system operators {X̂},
endowed with an inner product

(
X̂i, X̂j

)
≡ tr

(
X̂i

†X̂j

)
[50–52]. In Liouville space, the system’s dynamics are

represented in terms of a basis of orthogonal operators {B̂}, spanning the space. For example, the currently
studied SU(2) algebra can be completely characterized by a time-independent operator basis constructed
from the Pauli operators {Î, σ̂x, σ̂y, σ̂z}. The chosen (ordered) operator basis then defines a state in Liouville
space. Note, that a time-dependent operator basis can also be chosen, {�v (t)} ≡ {V̂1 (t) , . . . , V̂N (t)}T,
where N the Liouville space dimension, which corresponds to the square of the associated (wave-function)
Hilbert space. The possibility for a time-dependent operator basis serves as a major component in the
inertial theorem and construction of inertial solutions. The use of Liouville space is motivated by the
dynamical framework of open quantum systems, which requires the description of the system by the density
operator. Specifically, this will allow us to describe the influence of external noise on the control, see
discussion after equation (35).

In non-technical terms the theorem states the following, a physical system remains in its eigenoperators
if a given perturbation changes inertially. This condition can be connected in certain cases to a slow
acceleration of the perturbation and the existence of sufficient gaps between the eigenvalues of the
eigenoperators.

The dynamics in Liouville space can be solved by substituting the chosen basis �v (t) into the Heisenberg
equation of motion,

d

dt
�vH (t) = Û† (t, 0)

[(
i
[
Ĥ (t) , •

]
+

∂

∂t

)
�v (t)

]
Û (t, 0) , (3)

where superscript H signifies that the operators are in the Heisenberg picture.
We next consider a finite time-dependent basis, forming a closed Lie algebra, this guarantees that

equation (3) can be solved within the basis [53]. For a closed Lie algebra, equation (3) has the simple form

d

dt
�vH (t) = −iM (t)�vH (t) , (4)

where M (t) is a finite matrix with time-dependent elements and �v (t) is a vector.8

The inertial solutions are obtained by searching for a driving protocol that allows solving equation (4)
explicitly. These then enable extending the exact solutions for a broad range of protocols employing the
inertial approximation. By choosing a unique driving protocol and the suitable time-dependent operator
basis, the dynamical equation can be expressed as

M (t) = P (�χ)D
(
�χ, �Ω

)
P−1 (�χ) . (5)

Here, P (�χ) is an invertible matrix, which depends on the inertial coefficients {χk} (for conciseness they are
expressed in terms of the vector �χ = {χ1, . . . ,χK}), and D = diag (λ1 (�χ)Ω1 (t) , . . . ,λN (�χ)ΩN (t)) is a
diagonal matrix, whose elements depend on time-dependent frequencies �Ω (t) = {Ω1 (t) , . . . ,ΩN (t)}, and
coefficients {λk}. Such a time-dependent operator basis always exists, however, finding an analytical
solution may be difficult and requires ingenuity, see [43] section V and [54] section VIII for further details.

Substituting the general decomposition equation (5) into the dynamical equation, equation (4) leads to
an exact solution for �vH (t)

�vH (t) =
N2∑

k=1

ck �Fk (�χ) e−iλkθk(t), (6)

where the scaled-time parameters are θk (t) =
∫ t

0 dt′Ωk

(
t′
)

and ck =
∑

iPik are constant coefficients. The

Liouville vector �Fk corresponds to the eigenoperator F̂k =
∑

iP−1
ki V̂ i (0), where P−1

ik are elements of P−1

and {V̂ i (0)} are the entities of the vector of operators �v (0). For a Hermitian M, the eignvalues λk are
either zero or are pairs with equal magnitude and opposite signs.

The solution (6) is exact, but is limited to protocols for which �χ is constant. This serves as a very severe
constraint on the possible control protocols. However, the restriction can be loosened by utilizing the
inertial theorem, which introduces approximate solutions for protocols with slowly varying �χ (t).

8 For the case of compact Lie algebras and unitary dynamics, M is guaranteed to be Hermitian.
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For a state �v, driven by a inertial protocol, the system’s evolution is given by

�vH (t) =
N2∑

k=1

ck (�χ (t)) e−i
∫ t

0 dt′λkΩk eiφk(t)�Fk (�χ (t))

= P (�χ (t)) e
−i

∫ θk(t)
θk(0) λk(θ′k)dθ′kP−1 (�χ (t))�vH (0) , (7)

where the first exponent is determined by the dynamical phase and the second includes a new geometric
phase

φk (t) = i

∫ �χ(t)

�χ(0)
d�χ

(
�Gk,∇�χ

�Fk

)
. (8)

Here, �Gk are the bi-orthogonal partners of �Fk. The inertial solution is characterized by two timescales: the
fast timescale is incorporated within the frequencies Ωk(t), while the slow timescale is associated with the
change in the inertial parameters χk (t).

The system’s state follows the instantaneous solution determined by the instantaneous �χ (t) and phases,
associated with the eigenvalues λkΩk and eigenoperators F̂k. We restrict the analysis to the case where λkΩk

do not cross, hence, the spectrum of D remains non-degenerate throughout the evolution. Substituting the
inertial solution, equation (7), into equation (4) enables assessing the validity of the approximation in terms
of the ‘inertial parameter’

Υ =
∑
n,k

∣∣∣∣∣∣

(
�Gk,∇�χM�Fn

)
(λnΩn − λkΩk)2

(
d�χ

dt

)2
∣∣∣∣∣∣ . (9)

This implies that the inertial solution, equation (7), remains valid when �χ follows a path in the parameter
space of {χk}, where the eigenvalues λk and λn are distinct [49].

Overall, the inertial solution is a linear combination of the instantaneous eigenoperators {F̂k}, and holds
for slow variation of �χ, i.e., d�χ/dt � 1, Υ � 1. Physically, the condition on d�χ/dt, is associated with a
slow ‘adiabatic acceleration’ of the driving [43]. In the adiabatic limit, decomposition equation (5) is
satisfied instantaneously, where �χ � 1, and the inertial solution converges to the adiabatic result.

The implications of the inertial solution equation (7), can be understood by considering the analogy

with the adiabatic solution |ψadi (t)〉 =
∑

ncadi
n (0) eiθadi

n (t)eiφadi
n (t) |n (t)〉, where |n (t)〉 are the instantaneous

eigenstates of the Hamiltonian, θadi
n and φadi

n are the adiabatic solution’s dynamical and geometric phases,
and cadi

n (0) are the coefficients of the initial state. The Hamiltonian in the adiabatic theorem plays similar
role as the dynamical generator in Liouville space M (t) in the inertial solution, as a consequence, the
Hamiltonian’s instantaneous eigenstates are analogous to the eigenoperators {F̂k (�χ (t))}. The analogy
between Ĥ (t) and M (t) is not perfect, in the inertial theorem the eigenvalues of the dynamical generator
are decomposed to fast {Ωk (t)} and slow components {λk (t)}. Unlike the adiabatic theorem, this
separation of timescales allows rapid changes in M (t), which is associated with a Hamiltonian that violates
the adiabatic condition. The rapid degrees of freedom are incorporated within a scaled time

∫ t
0Ωk (τ) dτ ,

which is specific to each eigenoperator (k-dependent) and determines the quality of the inertial
approximation. Effectively, an inertial solution is valid when the dynamical generator in Liouville space
changes slowly with respect to the scaled times, and there is a sufficient gap in the spectrum of the
generator, see equation (9).

2.1. Inertial solution for an SU(2) algebra
We will demonstrate the inertial solution in the context of the SU(2) algebra. The simplest realization is by
a two-level-system (TLS). In particular, the algebra represents the effective qubit in the ytterbium ion. For
the demonstration, we choose a dynamical map Λt that varies the energy scale and controls the relation
between energy and coherence in a non-periodic fashion. The control Hamiltonian is chosen as:

Ĥ (t) =
1

2
(ω (t) σ̂z + ε (t) σ̂x) , (10)

where the control protocol are parameterized as follows

ω (t) = Ω (t) cos (α (t) t)

ε (t) = Ω (t) sin (α (t) t)
. (11)

Here, the frequencies ω and ε are the detuning and Rabi frequency, respectively. As we shall see, in a single
trapped ion system, the time-dependent functions ω(t) and ε(t) can be efficiently controlled by using the
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detuning and field intensity of a driving microwave field. These define the generalized Rabi frequency
Ω (t) ≡

√
ε2 (t) + ω2 (t).

We choose a time-dependent operator basis which can factorize the equation of motion
�vH (t) = {Ĥ (t) , L̂ (t) , Ĉ (t) , Î}T, where

L̂ (t) = (ε (t) σ̂z − ω (t) σ̂x) /2

Ĉ (t) =
(
Ω (t) /2

)
σ̂y, (12)

and Î is the identity operator.
Since Î is a constant of motion, a reduction to a 3 × 3 vector space in the basis {Ĥ (t) , L̂ (t) , Ĉ (t)} is

sufficient for the dynamical description. Following the general procedure, we calculate the dynamics of
�vH (t), equation (3), to obtain a generator of the form

MTLS (t) = Ω (t)B (μ) . (13)

with

B (μ) ≡ i
Ω̇

Ω2 I + B′ (μ) , (14)

and

B′ (μ) ≡ i

⎡
⎣ 0 μ 0
−μ 0 1
0 −1 0

⎤
⎦ . (15)

We can now identify the inertial coefficient �χ = χ = μ with the adiabatic parameter of Hamiltonian,
equation (10), it is defined as

|μ (t) | ≡ ω̇ε− ε̇ω

Ω3 ∼
∑
n �=m

| 〈Em (t)| ˙̂H (t) |En (t)〉 |
(Em (t) − En (t))2 . (16)

Defining the scaled time θ (t) =
∫ t

0Ω
(
t′
)

dt′ and decomposing the system state as

�vH (t) = �uH (t) exp

∫ t

0

Ω̇

Ω
dt′ =

Ω (t)

Ω (0)
�uH (t) (17)

leads to a time-independent equation for �uH (θ)

d

dθ
�uH (θ) =

⎡
⎣ 0 μ 0
−μ 0 1
0 −1 0

⎤
⎦�uH (θ) . (18)

For a constant adiabatic parameter μ, we solve equation (18) by diagonalization and obtain a solution in
terms of the basis of eigenoperators �F = {F̂1, F̂2, F̂3, Î}T. The solution reads

�F (t) = e−iDθ(t)�F (0) , (19)

where D = diag (0,κ,−κ, 0) with κ =
√

1 + μ2. The eigenoperators F̂k are associated with the eigenvectors
of B′. The eigenoperators are calculated with the help of the diagonalization matrix P : �Fi =

∑
jP−1

ij �uj. In

the �v (t) = {Ĥ (t) , L̂ (t) , Ĉ (t) , Î} basis the eigenoperators can be written as:

�F1 =
μ

κ2
{1, 0,μ, 0}T

�F2 =
1

2κ2
{−μ,−iκ, 1, 0}T

�F3 =
1

2κ2
{−μ, iκ, 1, 0}T,

(20)

with corresponding eigenvalues are λ1 = 0, λ2 = κ and λ3 = −κ. The vector �F1 corresponds to a time

dependent constant of motion i.e. 〈F̂1 (t)〉 = const, with F̂1 (t) = μ
κ2

(
Ĥ (t) + μĈ (t)

)
. Interestingly, the

eigenstates of the F̂1 (t), |ψ±〉 ∝ {ω ± κΩ, ε+ iμΩ}T, constitute dark states of the dynamics. Similar to an
energy eigenstate they only accumulates a phase throughout the evolution. Any system observable can be
expressed in terms of the eigenoperators {F̂k}, at initial time, and the exact evolution is then given by
equation (19).
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Figure 1. Typical control field ω (t) and ε (t) as a function of time. As illustrated in the experimental setup presented in figure 2,
such parameters can be accurately adjusted, where the parameters used here correspond to the experimental realization shown in
figure 3 panel (d). Notice the change in frequency (chirp) and change in the generalized Rabi frequency Ω (t).

The exact solution relied on the condition of a constant adiabatic parameter, leading to the factorization
equation (5). Such factorization enables employing the inertial theorem to extend the exact solution for a
slow change in the adiabatic parameter (μ̇ � 1), leading to an analogous equation to equation (7). Making
use of equation (17) and the definition of �Fk equation (20), the solution of the SU(2) dynamics becomes
(the geometric phase vanis‘hes in this case)

�vH (t) =
Ω (t)

Ω (0)
P (μ (t)) e−i

∫ t
0 D(μ(t′))Ω(t′)dt′ × P−1 (μ (t))�vH (0) . (21)

We experimentally verify the inertial solution by choosing a protocol associated with a linear change in
the adiabatic parameter so that dμ

dt = δ

μ (t) = μ (0) + δ · t (22)

and consider a linear chirp of the protocol frequencies

α (t) = α (0) + γ · t. (23)

equations (22) and (23) determine the Rabi frequency, by substituting this relation into equation (16) we
obtain Ω (t) = −α(0)+2α̇(t)t

μ
. For this protocol, the frequencies ω (t) and ε (t) become

ω (t) = − (α (0) + 2γ · t)

μ (0) + δ · t
· cos ((α (0) + γt) · t)

ε (t) = − (α (0) + 2γ · t)

μ (0) + δ · t
· sin ((α (0) + γt) · t)

. (24)

A typical control field corresponding to the frequencies ω (t) and ε (t) is shown in figure 1, showing an
evident change in frequency and amplitude.

The quality of the inertial approximation is directly connected to the parameter δ. For small |δ|, the
inertial approximation is satisfied and the inertial solution remains accurate. The accuracy of the inertial
solution can be evaluated by utilizing the time-dependent control protocol, equation (24). We choose the
initial condition �v (0) = {Ĥ (0) , 0, 0, 1} which describes the system in the ground state
(〈Ĥ (0)〉 = −Ω (0) /2). For these conditions, we compare the experimentally measured normalized energy,
〈Ĥ (t)〉/〈Ĥ (0)〉, to the inertial solution, equation (21), and a converged numerical calculation of
equation (4), which is generated by the Hamiltonian equation (10).
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Figure 2. Experimental apparatus (a) and relevant ytterbium energy levels (b) used in the experiment. The yellow color (waves
and arrows) designates the RF transition, while the purple color signifies the Doppler cooling laser transition. The gray arrow
represent the spontaneous emission for the P and D manifolds, and the red color designates an additional optical transition,
employed in order to close the cooling cycle. The qubit is encoded in the hyperfine states of the 2S1/2. The readout is performed
by fluorescence detection, utilizing the 395.5 nm transition. Where we highlight the encoding of the two-level system used in our
experimental implementation.

3. Experimental setup

The experimental analysis of the inertial solution employs a single ytterbium ion 171Yb+, trapped in the six
needles Paul trap, schematically shown in figure 2 panel (a). The TLS (qubit) used in our study is encoded
in the hyperfine energy levels of the ion, represented as |0〉≡ 2S1/2 |F = 0, mF = 0〉 and |1〉≡ 2S1/2

|F = 1, mF = 0〉, with energies E0 and E1, respectively, and where F denotes the total angular momentum of
the atom and mF is its projection along the quantization axis. In absence of an external field, the subspace
F = 1 is degenerate. Therefore, we apply an external static magnetic field �B with intensity 6.40 G to obtain a
8.9 MHz Zeeman structure splitting. This leads to the the desired TLS with a transition frequency given by
ωhf = 2π × 12.642 825 GHz, see figure 2 panel (b).

We can define the bare Hamiltonian for our qubit as H0 = E0 |0〉 〈0|+ E1 |1〉 〈1| = �ωhfσz/2, where
σz = |1〉 〈1| − |0〉 〈0| is the Pauli matrix. As schematically shown in figure 2, we can coherently manipulate
the qubit by driving the system with an external magnetic field �Bun(t) = �B0 cos(ωt + φ), one uses the
dipole approximation to write the contribution of this interaction to energy of the system H1 = −�μ · �Bun(t),
where �μ = �μ01 |0〉 〈1|+ �μ10 |1〉 〈0| [55, 56]. For simplicity we assume �μ01 = �μ10 = �μ, such that the control
Hamiltonian reads H1(t) = −�μ · �B0 cos(ωt + φ)σx. Then, the total driving Hamiltonian H(t) = H0 + H1

reads as

Ĥ(t) =
�ωhf

2
σz + �ΩR cos(ωt + φ)σx. (25)

in which ΩR ∝
∣∣∣�B0

∣∣∣. As aforementioned, in the rotating frame, the trapped ion driving Hamiltonian can be

written as

Ĥion =
�Δ

2
σz +

�ΩR

2

(
cos φσx + sin φσy

)
, (26)

where Δ = ωhf − ω. Therefore, by putting the phase φ = 0 and by controlling �B0 and ω in time, it makes
Δ = ω(t) and ΩR = ε(t), such that the above Hamiltonian is equivalent to the Hamiltonian given in
equation (10), as considered in the previous section.

In our experiment, the driving magnetic field is generated by mixing a 2π × 12.442 GHz coherent local
oscillator microwave and a programmable arbitrary waveform generator (AWG) signal, which is centered
around 2π × 200 MHz [57, 58]. This microwave electronic setup enables to implement the components σ̂z

and σ̂x of the Hamiltonian in equation (10), by simultaneous controlling the driving microwave phase,
amplitude and frequency.

To initialize the experiment, first the motion of the ion is cooled by employing a 369.5 nm Doppler
cooling laser beam, using the optical transition cycle 2S1/2� 2P1/2. During the transition cycle, there is a

branching ratio R for population decay from 2P1/2 state to the 2D3/2 [59]. To send the system back to the

cooling cycle, a light at 935.2 nm is used to promote transitions 2D3/2�
3D[3/2]1/2, where the system can

quickly decay from 3D[3/2]1/2 to 2S1/2 (gray arrows in figure 2 panel (b)). After Doppler cooling, the system
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is initialized in the |0〉 state with a standard optical pumping process. Utilizing the AWG, the
time-frequency protocols of the inertial solutions are implemented.

The measurement procedure detects the population of the excited state of the qubit, using a fluorescence
detection, induced by the 369.5 nm laser [57, 58]. Thus, detection of photons correspond to population in
the bright state |1〉, while no photons signify population in the dark state |0〉, as shown in figure 2. The
overall measurement fidelity is estimated to be 99.4% [57, 60]. This experiment is repeated many times, for
different delay times and different inertial protocols. For each experimental protocol, the normalized energy
as a function of time is evaluated 〈Ĥ (t)〉/〈Ĥ (0)〉.

4. Results

The qubit’s normalized energy as a function of time is shown in figure 3, comparing the experimental
measurements (blue) to the analytical inertial solution (red) and an exact numerical simulation (black). As
predicted by the inertial theorem, the dimensionless parameter |δ| = |dμ/dt| plays a central role in the
connection between experiment and theory, figure 3. Experiments with different δ (equation (24)) were
realized to asses the range of validity of the inertial solution. The system evolution is theoretically predicted
by numerically solving the Schrödinger equation, as shown with the black dotted curve in figure 3, while the
experimental data is shown as blue symbols. For sake of comparison, we also present the expected solution
for the inertial dynamics as derived from equation (21) (red full line in figure 3). In all the studied case we
observe a good agreement between the theoretical, numerical and experimental data (black dotted curves fit
very well the corresponding blue symbols). Given the high controllability of the dynamics, we can conclude
that the theoretical and experimental results for small δ (see panel (c) and (d)), demonstrate the high
accuracy of the inertial solution. In addition, it is worth highlighting that when |δ| = |dμ/dt| is increased,
we witness the breakdown of the inertial solution (panels (a), (b), (e) and (f)), since the deviations between
the predicted normalized energy values of the inertial solution and the experimental results increase. The
deviation is manifested by a difference in amplitude, while the phase of the inertial solution follows the
exact simulation and experiment measurements, see section 4.1 for a detailed analysis.

Figure 4 shows the distance D between the inertial solution and the exact numerical result as a function
of δ and time. D is defined as the Euclidean distance between the expectation values of the Liouville state
vectors

D (t) =

√√√√ 3∑
i=1

(
〈vi (t)〉 − 〈vi

num (t)〉2
)
, (27)

where vi and vi
num are the i’th component of �v (the inertial solution) and �vnum (the exact numerical

solution). When μ varies slowly, (δ = −0.01) the inertial solution remains exact, whereas for larger absolute
values, the numerical and inertial solutions deviate linearly in δ and time. In figure 5, we present the
inertial, numerical and adiabatic trajectories for δ = −0.01,−0.05 in the 〈Ĥ〉, 〈L̂〉, 〈Ĉ〉 space. This
representation provides a complete description of the dynamics, demonstrating the large deviation between
the adiabatic and inertial solutions.

4.1. Deviations from the exact solution
There are two major sources of deviation between the inertial solution and experimental results. The first is
associated with the breakdown of the inertial solution and the second source concerns the inevitable
experimental noise. Observing figure 3 we find that the major deviation between the theoretical and
experimental results is in the amplitude of the energy oscillations, while the phase is not affected even for
large |δ| (see for example panel (a) with δ = −α (0)). The amplitude of the inertial solution is determined
by the real part of the eigenvalues of the propagator. These are dominated by the the general scaling
associated with the change in the generalized Rabi frequency, see equation (17). The imaginary part of the
eigenvalues determine the phase.

In order to rationalize the observed deviation we first analyze the correction terms to the inertial
solution. Gathering equations (4), (13) and (17) we obtain

d�uH (θ)

dθ
= −iB′ (μ (θ))�uH (θ) . (28)

Next, we define the instantaneous diagonalizing matrix of B′ (μ), satisfying P−1 (μ)B′ (μ)P (μ) = D (μ)
and the vector �wH (θ) = P−1 (μ)�uH (θ). The dynamics of �wH (θ) are given by

d�w (θ)

dθ
= −iD �w (θ) +O �w (θ) , (29)

8
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Figure 3. The normalized energy as a function of time for the experimental result (blue), inertial solution (red) and numerical
solution (dashed-black) for different values of δ: (a) δ = −α (0), (b) δ = −0.05 · α (0), (c) δ = −0.01 · α (0),
(d) δ = 0.01 · α (0), (e) δ = 0.05 · α (0), (f) δ = 0.1 · α (0). The experimental parameters are: α (0) = 6 · 2π KHz,
γ = 50 · 2πM(Hz)2 with μ (0) = −1. The varying values of |δ| = |dμ/dt| are related to the quality of the inertial approximation;
for slow change in μ, the inertial approximation is satisfied (panels (c) and (d)). Varying μ rapidly leads to the breakdown of the
inertial theorem (see panels (a), (b), (e) and (f)). The insets in panel (d) and (f) represent an enlarged section of the last
oscillation, highlighting the experimental error bars.

where O = −P−1 P
dθ . For the studied model the diagonalizing matrix of B′ (μ), equation (15), obtains the

form

P =
1

2κ2

⎛
⎜⎜⎝

1

μ
−μ −μ

0 iκ −iκ
1 1 1

⎞
⎟⎟⎠ (30)

For a slow change in μ, B′ and consequently P vary slowly with respect to θ. This property allows
neglecting the second term in equation (29), which is qualitatively similar to the inertial approximation.
The deviations from the exact solution are reflected by the term O (θ) = P−1 P

dθ . Utilizing the identity
dP
dθ = 1

Ω
dP
dt we obtain

O =
2μ

1 + μ2

dμ

dθ
I + S, (31)

where

S =
δ

2Ωκ2

⎛
⎜⎜⎜⎜⎜⎝

1

μ
μ μ

− 1

2μ
−μ 0

− 1

2μ
0 −μ

⎞
⎟⎟⎟⎟⎟⎠

. (32)

Solving the dynamics explicitly leads to

�w (θ) = e(−iD+O)θ �w (0) . (33)
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Figure 4. Distance D between the inertial solution and the exact numerical solution as a function of δ and time. For δ = 0, the
inertial solution is exact at all times. For larger |δ|, the distance increases almost linearly with time and |δ|.

Figure 5. The inertial trajectory (red), exact numerical (blue) and adiabatic (green straight line) solutions in the 〈Ĥ〉, 〈L̂〉, 〈Ĉ〉
coordinate space, for (a) δ = −0.01 · α (0) and (b) δ = −0.05 · α (0).

Next, we utilize the Zassenhaus formula [61] to obtain a solution up to first order in θ

�w (θ) ≈ e−iDθeOθ �w (0) . (34)

The correction term to the inertial solution has real eigenvalues, and therefore only influences the
amplitude and not the phase. Thus, the phase of the inertial solution is not affected even when
|dμ/dt| = |δ| is large.

The second source of error is a consequence of experimental noise. We model this noise by a
δ-correlated noise in the timing of the driving [62]. Such a process is equivalent to adding random noise to
the generalized Rabi frequency Ω (t), equation (11). In the presence of such a noise the effective equation of
motion includes double commutator in the operator generating the noise [63]. For timing noise this
becomes [64]:

d

dt
�vH (t) = −

[
iM (t) + Γ2

nM2 (t)
]
�vH (t) , (35)

where the double commutator is represented by M2, and Γn is proportional to the noise amplitude. In this
case, the noise has no effect on the eigenoperators with vanishing eigenvalues, F̂1 equation (20) (the
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time-dependent constants of motion). The other two eignvalues of the noise M2 (t) are real and therefore
will only influence the amplitude of the signal. The experimental results shown in figure 3 in particular the
insert of panel (d) and (f) corroborate this analysis.

5. Discussion

The purpose of this study was to establish experimentally a new family of inertial control protocols. These
protocols are experimentally verified using a platform consisting of the hyperfine levels of an ytterbium ion
171Yb+ in a Paul trap. This experimental platform is well suited for the evaluation due to its high fidelity.
The high fidelity of both the control field and measurement allow direct comparison with the theoretical
predictions. The inertial theorem provides a family of non-adiabatic protocols that bridge the gap between
the sudden and adiabatic limits [43]. Specifically, we studied control of the SU(2) Lie algebra, which
constitutes the single qubit operations. We chose a protocol involving a chirp in frequency and change in
the generalized Rabi frequency, associated with a linear change in the adiabatic parameter μ.

The experiments verify the theorem and the ability to perform inertial protocols. Moreover, as all
experiments are influenced by various kinds of noise [65], the achieved accuracy confirms the robustness of
the inertial solution. This conclusion is supported by theoretical simulations which verify that the solution
is stable to small deviations and noise.

For a larger deviation from the inertial condition (d�χ/dt → 1) (figure 3 panels (a), (b), (e) and (f)), the
error first appears in the amplitude, while the phase of the inertial solution is still accurate. We confirm this
by analyzing a correction to the inertial solution. In the SU(2) algebra, the first-order correction in θ to the
phase vanishes (see the discussion following equation (31)). Incorporating the amplitude correction into
the inertial solution can lead to higher accuracy. The phase information can be utilized for quantum
parameter estimation [66] beyond the inertial limit.

Experimental validation of the inertial solution paves the way to rapid high-precision control. This
control can be extended to inertially driven open systems [43], utilizing the non-adiabatic master equation
[67]. Such control can regulate the system entropy [68, 69].

The present study constitutes a basic step in adding inertial control protocols to the family of
constructive mechanisms of control. The experimental validation means that inertial protocols cross the
barrier between a theoretical entity to laboratory use. Control based on the inertial theorem can be utilized
in rapid applications of quantum information processing [65, 70–72] and sensing [73].
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