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Abstract

An inversion procedure which can obtain molecular potentials from impulsive experiments is
presented. It is based on the time reversal symmetry of the mechanical equations of motion which allow
propagation backwards to the original state. Because the experimental data does not supply the full picture
necessary for backward propagation and is therefore inconclusive, an iterative procedure has been
developed which is a combination of a forward and backward propagation. This allows the inclusion of
data distributed in time from the beginning to the end of the experiment. The full power of time dependent
quantum mechanical propagation methods is employed. The inversion procedure is applied to the coloumb
explosion experiment. The collinear coloumb explosion of DHD" is used to demonstrate the procedure
step by step form the experimental velocity distribution to the molecular potential. A full quantum mechan-
ical inversion procedure for impulsive ultra short laser pulse experiments is developed. A demonstration
for the ICN molecule is supplied.
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L Introduction

Inverting experimental data can be looked upon as similar to the task of the historian who
views a complex situation and tries to infer its reasons and causes. This process is complicated because
usually the current picture is blurred which means that the inference is based only on a partial knowledge
of the situation. Moreover the inference is not unique, meaning that it may not be the only explanation.
The physical chemist who faces these problems has the advantage he can use time reversal symmetry. If
formally the sign of time is reversed in the equations of motion, the current picture should return to its ori-
ginal form. It is this tool of time reversal combined with high quality time dependent quantum propagation
techniques, that allow an effective inversion procedure. The present work focusses on inferring the
molecular potential from experiments which have an impulsive character i.e. in which large changes hap-
pen in very short time,

The general problem of inversion has been addressed by many authors [14]. Mathematically
the inversion problem is ill posed since more than one solution can exist for a set of experimental data. A
typical example is the inversion of spectra by the one dimensional RKR semiclassical method. Already in
this example, the inversion is not unique; a transformation of the potential that will preserve the action
between two turning points will produce the same spectra. Most successful inversion methods are one
dimensional, the reason being the large degree of over-determination in higher dimensional problems.
Mathematical approaches based on formal scattering theory have been proposed [1], but it is rare that the
experiment can supply the required data. An exception is a multiple dimensional approach based on an
iterative self consistent field reduction to coupled one dimensional problems. It has been applied success-
fully to the inversion of spectral data [2].

In physical chemistry The usual situation of insufficient experimental data has lead to heuristic
approach in which the experiment is modeled by first assuming a known potential. The computed results
from the model are compared to the experiment. At this point the potential is modified for another try. The
lack in this procedure is that there is no guaranty of convergence. Moreover good simulation of multidi-
mensional problems are numerically expensive. The advantage, on the other hand, of the heuristic
approach is that there are no restrictions on the quality or completeness of the experimental data.

The development of new experimental tools, in particular, impulsive methods and new theoret-
ical techniques have supplied the motivation for reconsidering the inversion problem. The best known
example of an impulsive experiment is the coloumb explosion experiment [5]. A molecule is accelerated
and then passed through a very thin film which on a timescale of 107'7 seconds is ionized. In this process
the nuclei exhibit a sudden change from the bound molecular potential to a repulsive coloumb potential.
Experimentally the time of flight of all nuclei is monitored. From this data the asymptotic relative momen-
tum distribution of all participating nuclei is obtained. Another example of an impulsive experiment is
photodissociation of a molecule using light pulses in the femtosecond regime. For a very short light pulse
the nuclei are moved instantaneously from the ground potential surface to an excited one. Experimental
data can be obtained either by time of flight spectra or by monitoring the dynamics using a second short
pulse.

Inversion schemes for impulsive experiments exclusively based on classical mechanics have
been applied to these problems [6]. A critical evaluation of this procedure becomes concerned with the
applicability of classical mechanics to these dynamical molecular processes. Another concern is the vali-
dity of the impulsive assumption. At least for existing femtosecond experiments the pulses are not short
enough in relation to molecular motion to be considered impulsive.

In this presentation, a full quantum scheme for inversion of incomplete expenmcmal data is
presented. The insight for this study has come from the development of laser selective chemistry and in
particular the use of optimal control theory [7][8]. Similar conceptual problems arise in trying to infer the
optimal light pulse which induces a particular chemical outcome. The rest of this paper is devoted to illus-
trate these ideas.
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II. Coloumb explosion inversion

The coloumb explosion technique serves as an ideal example for an impulsive experiment [5].
The process can be described by the following steps: First, the molecule is prepared in a well defined initial
state. This is usually done by a jet cooled source and a lazer preparation method. For the analysis it is
assumed that the molecule is either in the ground state or in a well defined eigenstate. The second step is to
accelerate the molecule. It is assumed during this step that the state of the molecule does not change. The
third step is the stripping stage where the molecule is passed through a thin foil in which the field is strong
enough to ionize the molecule in a very short time so that the nuclei do not have time to change their posi-
tions. Once the molecule is ionized, it moves under the influence of a repulsive coloumb potential. The
final stage is a time of flight measurement of all nuclei constituting the molecule. The experiment is then
repeated many times to obtain a velocity distribution. The relative momentum distribution of the nuclei
can be constructed by subtracting the center of mass velocity. Two points should be emphasized: 1) the
impulsive nature of the change from the unknown potential to the known coloumb potential. 2) The com-
plete momentum distribution measurement of all participating particles.

The main purpose of the experiment is to invert the experimental data and obtain the molecular
potential. The inversion proceeds as follows:  First, from the asymptotic momentum distribution the ini-
tial wavefunction y(R,¢=0) is inferred. Once the initial wavefunction is known, the molecular potential
can be obtained. Examining the first stage with the aid of microscopic reversibility, it would be expected
that the asymptotic data could be propagated backward, but a typical problem of inversion emerges. The
experimental data which is supplied as the asymptotic relative momentum distribution, is insufficient to
invert the data. In quantum mechanics the momentum observable is equivalent to the absolute value
squared of the asymptotic wavefunction in momentum space at ¢ =oo: P(k) = | y(k,t=) 12, The crucial
part that is missing in order to reconstruct the wavefunction is the phase factor ¢’*®. On the other hand if
the wavefunction at ¢=0 is an eigenstate, the initial phase is known to be constant but the absolute value of
the wavefunction is not known and is the object of inversion. At this point one is faced with the problem
that the known facts about the system are split between the times ¢=0 and ¢=co. The iterative inversion pro-
cedure is designed to let the ends meet to obtain a wavefunction consistent with all known data.

The inversion procedure is as follows:

A. Construct the best possible guess for the molecular potential. One can use previous potential fits from
spectroscopic data or ab-initio potential calculations.

B. Use the relaxation procedure [9] to obtain the ground state wavefunction of the trial potential

of step A. This wavefunction is the input for the iterative procedure and therefore becomes yo(R,=0).

C. Propagate the initial wavefunction of the n th iteration ,(R,¢#=0) from ¢=0 to t=cc using the coloumb
potential obtaining y,(R,=00).

D. Transfer the wavefunction into momentum space: ,(k,t=00).

E. Combine the phase of the wavefunction of D and the amplitude in momentum space obtained from the
experimental data, to produce a new final wavefunction:

Yk, =)

f =o00) = e
YaK,t=) = lygk)! AT

2.1)

where: 1yz(k)! is the square root of the experimental momentum distribution. Transform the wavefunction
back to configuration space: (R, t=s).

F. Propagate backwards from ¢=co to t=0, the wavefunction of E, to obtain: y/(R,¢=0)

G. Adjust the phase of the wavefunction of F to be constant y,.; (R,t=0) = IW4(R,t=0)1. This wavefunc-
tion is the input for the n+1 iteration.

H. Repeat steps C to G until convergence is obtained.
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I. From the iterative final wavefunction y{(R,¢=0) of the [ th iteration obtain the potential by rewriting the
stationary Schrddinger equation:

VR) = [ ?:n— v V{(R,i=0)] !

i e

Comments: 1) Although the algorithm described is general, there is a computational advantage for using
the Fourier method representation [10]. This is because of the ease of transformation from coordinate to
momentum space. 2) The final time f=co can be chosen to be finite, provided the asymptotic momentum
distribution has been reached. It can be tested by calculating the residual coloumb potential energy expec-
tation: <y |V ;1> . 3) High quality time propagation methods in which the phase error is minimal, have
to be used [11]. In particular the last inversion step ( step I ) is sensitive to the absolute accuracy of the
propagation method. 4) The use of interaction representation [12] can be advantageous because momen-
tum is constantly shifted to higher values.

A two dimensional study of the coloumb exploswn of collinear DHD* will be used to illustrate
the procedure. Other one and two dimensional studies have been carried out with the conclusion that the
following illustration is typical. Figure 1 displays the final relative momentum distribution function.

O

Figure 1: eomuomplotoftheﬁmlmnmmmxﬁ distribution, the cross hairs point to the origin (0,0) .

This distribution represents the coloumb explosion experimental data. A grid of 128x128 points
was used in coordinate R space or in momentum k space. Jackobi coordinates were used and a
Fourier representation scheme. The time propagation was carried out using the Chebychev
method [10]. ( all units used are atomic units ).

The algorithm is now followed step by step.

Step A: To emphasize the fast convergence, a very poor initial guess of the molecular potential
was chosen. Figure 2 displays this potential. In comparison to the real molecular potential the
potential minimum is shifted by 0.4 a.u. and the vibrational frequencies are only half the value of
the original potential.
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reduced mass. Figure 3 shows the Wwavefunction superimposed on the true molecular potential.

The energy of this wavefunction in comparison to the real ground state, is shifted by 0.15 a.u. @“.
ev).
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—
Figure 2: contour plot of trial potential (solid line ) Figure 3: contour plot of the true potential (solid line )
and the ground state of this potential ( dashed line ) and the ground state of trial potential ( dashed line )

Step C: The wavefunction is Propagated to the final asymptotic time chosen to be 120 a.u. . The
wavefunction Yo(R,t=120) is displayed in figure 4.
Q1

<@ "

Figure 4: asymptotic wavefunction in coordinate space. Figure 5: asymptotic wavefunction in momentum space,

Step D: Figure 5 shows the wavefunction in momentum Space Yo(k,z=120). The momentum dis-
tribution is clearly broader in comparison to the experimental data of figure 1.



Step E: The combined wavefunction using the phase of D and the amplitude of figure 1 is pro-
duced: yh(k,t=120). This is the focal point of the inversion in which the forward propagated
wavefunction which carries the phase is matched with the asymptotic data which carries the
amplitude. This wavefunction in coordinate space is displayed in figure 6.

Qa1

Q1
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Figure 6: initial sate for backward propagation. Figure 7: backward propagated wavefunction first iteration

Step F: Propagation backward in time to obtain y$(R,#=0) shown in figure 7.
Step G: Adjustment of phase to obtain the input of the next iteration.
Step H: Figure 8 shows the convergence of y, (k,z=120) while figure 9 shows \|l£ (R,t=0).

Figure 8: iterated wavetunction in momentume space Figure 8: iterated wavefunction in coordinate space

Five iterations were enough to converge the results.



Step I: Figure 10 compares the potential obtained by the inversion to the true potential used to
produce the "experimental” data of figure 1.

Figure 10: The inverted potential ( solid ) superimposed on the tru molecular potential (dashed ).

The figure displays clearly the window in coordinate space where the wavefunction has
significant amplitude in which meaningful results can be obtained. In order to shift this window,
an excited initial state should be employed.

On examining the evolution of the wavepacket both in coordinate and momentum space (
figures 2-10 ), it is evident that the wavefunction is compact. This fact makes it possible to use dynamical
grid approaches in which the grid follows the wavefunction in coordinate as well as momentum space. This
shift can be carried out either at every time step such as in the work of Feldman [12], or continuously by
the use of the interaction representation. '

The amazing fact about the inversion procedure is its robustness and fast convergence. Four
iterations were enough to obtain converged results of the wavefunction and of the potential in regions of
space of up to 10% of the maximum wavefunction. After ten iterations, the potential could be obtained in
regions which are up to 2% of the maximum wavefunction. The frequent transformations from coordinate
to momentum space creates an effective filter able to eliminate experimental noise.

At this point the procedure should be compared to the classical inversion procedure. The main
difference is that the classical inversion procedure trajectories are sent backwards one by one. The
difficulty is to identify the position in which to stop the integration of each trajectory. In multidimensional
systems such a stopping point is not unique. The global quantum iterative procedure avoids the difficulty.
Another problem arizes from the omission of the zero point motion in the classical procedure. This in turn
leads to wavefunction in coordinate space which is too broad and which manifests itself with a molecule
which appears to be floppy. This effect is particularly important in molecules containing hydrogen.
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Inversion of short pulse experimental data,

The impulsive experimental process can be carried out by using light as the driving force,
Based on the Frank Condon principle, the nuclei do not move during the absorption of light. The introduc-

time delay between pulses and central frequency of the second pulse is varied.

At this point, one should summarize the known facts about the experiment. As the ground
Potential surface is known, the initial wave function of the experiment VY, (+=0) can be calculated. The final
measurement supplies the final probability on the second excited surface;

I <y (t=20) Iy, (t=00)> |2 @3.1)

for each pulse sequence /. The dynamics is governed by the time dependent Schrbdinger equation for three
surfaces:

MoVl =| Vu B, V| v, (32)
\/

A2
where H; = % +V; is the diagonal part of the Hamiltonian, V;; = p¥e(r) where p¥ is the dipole
moment between surface i and j and e(r) represents the amplitude of the electromagnetic field, The pulse
envelope is assumed to be Gaussian;
L7
&) = Ae % cos(wyr) 3.3)

where the maximum amplitude is obtained at ¢ = 4, and the central frequency of the pulse is ;. The first
excitation pulse has the same form but a constant frequency.

The inversion procedure seeks the potential of ﬁ, ie : f’,, the first excited state potential,
Once again the known facts about the system are distributed through time, At ¢ = ( the system i§ known to
be in the ground state Vg (r=0) which can be calculated knowing the ground state potential V, and the
relaxation method [9]. At ¢=0 the amplitude of the other states is zero, For each experiment the time and



Where V 1s the reference potential which can be obtained from ab-initio calculations or some other
method. V is the inferred new potential. Once a potential is set the dynamics can be solved for all
sequences of pulses. The results are compared to the experiment. The objective is then to minimize the
difference between the experimental and calculated data:

L 2
Jy = E [ <V |\ll.,'>1 —Al] 3.5)
I=1

where the sum is on all experiments performed and the wavefunction v,, is the result of the calculation of
the /th experiment and 4; is the measured data of the [ th experiment. The two functionals J, and J, which
are to be minimized are subject to the constraint that the dynamics is governed by the Schrbdinger equa-
tion. This in turn leads to the minimalization of the functional J 3:

J3 = oy +12+2j[<x,|(z-—u)lw,>+cc]dz (3.6)

=1 0

Where Y is the Lagrange multiplier arising because the motion is constrained by the Schridinger equation.
o is a weight which emphasizes the minimization of J, or J;. To minimize equation (3.6) both the
wavefunction y; and the potential V, are varied independently. The result which is obtained by integrating
by parts and taking the variations dy; and 3V, to zero is a set of Euler Lagrange equations. From the varia-
tion of y one obtains:

a;"— Hy, k)

where ﬁ, is the hamiltonian of the /th pulse sequence. Equation (3.7) is subject to the initial conditions:

0
@ =| 0 (3.8)
¥, (0)
and the backward equation of motion for :
—i%i = Hy, (39)
subject to the final conditions:
Wiy (t=0)
<y 1v,>
Xi(t=) = 0 (3.10)



From the variation of the potential one obtains:

AV,®) = —z i [\v,,(R t)fx,,(R,t)+cc] 3.11)

I-l =0

where AV, is the difference between the reference potential and the new potential.

Examining equation (3.11) the final potential difference is obtained by the overlap of the for-
ward moving wavefunction y which originated on the ground state and the backward moving wavefunc-
tion %, which originated on the second excited state . The meeting ground is the first excited state potential
which is determined by this process. An iterative procedure to solve these equation for the ICN molecule
is under way [14]. '

The inversion procedure just described can be complicated if one adds the lack of knowledge
of the dipole functions pu¥(R). Also the molecule has two more degrees of freedom which have not been
considered. Nevertheless this procedure can be the first step in a more elaborate assault on the full com-
plexity of the molecular potentials and dipole functions.

Conclusions

Time reversal symmetry which allows propagation backwards in time has enabled a new
inversion procedure. Because the experimental data is inconclusive a full picture which can be used as an
initial state for backward propagation cannot be constructed. The problem is overcome by a combination
of forward and backward propagation which enables additions to the experimental data from sources of
knowledge about the molecule. The two examples presented both rely on the same principle. The coloumb
explosion data is more complete than the ICN impulsive pulse experiment. The result is faster convergence
and less input from guessed potentials. The illustration shows that multidimensional inversion converges
rapidly. The iterative process serves both as a filter for noisy experimental data and as a way to incorporate
knowledge distributed through the sequence of events. The extension of these ideas to more degrees of
freedom is closely related to the development of multidimensional time dependent propagation technique.
A method using bound coordinates for triatomic molecules is under development [12]. Other methods such
as the use of hyperspherical coordinates are also under investigation.

The main obstacle in the development of inversion procedures has been the inconclusiveness
of expenmcmal data. The mathematical inversion procedures use strong analytic properties to fill in the

gap. This in turn leads to very strong demands on the quality of the experimental data. The iterative pro-
cedure developed here succeeds because the inversion goal is more modest. Instead of relying completely
on the experimental findings the method incorporates intelligent guesses on the potential. Convergence of
the iterative procedure, unlike the mathematical inversion, only means that a local minimum has been
reached. This weaker result on the other hand has the advantage that the requirements on the experimental
data are relaxed guaranteeing that a molecular potential is obtained. A similar approach has been proposed
by Shi and Rabitz [15] for inversion of scattering data. The method is based on the stationary solution of
the scattering problem and therefore does not utilise directly the time reversal symmetry.

To conclude, the work presented here only begins to reveal the wealth of phenomena which
be tackeled. With the appearence of new experimental possibilities and the development of new three-
dimensional time dependent propagation methods many molecules can be investigated. These methods
will lead eventually to new insight on the structure of many moleculs.
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