
1. Phys. A Math. Gen. 25 (1992) 1283-1307. Pinted in the UK 

Solution of the time-dependent Liouville-von Neumann 
equation: dissipative evolution 

Michael Bennant, Ronnie Koslofft and Hillel Tal-Ezert 
t Department of Physical Chemistry and The Fritz Haber Research Center for Molecular 
Dynamics, The Hebrew University, Jerusalem 91904, Israel 
t Department of Applied Mathematics, Tel-Aviv University, Tel-Aviv 69918, Israel 

Received 25 October 1990, in final form 19 July 1991 

Abstract. A mathematical and numerical framework has been worked out to represent the 
density operator in phase space and to propagate it in time under dissipative conditions. 
The representation of the density operator is based on the Fourier pseudospectral method 
which allows a description both in configuration as well as in momentum space. A new 
propagation scheme which treats the complex eigenvalue structure of the dissipative 

ate modern computer architecture such as parallelism and vectorization. Comparing the 
results to closed-form solutions exponentially fast convergence characteristics in phase 
space as well as in the time propagation is demonstrated. As an example of its usefulness, 
thenew method has beensuccessfully applied todissipationunderthe constraint ofselection 
rules. Mare specifically, a harmonic oscillator which relaxes to equilibrium under the 
constraint of second-order coupling to the bath was studied. The results of the calculation 
were compared to a mean field approximation developed for this problem. It has been 
found that this approximation does not capture the essence of the relaxation process. In 
conclusion, the new method presented is a conceptual tool to model multi-dimensional 
quantum physical systems which exhibit both relaxation as well as oscillation in an efficient, 
accurate and convenient manner. 
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1. Introduction 

Partitioning a physical system into a primary part where a detailed description is sought 
and an auxiliary part, environment, for which only the influence on the primary part 
is of interest, is one of the fundamental concepts in statistical physics [ I ] .  The purpose 
of this partitioning is to replace the detailed many body dynamics of the combined 
system by a reduced description containing only variables belonging to the primary 
system [2-171. In  quantum mechanics this partitioning leads to fundamental problems 
due to non-Inca1 correlations: combining the reduced description of each ofthe separate 
parts is not enough to reconstruct the original combined system. These non-local 
correlation are the base of Einstein criticism of quantum mechanics [18-19]. Despite 
these problems a reduced description is a practical necessity if realistic quantum 
mechanical problems are to be calculated. This paper follows a pragmatic approach 
in which a reduced description of the subsystem is assumed. This means that the 
equation of motion that govern the dynamics are equations of an open system [3]. 
These equations are restricted by the above assumption that the dynamics can be 
incorporated into a system bath setup. A mathematical framework providing quantum 
mechanical equation of motion in the reduced description has been worked out by 
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Lindblad [6] as well as others [7]. Despite the limitations ofthis approach it nevertheless 
provides a practical scheme to construct models in which quantum dissipation processes 
can be studied. In particular these models provide insight into systems in which the 
timescale of relaxation is comparable to internal transitions in the primary system. The 
complicated structure of the reduced equations has hindered their usefulness because 
only a very small number of problems have been solved in closed form. The effectiveness 
of this approach can be greatly increased by the development of a numerical scheme 
allowing the analysis of non-trivial relaxation processes. The work is devoted to 
the development, testing and simple applications of a numerical scheme specifically 
designed to address open quantum dissipative systems. 

This paper is organized as follows. In section 2 a theoretical background is covered, 
with a review of definitions made in a previous paper [20]. The dynamical semigroup 
approach is described in short and the generalized Liouville-von Neumann equation 

detailed description of the main algorithm of this work. In section 4 the algorithm and 
the technical code are tested in an exactly solvable case. In section 5 a non-trivial 
dissipation under the constraint of selection rules is examined. Section 6 is devoted to 
discussion and concluding remarks. 

of mntion is considered for a time-independent Lionvi!!ian. Section 3 is devoted 1 

2. Theoretical background 

This work sets out to examine the behaviour of a quantum system in a dissipative 
environment. More precisely, it studies the quantum dynamics df a small system (or 
selected degrees of freedom) in contact with a much larger system. 

In order to describe the systems dynamics, a few fundamental conceptual tools are 
presented as follows: the state of the system is described by a density operator-a 
member of the class of positive operators (having trace one) in the Hilbert space 
associated with the system [21]. For convenience this density operator is defined in 
configuration space 

P ( X ,  x’) = (xlilx’, (2.1) 

or alternatively in momentum representation 

Using the transformation from x to k one obtains 

p(k,  k‘) =L I[ dx dx‘e-’”p(x, x’)  (2 .3a)  
2%. ~ 

and the back transformation 

dkdk‘e’*”p(k, k‘) (2.36) 

The transformation in equation (2.3) establish the discrete representation of the Hilbert 
space used in the rest of this paper as well as in the previous study [20]. Observables 
are associated with a Hermitian operator defined on the Hilbert space of the system 
through the formula 

(A) = t r{~A).  (2.4) 
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Equations (2.1)-(2.4) constituk the static description of the state of the system and 
its observables. 

While the state of the system is defined by the density operator, its dynamics is 
governed by a superoperator which maps operators in the Hilbert space into other 
operators. This construction defines a Hilbert space in which !he operators serve as 
the vectors, and the scalar product is defined by ( A .  B) = tr(AB). This superoperator 
description may be outlined in terms of a Tetradic formalism [17,22]. In particular, 
the focus is on the evolution superoperator A, mapping the initial density operator to 
the final density operator at time t. 

;' = A A  ( 2 . 5 )  

this being a solution of the generalized Liouville-von Neumann equation with the 
generator 2 of A, 

In the reversible non-dissipative case, A, has group properties, which display a unitary 
time evolution. By using the Baker-Hausdorff formula [23], its generator can be shown 
to take the form 2 = [H, 1, where H is the Hamiltonian of the system. For non-unitary 
dynamics, the evolution should follow the pattern of the reversible dynamics of the 
combined subsystem and its environment. For simplicity let us consider an uncorrelated 
initial state of the combined subsystem and bath ;O&. Its motion under a unitary 
transformation is described by the density operator 

where the trace is taken over the bath degrees of freedom. The reduced dynamics of 
the system can be written as [6] 

whefe are operators belonging to the Hilbert space of the subsystem only with 
2, W, W,'= I. The map in equation (2.8) is an example of a map of the density operator 
into itself, obeying the following conditions. (i) It is a positive map since it describes 
a mapping of the positive (probability representing) density operator to another positive 
density operator. The dynamical map can be defined both in the Schrodinger and the 
Heisenberg pictures via 

(2.9) 

As a result the normalization preserving property A * i  = f is obtained. The notion of 
positive mapping has been further extended in mathematical terms to completely 
positive mapping [24]. The idea behind this restriction is that for any completely 
positive map a reduction scheme leading to it can be found. The Hamiltonian dynamics 
appropriate for an isolated system is replaced for open systems by a more general 
class of linear dynamical maps. Imposing the Markov property [6,25], 

(Az) = tr{Ap^A*] = tr{bA*A*]. 

A , '  A % =  A,+,  (2.10) 

and supplementing it by the requirement that the map is continuous, one is led to 
sufficient conditions determining the structure of the generator of the quantum dynami- 
cal semigroup map. The Liouville-von Neumann equation of motion for a dissipative 
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system [6] then reads: 

(2.11) 

where again W are operators defined in the Hilbert space of the subsystem while f i  
is the Hermitian Hamiltonian of the subsystem only. Here [A, B], =AB+ BA denotes 
the anti-commutator. In the Schrodinger picture equation (2.11) takes the form 

(2.12) 

which can also be written as 

-is(p*) =$I (*6Wj-$[Wj%, c]+)-i[fi, 61. (2.13) 

The generality of these equations deserves the construction of a general numerical 
scheme to solve the dynamics of a quantum system under general dissipating conditions. 
However, there is nothing in the prescription to guide one in defining th," operators 
%.. Apractical approach to this problem would be to choose the operators W according 
to the mode of approach to equilibrium. The problem of the actual choice of these 
operators will be addressed in the examples of section 5.  

The difference between the generator of a unitary evolution and the generator of 
irreversible non-unitary evolution is expressed in the eigenvalue spectrum of the 
generator i 2 .  For the unitary evolution the spectrum of i 2  is purely imaginary and 
consists of all the energy differences between the energy levels-the eigenvalues of the 
Hamiltonian of the subsystem. For the relaxing non-unitary i s  the spectrum has 
negative real components determining the rate of relaxation. As will be described in 
detail in the outline of the numerical algorithm, the method requires an estimate on 
the boundaries of the domain D in which the eigenvalues of the Liouville operator 
are concentrated. On the imaginary axis the highest eigenvalue of i2 is estimated by 
the highest energy that can be represented by the discrete representation. For example 
on a grid: 

j 

i 

Figure I .  Schematic display of the eigenvalues of 
Liouville-van Neumann superaperator i2 (shown 
by the symbol x )  and the boundaries of the 
domain D. 
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where k,,, is the maximum momentum component represented on the grid. The 
imaginary components of the eigenvalues represent the oscillatory behaviour, while 
the real components take only negative values, representing relaxation to equilibrium. 
An upper bound for the real part can be estimated by the maximum value of the 
eigenvalue of WW' represented in the discrete approximation. If the system has a 
unique equilibrium state, there is only one eigenvalue located on the imaginary axis. 
Figure 1 shows an estimate of the boundaries of the domain D. 

3. Numerical algorithm 

The numerical procedure has to supply efficient and accurate descriptions for the 
quantum mechanical concepts presented in the previous section. For ease of use, and 
for numerical efficiency, the numerical algorithm has been designed with a modular 
structure. Nevertheless, this structure is determined by global considerations. For a 
clear presentation, the description could be classified along the following lines: 

A. Initiation: 
[A.l] Discretizing the underlying Hilbert space of the system 
[A.Z] Dejning the operators on this Hilbert space 
[A.3] Preparing an initial density operator 
B. Propagation cycle: 
[ B J ]  The operation of the Liouville superoperator 
[B.2] Propagating in time 
[B.3] Analysing intermediate results 
c. Fix! aaa!y.is. 

A. Initiation 
The procedures used in the initiation stage are very similar to the ones previously used 
for the unitary evolution [20]. Only a brief summary of them is presented therefore. 

[A.]] Discretizing the underlying Hilbert space of the system 
The chosen discretization scheme has its foundation in the classical phase space 
description of the system. Consider a rectangular shaped box in phase space with 
length I in configuration space and -pmar to pmax in momentum space. In quantum 
mechanics, a discrete description of this phase space is obtained by choosing evenly 
distributed sampling points with periodic boundary conditions in configuration space. 
Here a function u ( x )  in Hilbert space is represented by a truncated series 

N-l 

U&)= E a m b ) .  (3.1) 
i = o  

The choice of the free particle plane waves for the expansion functions 

k=-(N/2-1)  , _ . . ,  0 , . . . ,  N / 2  (3.2) 
is the basis for a duai description of phase space. By virtue of the discrete Fourier 
transform, the sampling is also evenly distributed in momentum space with the two 
relations: 

. I x ( x )  =e*-ix* 

R R 
A k = -  (3.3) I Ax=- 

kmax 
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with p = hk The number of sampling points N is equal to the volume of the box in 
phase space divided by h. The result of this construction is a dual discrete representation 
both in configuration as well as momentum space. 

[A21 Defining the operotors on this Hilbert space 
On this discrete Hilbert space, operators such as the density operator 6, are represented 
as matrices. In the Fourier discretization scheme, p̂  is represented as: 

(3.4) 

x = i A x , x ' = j A x .  

backward discrete Fourier transform: 
A discrete description in momentum space is obtained by a combined forward and 

for j = 0, 1 , .  . . , N - 1 and I =0, 1, .  . . , N - 1, which is the discretized version of 
equation (2.5). Other operators can be treated in the same way. Numerical efficiency 
is obtained by using the fast Fourier transform (FIT) algorithm [26,27]. 

[A.3] Preparing an initio/ density operator 
Two types of initial density operators are used. First pure initial states can be constructed 
from their wavefunction, 

P(X, x ' )  = I L ( X ) I L * ( X ' ) .  (3.6) 

This formula allows the use of generic generators of wavefunctions as a source of 
initial wavefunctions. An alternative is to use a Gaussian initial state: a Gaussian 
density operator is determined explicitly by the set of expectation values: (g), (jj), (i2), 
(@+$) and ($*), the most general one-dimensional Gaussian density operator having 
tile lurm: .L. 

1x7 (3.7) p ( x ,  x ' ,  t =0)  = ( x l b l x ' ) =  (xle * " + n , i + * , i + * , i ' + r , ) ( ~ i + ~ i ) + ~ ~ ~ l  

where hi are the Lagrange coefficients. It should be stressed that for the Gaussian 
density operator there is a one to one correspondence between the expectation values 
(2,) of the operators defining p  ̂ and the Lagrange coefficients ( A j  in equation (3.7)). 
As a result, for problems for which the Gaussian form is preserved in time equation 
(3.7) can also be used to reconstruct the density operator at later times. The use of 
this type of density operator permits the definition of thermal states. More on this 
construction can be found in reference [20]. 

B. Propagation cycle 
ne propagation cyc!e is b a s d  on a po!ynomia! approxima!inn of !he evo!u!ion 
superoperator. This is possible because of the linearity of 3, and the ability to operate 
with 3 recursively. To perform this operation, the action of a superoperator 3 acting 
o? the Hiibert space of the system (i.e. mapping an operator A into a new operator 
B: B = 3 A )  has to be determined. 
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[ B . l ]  The operation of the Liouville superoperator 
The superoperator maps operators into operators. In the discrete representation of 
operators as matrices with two indices, the superoperator becomes a Tetrad (i.e. a four 
index structure). However, the cost of mapping, which scales as N 4  for a N x N matrix, 
is so exorbitant, that it rules out any practical application. The first practical measure 
is to consider mapping operations which can be obtained by matrix multiplication or 
as sums of matrix multiplication operations. This class of mappings includes the 
important class of commutation relations. Even this reduction measure is not enough 
since matrix multiplications scale as N cubed. A further reduction in operation count 
is possible if one considers only multiplications with diagonal matrices. Considering 
the dual configuration-momentum discrete representations, the operation of any 
operator which can be split into operators diagonal in configuration space plus operators 
in momentum space can be treated by this technique. For example, the commutation 
relations of the kinetic and potential energy constituting the commutation relation with 
the Hamiltonian can be written as: 

([t,;l)a= V & - p s v , = ( ~ . -  v,)p,. (3.8) 
Commutation relations in momentum space for the kinetic energy operator take the 
local form: 

1 
2m ([k, = (kc -$?)a = - (ki- k:)& (3.9) 

where 6 designates the Fourier transformed operator (coordinate to momentum), 
which is also the momentum representation of the operator. For these algorithms, 
numerical effort scales as O( N 2 )  for diagonal matrix multiplication in configuration 
space and as O ( N 2  log N )  for operations in momentum space. 

The algorithm for calculating commutation relations is identical to the one described 
previously [20]. More complicated operations appear in equation (2.13). Any operator 
in phase space which can be defined by an analytic function in the momentum and 
position operators can be approximated by a polynomial expansion in P and Q. The 
Fourier representation supplies a natural description of such operators by transforming 
from momentum to coordinate space and back. The number of operations is determined 
by the number of Fourier transforms needed. 

tB.21 Pmpagating in time 
Propagating the density operator is a mapping operation in which the density operator 
at time t is mapped into a new density operator. The numerical approximation of this 
mapping can be generalized by considering the problem of the mapping of a function 
of the superoperator 2, F(2). Assuming that all the eigenvalues of 2' can be located 
in a domain D in the complex plane, consider a function F(z) analytic in the domain 
D. For the propagator in time the function F ( r )=eZA'  is used, nevertheless the 
procedure described here is general for any analytic function in D. The problem to be 
addressed is to approximate the mapping of an operator X by a function of the 
superoperator F ( 2 ) ,  namely, 

?= F ( 2 ) i .  (3.10) 

Equation (3.10) has to be interpreted the most direct route is by utilizing the spectral 
decomposition of the superoperator 2 

2=xA"8" (3.11) 
n 
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where =YE,, = A.E. and 8" is the nth superprojection operator 8- = E. tr{E.. . .). Using 
the spectral decomposition of equation (3.11) equation (3.10) has the interpretation: 

c=x F(A.) tr{$En}E.. (3.12) 

This equation is correct even if the spectral decomposition is not complete. Equation 
(3.12) can be manipulated by taking advantage of the properties of interpolation 
polynomials. These polynomials by definition reconstruct the value of the function F 
at prespecified sampling points: 

P(z,)=F(z.) (3.13) 

where z. are the sampling points. Examining equation (3.12) it is apparent that the 
function F can be replaced by an interpolation polynomial provided that the sampling 
points z. are chosen as the eigenvalues A,,. For numerical reasons of stability, a Newtons 
formulation of the interpolation polynomial is chosen. The function of the operator 
F in equation (3.13) can be written as: 

(3.14) 

where 9 is the identity superoperator, z, =A,,, and the expansion coefficients a. are 
calculated by the divided difference algorithm: for example a,=F(r,) or a, = 
( F ( z , ) - F ( z , ) ) / ( z ~ - z ~ ) .  The advantage of the representation (3.14) is that now it is 
possible to construct the operation of the polynomial recursively on an initial function 
6 once an algorithm for the operation 2; exists. This recursive algorithm eliminates 
intermediate storage because unlike equation (3.12) the need for the eigenfunctions is 
eliminated. Summarizing the reformulation from equation (3.10) to equation (3.14) a 
recursive polynomial expansion of the function F ( 2 )  has been gained but the more 
difficult problem of finding the set of eigenvalues of the operator 2 has to be performed. 
As basic diagonalization procedures scale as O( N 6 )  where N x N is the size of the 
operator 6 this approach is prohibitively expensive for realistic problems. The strategy 
followed is to replace the details of the full eigenvalue spectrum by a uniform approxi- 
mation on the domain D where the eigenvalues are located. A detailed mathematical 
description of this approach can be found in [29], the main considerations which lead 
to the method now being summarized. 

Let Y, be an approximation of Y which results from approximating the function 
F ( z )  by the polynomial of degree m, P,(z): 

c, = [Pm(2)]$. (3.15) 

To judge the quality of the approximation in equation (3.11), numericalAcriteri: are 
sought. The problem is greatly simplified for the eigenfunction of 2: YEA =AEA. In 
this case the error in the approximation (3.11) is simply: 

e, = I I W ) - P , ( A ) I I  IIM (3.16) 

From this expression, the error in the appcoximation of the general case can be obtained 
by expanding the operator X by the set E A .  On using the result of equation (3.12) one 
obtains: 

e,GllTII l l~~'I l11~11 maxIF(z)-P,(z)l (3.17) 

n 

~ ( 2 )  = a , 9 + a , ( ~ - z , ~ ) + a 2 ( 2 - z Z ~ ) ( 2 - z I ~ ) + .  . . 
A 

% E D  

where T diagonalizes 2, and z is from the domain D. 

is as small as possible. 
Observing equation (3.17). P,,,(z) should be chosensuch that max,,, lF(z)-Pm(z)l 
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Examining equations (3.16) and (3.17) it is observed that the original problem of 
approximating a function of an operator can be reduced to a problem of a uniform 
approximation of an analytic function F in a domain D. For a unitary type evolution 
the eigenvalues of 42’ are all located on the imaginary axis (see section 2). A uniform 
approximation on a closed segment on this axis is obtained by using a Chebychev 
polynomial expansion. This is the basis of the propagation algorithm in reference [20] 
(see also reference [28]). As a result of the complex eigenvalue of iXj the domain D 
in the general case is confined to a region in the complex plane (see figure 1) .  The 
algorithm is based on the ability to locate the boundary of the domain D. 

Using the analytic properties of F ( z ) ,  it is shown in reference [29] that one can 
get an ‘almost’ optimal polynomial algorithm by using the polynomial P , ( z )  which 
interpolates F ( z )  at points uniformly distributed on the boundary of D. These points 
are defined as follows: 

Definition 1. A set of points z!’”) is said to be uniformly distributed on To (the boundary 
of D) if 

lim max(lR,(z)(””) = r 
m-m r e D  

for any z E D and 

(3.18) 

(3.19) 

r is called the logarithmic capacity of D and it is defined uniquely for any given D. 
The next problem is to locate the interpolation points on the boundary of D. This 

from symmetry considerations, the interpolation points have to be evenly distributed 
on the boundary of this disc. If one chooses w:”’ points as the m roots of 

w m = r  (3.20) 

then they constitute a uniform sampling on the boundary of D. For the general shape 
cf the bccfidary of D the pmb!em cf finding cniform in!erpc!a:ion poi-t: CBE he 
solved by mapping the boundary of D into a circle [30]. This is possible if a conformal 
mapping * ( w )  can be found which maps the complement of a disc of radius r on the 
complement of D such that 

pr&!em caii be simplified if D has :he shape of a disc in ihe comp:ex p:ain. Then 

- r. lim -- * ( W )  

W - m  w 

Then the interpolation points 

(3.21) 

satisfy definition 1 .  For simple domains + ( w )  can be obtained analytically. When the 
domain D is a polygon, the mapping function is a Schwarz-Christoffel transformation 
and $ ( w )  is numerically obtained. The routines described in reference [31! map the 
interior of the unit disc on the interior of the polygon. Since, in this case, mapping of 
the exteriors is needed, the routines should be modified accordingly. When the domain 
D has an axis of symmetry as for the domain of 2, the real axis, one can still use the 
original interior mapping-routines without any modification [32]. The idea is explained 
in appendix A. Because of overflow problems it is preferable to work with domains 
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whose capacity is one [331. Thus, we can define g =  l r 3  and consider p(i) = F( r i )  = 
F ( z ) .  ( r  can be computed by (3.20), (3.21).) Hence, from now on we will assume that 
r ( D )  = 1. 

Once the interpolating points are known, the interpolating polynomial can be 
obtained, The polynomial are represented in Newtons form 134): 

(3.23) 
l = n  

where a, are the divided differences coefficients [34] 

a, = F[z , ,  . . . , zk] (3.24) 

and 

R o ( z ) = l  (3.25) 
k-1 

i-0 
R , ( z ) =  n (z-z:")). (3.26) 

Calculating the divided differences ak requires the knowledge of the value of the 
function F at the interpolation points z!" located on the boundary of D. For the 
evolution operator this means e'"'. Using (3.14) or (3.23)-(3.26), the approximate 
solution p, is computed by the following algorithm: first the interpolation points are 
calculated by employing the Schwarz-Christoffel conformal mapping algorithm. On 
these points the value of the function F is calculated. With this data set the divided 
difference sequence ak is constructed. The second step is the initialization of the 
recursion equation for (3.25) and (3.26) as 

i, = 2. (3.27) 

The first term is accumulated in ?, as 

PI = a,$. (3.28) 

The recursion approximation for (3.25) and (3.26) is further built as 

2, = (3-z!!$)2c+1 (3.29) 

and the results are accumulated in ?( in the form: 
A *  .. 
U. = U.- ,  + ajZj. (3.30) 

The recursion is terminated when the relative residual contribution is smaller than a 
prespecified tolerance S. 

I IaA II/ II gt II < 8. (3.31) 

Theoretically, the interpolating polynomial does not depend on the order by which 
the points are taken. In practice, however, huge roundoff errors result if the points are 
taken in the naive order zj"' = $(e"'"""'), j = 0,. . . , m - 1. The best strategy in 
choosing the order of the points is to stagger them as much as possible. In this way 

The actual determination of the number of coefficients m (order of the polynomial 
P,) is estimated as follows. An initial guess is chosen with the aid of the logarithmic 
capacity r of equation (3.20) m =fr. For this choice the interpolation points and the 
polynomial coefficients of equation (3.24) are calculated. Then an intermediate point 

i! is a!so po&!e to add pin!$ when !he CQnvergence cri!eria arc no! sa!isficd: 
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in the domain D is chosen, for which a test value of the polynomial P,,,(Z,=~,) is 
confronted with the function value F(ztest) (see equation (3.17) for an estimate of 
errors). If the error exceeds the desired accuracy, m is increased and the procedure 
repeated. The uniform convergence property of the method assures that the approxima- 
tion will suffice for other points in the domain D. It is apparent that the rate of 
convergence is determined by the 'volume' of D such that the polygon which restricts 
D should he as tight as possible. In the above propagation scheme the time argument 
was sliced into increments of Af. It was found that the Schwarz-Christoffel transforma- 
tion becomes unstable for large time increments. 

[B.3] Analysing intermediate results 
The algorithm presented above to propagate the density operator, can be used with 
large time steps. If intermediate expectation values are required, the basic algorithm, 
in which the recursion relation (3.25) are calculated, can still be used. The most time 
consuming part of the algorithm is the repeated application of the Liouville operator. 
Therefore, by using the auxiliary operators 2, in equation (3.5). intermediate results 
can be obtained by recalculating only the divided differences a*. The main numerical 
price is the storage required for the new accumulator U,. If intermediate expectations 
values are required the storage can be minimized by replacing the operator accumulator 
in equation (3.26) by a scalar accumulator obtained by taking the trace of cl: tr[ if ,}.  

The choice of the propagation function f(z)=e" is only one of many possible 
choices of functions of interest to be expanded. For many applications the function 
f(z) = l/(iz-A) which represents the resolvent of the Liouville operator, is of funda- 
mental interest. The only change in the basic algorithm is the recalculation of the 
expansion coefficients a.. As a consequence the propagator eiY' and the resolvent 
l / ( i z + A )  can be calculated simultaneously. This expansion can be useful in the 
simulation of photodissociation processes in which the absorption spectrum can be 
calculated with the dynamics with only a small amount of additional work. 

C. Final analysis 
Since the state of the system is fully described by the propagated density operator &, 
all dynamical information can be obtained directly using equation (2.9). In particular, 
the energy of the system which should remain constant for a unitary evolution, can 
change when the system approaches equilibrium. The approach to equilibrium can be 
measured by the relative entropy 

(3.32) 

This measure should monotonically decrease to equilibrium [35], and therefore can 
be used to check the performance of the algorithm. Although the density operator 
contains complete dynamical information it does not lend itself to direct interpretation, 
hence the need for developing tools to facilitate insight into the dynamics. Borrowing 
from classical dynamics, a phase space picture gives important insight, therefore a 
quantum analogue, the Wigner distribution function [36-481, is used. 

Wbt/P*cq) =trIP*, log 6, -P*,h P^.,}. 

The Wigner function is defined as 

f ( q , p ) = -  dye'"(q-!yl&+fy) (3.33) 
2rr ' I  

this definition shows the Wigner function can be considered as a Fourier transformation 
along the diagonal direction for each value of q. A discrete version of equation (3.33) 
is used for analysis. 
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4. Testing the algorithm by studying exactly solvable cases 

In order to illustrate the convergence properties of the algorithm, the numerical 
calculation has t o  be compared to a closed form solution of the Liouville-von Neumann 
equation. Unlike the non-dissipative case where the solution can be compared to the 
solution of the Schrodinger equation, and therefore of a vast number of problems have 
been solved, only a small number of non-trivial cases have been solved forthe dissipative 
case. In what follows, solutions in closed form for relaxing systems are presented for 
two cases. These solutions are then used to check the numerical algorithm. 

4.1. Gaussian semigroup for a harmonic oscillaror 

The model of a particle coupled to a set of harmonic oscillators modelling a heat bath 

thebath determinesthe formoftheoperators @ofequations (2.11)-(2.13).A;simplified 
version of these equations is obtained if one considers a self-adjoint W with the 
equation of motion for the density operator 5, of the form 

has bccx .-ggcsted by Ford, K2k and Maz..r [40=50!. The Eode of the coup!lng to 

(4.1) _=_. :[ w, [ w, p ^ , ] ] .  
a t  

The equation has the solution 
m 

(4.2) 
A, = ( 2 T t ) p ’  I__ ds e-12/2, 

sometimes called a Gaussian semigroup. This type of dynamical semigroup is obtained 
in the limit of a singular bath in which the bath motion has a much faster time scale 
than the system [51]. It leads to an infinite iemperature asymptotic density operator. 
The above considerations apply for any system coupled to a singulaf bath. A simplified 
form of the equation of motion is obtained when the operator W of equation (4.1) 
takes the form 

%.=E U!& Im u : = o  (4.3) 
i 

where 2, is an operator belonging to a Lie algebra [52], and the index j stands for 
different choices of the set of coefficients U:. 

The model considered here consits of a harmonic oscillator coupledAto a delta 
correlated bath, with the coupling represented by choosing the operator W from the 
set: i,i,i2, f(i$+i;) and i’ a physical system to which this model applies is fast 
vibrations! depbaslng. .4 canc~c!~  examp!e Is !he re!ixa!ion af vibration mo!ion In 
liquid diatomic solutions. It has been found that the relaxation of phase, measured 
by homogeneous line broadening, is six orders of magnitude faster than the relaxation 
of energy for these liquids [53]. For Gaussian semigroups, the generalized Liouville-von 
Neumann equation of motion becomes: 

(4.4) 

?e equations of motion for the expectation values-of the generators of the Lie algebra 
(2,) which are in our case the set of operators p:i,i,a‘,:(@+i?) and i’ can be 
solved in closed form, provided the Hamiltonian H has the same structure as equation 
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(4.3). To arrive at the closed form solution, it is convenient to use the cyclic properties 
of the trace operation to show that 

tr([ rt,, [e., $112~ = tr($[[ij, @.I, rt,]) (4.5) 
leading to the set of equations of motion for the observables 

(4.6) 
?&- - - t t r x  ($[[z, ,  q.1, rt,.]}-itr{$[&,H]). 

at j 

The analytical solution may be obtained by using the relations 

where 

p:, = &:I 
I 

(4.7) 

(4.8) 

with the structure constants c i  defined by the commutation relations of the members 
of the Lie algebra. Also with the structure constants c l  defined by the 

[[kj, 61, 6 ] = x p ! k [ i k ,  6 ]=X@(kf l i Ik l .  X I  (4.9) 

If the Hamiltonian H has the same structure as in equation (5.3). It leads to the final 
equation of motion 

k 

where 
. .  

ail = -4 p:piI - ia,l (4.11) 
kj 

and (I is obtained in a similar way to p as defined in equation (4.8). 
Explicitly for the harmonic oscillator case, the matrix -p or -ia can be calculated, 

using the commutation relations of the Weil group and its first enveloping field, to 
obtain: 

O 0 O l  0 
0 0 0 

-U2 -u, -2u, 0 

(4.12) 

4u3 -'? 2u, 1: 0 2 V I  0 
U1 -U2 2u3 

The set of linear differential equations (4.10)-(4.12) is now solved. The values of the 
expectation values (ZJ as a function of time can be compared directly to the numerical 
calculations providing a test of the method and the technical code. 

The first such comparison describes a pure dephasing process for which W = yaa', 
modelling vibrational dephasing. Table 1 summarizes the choice of parameters and 
numerical constants. A5 our aim here is to investigate the convergence with respect to 
the new algorithm for time propagation, the phase space grid parameters have been 
chosen in such a way that the representation of the density operator converges. The 
domain D was chosen to have a shape of rectangle with vertices on the imaginary axis 
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Table 1. Physical parameters and initial conditions of  the oscillator 

Physical parameters Initial conditions 
mass 1 ( X ( 0 ) )  0 
0 1 (P(0)) 1 

(X" 3 
Grid parameters (i(XP(O)+ P X ( 0 ) ) )  0 
AX 0.4 (PYO)) 3 
XO -6.4 
nx 32 Dissipative coefficients 
Volume in phase 32h U,. U5 0.4 

the maximum energy represented on the grid (equation (2.14)): (0, EmSJ (0, -Emax)  
(-G, -Emax) (G, -Emsx), and shifted to negative real values by G = ~ l k , , , 1 ~ .  Tightening 
the domain by cutting the comers of the rectangle in figure 1, reduces the amount of 
computation but the exact amount of this trimming is hard to  calculate a priori. Figure 
3 displays the dynamical behaviour of the position and momentum expectation values 
with their oscillatory behaviour and relaxation. On this figure, the numerical and 
analytical results are indistinguishable. In order to demonstrate the convergence in the 
polynomial expansicn of equations (3.11) and (3.19), a sequence of computations has 
been performed with increasing number of terms in this expansion. These resuits are 
presented in table 2, in which the expectation values of the position and momentum 
at time f = 3.1 (nearly one period of the oscillator) are compared. The table shows that 
convergence is exponentially reached with 30 terms limited only by the precision of 
the computer. Such a behaviour was anticipated in the preseitation of the numerical 
algorithm in section (3 B.2). Other choices of the operators W, were further checked 
with similar convergence characteristics. The reason is that for this particular choice 
of the relaxation term W which commutes with the HaTiltonian the relaxation is 
purely dephasing. For this case all expectation values ( Z , )  are bound. With other 
choices of W such as W = 72 some of the expectation values will grow beyond bounds 

~- - - - - - 
I - - - ~ - 

0 0 0  

0 0 0 0 0  

0 0 0 0 0 0 0  

0 0 0 0 0  

0 0 0  

Figure 2. Original and interpolated points used forthe calculation of  the Wignerdistribution 
function. 

~- - - - - - 
I - - - ~ - 

0 0 0  

0 0 0 0 0  

0 0 0 0 0 0 0  

0 0 0 0 0  

0 0 0  

Figure 2. Original and interpolated points used forthe calculation of  the Wignerdistribution 
function. 
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-9.5 - 
0 5 IO 15 

Time 
FIgure 3. The position and momentum expectation values as a function of time for a 
Gaussian semigroup evolution equation. The numerical results are indistinguishable from 
the closed-form solution. 

Table 2. Convergence of the polynomial expansion ( 1  =3 1, A l = O  I) 

Number of 
terms (X) (P) (H) 

- I O  
14 
26 
28 
30 
32 
34 
42 

0.538 595 
diverge 
diverge 

0.017 091 1 
0.017W38 
0.017 0936 
0.017 0936 

-495.077 

-0.149007 
diverge 
diverge 

-0.368 149 

-0.368 146 
-0.368 146 

-414.683 

-0.368 146 

2.995 26 
diverge 
diverge 

-98.433 4 
2.995 27 
2.995 27 
2.995 27 
2.995 27 

reflecting the infinite character of the bath. Numerically what will happen is that the 
density operator will overflow the grid. 

4.2. Relaxation o j  harmonic oscillator with linear coupling components 

As a second example the relaxation of a harmonic oscillator coupled linearly to a bath 
is considered. Bylinear it is meant that the operato: W, are chosen to belong to the 
restricted form y. = Z viz, with v i  complex and Zi from the first envelope of the 
algebra (i.e. the set of linear components f, 2 and i )  denoted sub below. Unlike the 
previous example, this set of equations can be made to reach thermal equilibrium with 
a finite temperature. Again using the cyclic property of the trace 

tr{[@.i;A @]12,}= tr{B[G;, 2,1@.} (4.13) 

(4.14) 
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the Liouville-von Neumann equation (2.12) leads to the equations of.motion for the 
expectation values - 

which by substituting the definitions of the takes the form 

(4.16) 

j 

Note that p' is a non-square matrix. Using the commutation equations: 

k k $ = f ( [ i k ,  i l l + + [ i k ,  $1) (4.17) 

(4.i8j k$ I k-;([2k, -~ ~ l j + - i ~ k , ~ l j j  

the equation of motion can also be written as 

+a  1 (p{;ui  - p i l u i * ) c l ~  + i  1 a,($). 
Ik m 

j 

This may be written in the concise form 

where 

Bin = 1 Real(p{;uin)+iahi. 
k l j  

for n # 0 and the following convention is used to translate from n to kl: 

Operator n k I 

i 0 0 0 
f 1 0 1 

B 2 0 2 
2 2  3 1 1 

1( f@ + bi) 4 1 2 
i2 5 2 2 

and 

which can be written as: 

(4.19) 

(4.20) 

(4.21) 

(4.22) 

(4.23) 

(4.24) 
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The final result is a-set of linear coupled first order differential equations for the 
expectation values (ZJ. Using these expectation values, the density operator may be 
reconstructed via equation (3.7), this being possible because the dynamics in this case 
maintains a Gaussian form of the density operator. These results can be compared 
directly with the numerical calculation. 

The relaxation of the oscillator to thermal equilibrium is a special case of the-modfl 
of the  harmonic oscillator linearly coupled to the bath. In this case, W, = y.(X+iP) 
and W 2  = yd (A -if'), where y. = Y, = v2ji and yd = v I  = -v2ji. For thermal equilibrium 
the ratio of the coefficients y obeys detailed balance yJyd . Figure 4 shows 
the dissipation of a thermal initial state to a final equilibrium with a different tem- 
perature. The relaxation of two initial states with a common equilibrium state are 
shown. From figure 4 it is apparent that the first state is heating while the second state 
is cooling. Examining the relative entropy (equation (3.28)), one finds a monotonic 
decrease io 
the hot state judging by AS. Both, heating and cooling are displayed. This is an example 
that fulfills the requirements of the general statement of Anderson, Weiss, Oppenheim 
and Shuler [54] that a thermal initial state goes through a sequence of intermediate 
thermal states to the final thermal equilibrium. On the scale of the figure the numerical 
results of the general scheme are indistinguishable from the analytical results obtained 

well as the representation of phase space, the accuracy is contingent on the numerical 
precision of the computer. The stability of the method means that it can be used with 
single precision arithmetic with the advantage of saving storage. 

,.? . L ~  

as pre:icie& T"e iiiiiia; siaie is 'fatiher' from equii~orium ihan 

with eq-atinn (4.20). E x  tn the expor?entia! cnr?verger?ce nf the t ize  propagetin!! as 

.... 

n 30 60 90 
Time 

Figure 4. The energy ai a function of time for thermal dissipation. The two curves differ 
bythechoiceofinitial sfate but haveacommonequilibriumrtate.(H),,,=l.O,(H),,,,=O.l 
and (H)-" = 5.0. ( b )  The relative entropy with respect to the invariant equilibrium stale AS 
as a function of time for the same initial states as in (al. 

0 b 90 0 . 0 P L  
0 30 60 

Time 

Summarizing these examples, the numerical procedures used are generic, and 
therefore the extremely fast convergence found is not related to the closed form 
solutions used for testing. As the numerical procedure is general, it can be used for 
problems for which closed form solutions do  not exist. 
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5. Dissipation under the constraints of selection rules 

When considering a system coupled to a heat bath, it is customary to expand the 
coupling terms as a power series of the sub-system coordinates. In the previous example 
this expansion was terminated at  the linear term. In many cases the quadratic terms 
can at least be as important as the linear ones, an example being the fast dephasing 
of vibration in liquid diatomic molecules [53,55]. The dephasing is governed by the 
second order ierm in ihr: expansion, and by many orders of magnitude which exceed 
the first order term, the latter being responsible for energy dissipation. An extreme 
case emerges when symmetry considerations eliminate the first order terms from the 
expansion, the symmetry imposing selection rule constraints on  the dynamics. 

The methods hitherto developed and tested are now applied to the relaxaiion of a 
harmonic oscillator where only second order coupling terms are present (i.e.: W ,  = y.i2 
and W2 = yd.*t2, W, = yJ ' i ) .  In this case, it is easy to show that if y u / y d  = e-2*w/kT, 
then the thermal state with temperature T is invariant under the time propagation. 
Because the generators of the semigroup W ,  and W,,  are not members of the sub Lie 
algebra, the equations of motion of this case cannot be solved in closed form. Since 
the thermal state is the equilibrium state, it is tempting to assume that for an initial 
thermal state differing in temperature from the bath (as is obtained in a T jump 
experiment), a Gaussian density operator for the evolving state would be a good 
approximation. This assumption leads to the mean field equations (or quasiequilibrium) 
for the expectation values presented in equation (3.7). Such a solution was suggested 
by Kosloff and Rice [55] in which the equation of motion for the number operator 
was derived as 

- 2( yd - y.)$ + (67. + 2 y d ) k  + 4y.f 
J IG -- - 
J f  

In the mean field approximation, (k2) is replaced b ~ 2 ( & ) ~ + ( k ) ,  leading to a non-linear 
differential equation for (N). This equation can be solved to obtain: 

where 

(5.3) 

The numerical calculations have been set to verify equation (5.2). Figure 5 shows the 
dissipation of energy as a function of time. The mean field approximation for the 
energy fails to follow the exact numerical one. As will be explained below, the mean 
field result reproduces the exact outcome only at the beginning of the time evolution, 
and departs from it to a lower energy in the asymptotic time regime. The explanation 
for this behaviour is clarified when one examines the form of density operator as time 
evolves. Figure 6 shows snapshots in time of the state of the system represented as the 
Wigner distribution functions. The lower panel shows the initial thermal state. Here 
the Wigner distribution function is described by a two dimensional Gaussian in phase 
space in close analogy to a classical distribution. Examining the upper panels, a striking 
feature emerges, namely, a hole is dug in the centre of the distribution which remains 
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0 1  
0 20 40 60 

Time 
Figure 5. The average energy as a function of time for an harmonic oscillator relaxing by 
secondader  terms only. The solid line is the numerical result, the dashed line represents 
the mean field approximation of equation (6.2). 

even for asymptotic times. This result shows the incorrectness of the assumption that 
a Gaussian (thermal) shaped density operator persists during the time evolution, leading 
to the mean field equation (5.2). The form of the exact numerical density operator is 
far from Gaussian. 

On re-examining tke assumptions, one finds that the selection rules imposed by 
the relaxation terms W, do not connect the even and odd manifolds of states. This 
selection rule for the transitions is demonstrated in table 3, where the projection of 
the density operator on the eigenstates of the oscillator is shown at  different times. 
While at f = 0 the projection display a Boltzmann distribution, as time progresses the 
distribution becomes skewed and far from a Boltzmann form. As a result of the selection 
rules, there are infinitely many invariant states and the initial projection into the even 
and odd manifolds are not intermixed as time evolves. The relaxation picture found 
ncrc IS also apparcn, wncii  u u ~ n  ~ i n ~  aiiu sccunu uiuri LCI in> a i ~  prcbcrir 111 ~ I C -  cApansiun 
of the coupling to the bath. Although the first order terms will eventually lead p̂  to 
thermal equilibrium, the transient density operator is far from the Gaussian shape 
needed for the mean field approximation. 

3 .... :... -. L - . . L . * L c . . A - - A  ^ ^ ^ ^ _  I ..A ~ -.------. :-.c :.- 

6. Discussion 

The formulation of quantum mechanics based on a density operator description of 
the state goes back to von Neumann and Landau, but its application has been limited 
t o  few level systems. It has been important to explore new methods with the purpose 
of gaining insight into the dynamics of open systems having many levels or even those 
with a continuous spectra. In a previous paper [ iu j ,  a representation technique of the 
density operator in phase space was developed and applied to unitary evolution. In 
principle, the results of the previous paper could be reconstructed by wavefunction 
propagation techniques [56]. The extension to open dissipation systems as presented 
in the present work can only be formulated in the density operator description. 
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t= 3 
M 

t= 0 
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order terms only. The lower panel shows a thermal initial state. The other panels show the 
distributions at time r = 3 ,  I =  12, and 1=50  which represents the asymptotic state. The 
inserts show cuts in phase space representing the position distributions at zero momentum. 

In this paper, the emphasis has been on developing techniques to describe the 
dynamics of relaxing quantum mechanical systems. This has necessitated a new poly- 
nomial approximation for the evolution superoperator e-iysr. The new algorithm 
exhibits uniform convergence in the complex domain which contains all the eigenvalues 
of 49, the negative component of the eigenvalues responsible for the dissipation. A 
crucial step in the algorithm is the reduction of the numerical operational scaling from 
O(N4). This would apply to the tetradic structure of the Liouville superoperator to 
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Table 3. Projection on harmonic oscillator states, p. = tr(6ln)(nl). 

n r = o  1 = 3  1 = 1 2  :=so 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
IO 
I 1  

0.285 714 
0.204 082 
0.145 773 
0.104 123 
0.074 3738 
0.053 1241 
0.037 9458 
0.027 1041 
0.019 3601 
0.013 8286 
0.009 8776 
0.007 0554 

0.376 785 
0.350 674 
0.193 139 
0.064 123 4 
0.013 1543 
0.001 723 6 
0.000 154998 
1.073 9(-5) 
6.503 78(-7) 
3.645 15(-8) 
2.029 93(-9) 
1.261 9(-IO) 

0.532 971 
0.414987 
0.050 164 3 
0.001 542 08 
9.835 56(-5) 
3.06997(-6) 
1.705 64(-7) 
5.619 13(-9) 
2.74938(-IO) 
-0 
-0 
-0 

0.582 188 
0.415 866 
0.001 04465 
0 . N  665 398 
1.707 58(-6) 
1.06439(-6) 
2.357 78(-9) 
1.920 67(-9) 
-0 
-0 
-0 
-0 

O ( N 2  log N )  which is numerically traceable. The resulting new numerical capability 
will lead to insight into many physical problems. Numerical testing of closed-form 
solutions is crucial to gaining confidence in the new numerical tool described above. 
Results presented in this paper confirm the mathematical formulation that the method 
is numerically exact, meaning that its accuracy is limited only by the finite precision 
of the computer. This establishment of confidence in the new method makes it possible 
to break new ground. One example was presented in section 5, which tests an approxi- 
mate mean field or  quasiequilibrium theory. Such theories are extremely important in 
the study of many body problems, but the example presented in the previous section 
shows that such approximations should he applied with great care. The study also 
suggests that new surprising physical phenomena will occur when the relaxation is 
subjeci to selection rules. Rotational relaxation of solid hydrogen is such an example. 

The lack until now of an efficient computational tool for time dependent density 
operator formalism has limited many studies. The full dynamical description in 
Liouville space is crucial when the timescale of relaxation is comparable to the 
frequency of change of state determined by the Hamiltonian. Examples which come 
to mind include collision of ultra cold excited sodium atoms in which the spontaneous 
emission is the same timescale of collision between the atoms. Another example is 
diffusion of hydrogen on cold surfaces in which large quantum effects are known to 
take place [57]. A third example is the pump-probe ultrafast spectroscopic experiment 
[ 5 8 ] .  In this experiment, a sequence of intense short pulses have been applied to a 
molecular system which includes more than one electronic Born-Oppenheimer surface. 
Both electronic as well as vibrational dephasing take place. If one treats the system 
radiation interaction by a perturbation expansion up to the third order, the dynamic 
absorption spectra, which is the experimental observable, can be obtained by propagat- 
ing the initial density operator on the electronic surfaces. The relaxation that takes 
place is extremely important in determining the spectra. In the paper of Pollard et a1 
[%I, although the formalism is based on the density operator description of the state, 
the actual calculations were done by wavefunction propagation. When the field becomes 
more intense, the perturbation approach has to be replaced by a semiclassical descrip- 
tion of the radiation field. This results in a time dependent Liouville superoperator. 
If the variation of the field is not too fast in relation to the longest timescale represented 
in the operator 2, then the technique described here is appropriate. For a fast variation 



1304 M Berman et a /  

of the field, the polynomial approximation used here should be replaced by a different 
method appropriate for short times. In principle the method used for propagating a 
wavefunction under strong electromagnetic fields could be modified to the Liouville- 
von Neumann equation. 

The techniques developed for this work are not limited to the evaluation of the 
mapping of the propagator e-'? The same methods can be applied to the evaluation 
of mapping the resolvent l / ( iZ-A),  by only changing the expansion coefficients a.. 
Evaluating the resolvent is the base of many applications such as the simulation of 
spectra. Such a direction is beyond the scope of this paper and will be treated separately. 

When a new tool is developed, it is appropriate to ask what are the limits of its 
application. The examples presented in this paper and in the previous paper, have all 
been based on a two dimensional phase space. This is a technical limitation related 
to the amount of storage available on the computer. Currently, a four dimensional 

propagation. The work on the two dimensional phase space has been carried out on 
a minicomputer. Whereas four dimensional calculations have been implemented on a 
superminicomputer (Convex 220). It is estimated that the hardware requirements for 
higher dimensions, will necessitate the extensive use of parallel architecture. 

The present work is part of a general effort to construct tools to model quantum 
mechanical processes in density operator formalism. It is expected that this tool will 
facilitate the gaining of insight into processes where the relaxation has an important 
role in the dynamics. 

phase space form??!a!ion has been imp!emented a!!awing ??ni!ary 2nd naE-u"i!lry 
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Appendix A 

Remark Without loss of generality one can assume that the domain D is symmetric 
around the real axis. If this is not so, one can first rotate it in such a way that the line 
of symmetry will match the real axis. In order to map the exterior of the unit disc to 
the exterior of a polygon, symmetric about the real axis, one can treat the upper-half 
of the exterior of the polygon as an interior of a polygon with vertex at infinity. Then, 
the desired mapping function is interior Schwarz-Christoffel transformation composed 
with f ( u )  which maps the upper half of the exterior of the unit disc on the interior of 
the unit disc. f ( u )  can be written as 

f ( u ) = ( f 2 0 f , ) ( u )  

where 
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U. being a point on the unit circle and hb being a point in the upper half plane. The 
way of fixing U, and ub will be made clear by the following example: let D be a 
rectangle with vertices: (1, -2), (1 ,  2), (-4,2), (-4, -2) taken in counterclockwise 
direction. Using the Schwarz-Christoffel routines we can map the interior of a polygon 
with the following vertices: 

?1=(1,0)  & = O D  z3=(-4,0)  z4=(-4,2) zS=(1,2) 

counterclockwise on the interior of the unit disc 
Let U, be the images of Z, 

U, = i (?J  I s i s 5  

(&z) is the interior Schwarz-Christoffel mapping function.) In order that m will be 
iiiapiped io a, ii, has io saiijfji 

U. = u2 .  

ub is given by satisfying the two equations 

01 

1 - lib 

1 - U b  
U2-- - U, 

- l - h b  
- l - u h  

u2-- - U3 

Solving, we get 

2u,-u, - U) 
U b  = 

U3 - U, 

Let 
w-=x.+iy, J J  I s j G K  

be a set of K equally distributed points on the upper half of the unit circle, then the 
desired interpolating points zi on the upper boundary of the polygon are given by: 

l < j < k  
xi - Uh 

where 3 is the inverse of 6. 
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