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Quantum refrigerators in quest of the absolute zero
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The second and third laws of thermodynamics can be used to establish a fundamental bound for the
maximum possible cooling rate in approaching the absolute zero of temperature. In modeling the
behavior of the molecular refrigerators geared toward attaining ultralow temperatures, only quantum
mechanical, as opposed to classical physics, models can be admissible. As a simple model, we
analyze a three-level quantum refrigerator, and in particular its irreversible thermodynamic
performance as absolute zero is approached. ©2000 American Institute of Physics.
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I. INTRODUCTION

Part of the intrigue in cooling close to the absolute ze
of temperature is the unraveling of the quantum nature
matter and associated applications. Many methods have
invented which depend on the particulars of the system be
cooled. The theoretical analyses employed have been c
plex and often case specific. Our interest lies in searching
simple, basic underlying principles that allow an analysis
these cooling processes yet obviate the need for spe
mechanistic details. One fundamental question is: What
the restrictions imposed on the cooling rate as absolute
is approached. Combining the fields of thermodynamics
quantum mechanics is the key to such an endeavor.

In the quest for temperatures approaching absolute z
the second and third laws of thermodynamics provide fun
mental bounds on attainable cooling rates. Two schemes
ten considered are:~a! evaporation and~b! refrigeration
cycles. The analysis of evaporative cooling near abso
zero is reserved for a separate treatment. This article is
ited to the study of the cooling characteristics of quant
refrigerators.

As an illustration, consider a cyclic endoreversible
frigerator ~illustrated schematically in Fig. 1! that is driven
by a power inputP, removes heat at a rateQ̇c from a cold
reservoir of temperatureTc , and rejects heat at a rateQ̇h to
a hot reservoir of temperatureTh . The ratesP, Q̇c , andQ̇h

represent cycle-average quantities and are defined as
tive. ~Even if irreversibilities beyond finite-rate heat e
change are introduced, the arguments expounded imm
ately below remain valid.! Our objective is to cool the cold
reservoir arbitrarily close to the absolute zero.

One equivalent statement of the third law is that no s
tem can be cooled to the absolute zero in finite time. T
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second law requires that the entropy production in the u
verse due to refrigerator operation must be nonnegative.
we can expressQ̇c as a function ofTc . Then in the limit of
vanishingTc , the third law requires thatQ̇c must, at the very
least, be proportional to a positive power ofTc , i.e.,

Q̇c}Tc
a , ~1!

with a.0. The rate of entropy production in the universeṠ
is

Ṡ5~Q̇h /Th!2~Q̇c /Tc!. ~2!

The second law insures that the negative entropy prod
tion at the cold bath is more than offset by the positive e
tropy production at the hot bath. Hence, if the entropy p
duction due to finite-rate heat exchange with the hot bat
bounded, the second law implies an even stronger condit
Q̇c must increase at least linearly withTc ~i.e., a>1!, inde-
pendent of the model invoked.

The problem in examining cooling to ultralow temper
tures with refrigeration models based on classical physic
that in the limit of absolute zero, device behavior is dom
nated by quantum-mechanical effects. This provides the
centive to develop a simple quantum refrigerator model w
which these basic bounds can be explored rigorously.

II. A REVERSIBLE THREE-LEVEL QUANTUM
REFRIGERATION CYCLE

An external driving field~coherent radiation! is the work
input to the proposed quantum refrigeration cycle depic
schematically in Fig. 2. Heat is pumped from the cold to t
hot bath (2→3). Heat rejection (3→1) results from the
coupling of levels 3 and 1 to the hot bath, while cooling~heat
removal, 1→2! derives from the coupling of levels 1 and
to the cold bath. The hot and cold baths are macrosco
objects which maintain a constant temperature during
3 © 2000 American Institute of Physics
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refrigeration cycle. Steady-state~rather than transient! cyclic
operation will be analyzed. Accordingly, the change in t
state variables of the refrigerator itself is zero over the cy
independent of operating details.

The second law requires that the population of leve
N3 , not exceed that of level 2,N2 . A reversible mode of
operation is considered first~in the following section, an ir-
reversible dynamical mode will be analyzed!. Equilibrium is
maintained between:~a! levels 1 and 3 with the hot bath
and ~b! levels 1 and 2 with the cold bath. SinceN3 /N1

5exp(2DE31/Th) and N2 /N15exp(2DE21/Tc), the re-
quirement thatN3<N2 leads to a lower bound forTc

Tc>ThDE21/DE31, ~3!

whereDEi j denotes the energetic difference between levei
and j.

Refrigerator efficiency is commonly cited as the coe
cient of performance~COP!, defined as the cooling energ
delivered relative to the work input. In this instance

COP5DE21/DE32<Tc /~Th2Tc!, ~4!

where Tc /(Th2Tc) is the reversible limit or Carnot COP
and is the absolute upper bound forany refrigeration cycle.

FIG. 1. Schematic of an endoreversible refrigeration cycle.

FIG. 2. Schematic of a three-level quantum refrigeration cycle. The driv
input power is coherent radiation, which induces the transition from lev
to 3. Heat rejection from level 3 to 1 is effected by coupling levels 1 an
to a hot bath of temperatureTh . Cooling ~heat removal! derives from cou-
pling levels 1 and 2 to a cold bath of temperatureTc . l denotes bath
pumping rate. The radiative input is coupled to levels 2 and 3 with coup
parameter« and frequencyv05DE32 . ~Units are used in whichkB51 and
\51.!
,

,

In principle, a thermodynamic cycle can be equally w
run in reverse. Namely, by reversing the direction of all e
ergy flows, a refrigeration cycle is converted to a heat
gine. Although our major thrust is an examination of t
unique aspects of the cooling mode, we digress momenta
to note the operation of the three-level scheme portraye
Fig. 2 in heat engine mode.

Heat from the hot bath creates a population inversion
pumping the 1→3 transition. The amplification or work pro
duced is the stimulated emission of the 3→2 transition. Cou-
pling to the cold bath induces the 2→1 transition, and the
cycle is complete.

Population inversion requiresN3.N2 , which in turn im-
plies Tc /Th<DE21/DE31. Heat engine efficiencyh can be
viewed as the ratio of the photon work generatedDE32 to the
heat inputDE31. From these observations, we arrive at t
familiar Carnot limit for heat engine efficiency:h
5DE32/DE31<12(Tc /Th). This analogy between the
quantum amplifier and the Carnot heat engine was rec
nized in Refs. 1–4.

Returning to consideration of the cooling operation, w
note that the reversible three-level quantum refrigerator is
idealized model of the laser cooling of solids5–8 or of laser
cooling of dyes.9 Cooling is based on an anti-Stokes proce
where the pump is identified as the 2→3 transition and fluo-
rescence as the 3→1 transition. For reversible operation, th
cooling rate is zero. However, laser cooling proceeds a
finite rate and is therefore inherently irreversible. This
quires a dynamical version of the model.

III. DYNAMICAL MODEL OF THE QUANTUM
REFRIGERATOR

The dynamical model requires equations of motion
the thermodynamic observables. A reduced description
the dynamics in terms of the operators of the three-le
system is sufficient for identifying the quantum analo
of the thermodynamic variables. Energy is associa
with the Hamiltonian of the working medium,H5H0
1V(t). It contains the bare level projections,H05E1P1
1E2P21E3P3 and a time-dependent interactionV(t)
5«P23exp(iv0t)1«*P32exp(2iv0t), where Pij 5u i &^ j u(Pi
5Pii). This time-dependent interaction is responsible for
energy transfer with an external power source.

The dynamics are influenced by the heat transfer w
the baths, represented by the Heisenberg equation of mo

Ȧ5 i\@H,A#1Lh~A!1Lc~A! ~5!

whereLh andLc are the dissipative Liouville operators co
responding to the hot and cold baths, respectively.

The reduced dynamical description of the system
based on a thermodynamic perspective in which the b
terms are dominant relative to the surface interaction te
with the bath. The interface between the system and the
becomes a thermodynamically isothermal partition which
lows energy transfer, but does not destroy the integrity of
system. That is, no quantum entanglement is created betw
the system and the baths. This requirement has been sh
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to be equivalent to the conditions of the quantum we
coupling limit,10 for which explicit forms of the dissipative
superoperatorsL have been derived.11,12

The external periodic driving force causes a perturbat
in the energy level structure of the system. As a result, lev
2 and 3 are split by the field amplitude«. Thermodynamic
consistency requires accounting for this effect by dress
the system with the field prior to the weak coupling redu
tion procedure.13 The result is field dependent expressio
for coupling terms with the bathsLh andLc . These expres-
sions are completely determined by the bath correla
functions.13,14

The quantum thermodynamic observables are identi
by substituting the HamiltonianH in the Heisenberg equa
tions of motion Eq.~5!, which leads to the time derivative o
the first law of thermodynamics

d^H&
dt

5 K ]V

]t L 2^Lh~H!&1^Lc~H!& ~6!

~recall that all energy flows are defined as positive!. The
power P is identified aŝ ]V/]t&, and the heat currents ar
identified as Q̇h5^Lh(H)& for the hot bath andQ̇c

5^Lc(H)& for the cold bath.14–17 Since internal energy is a
state function and device operation is cyclic~so transients
can be ignored!, it follows that P2Q̇h1Q̇c50.

Under operating conditions where the field-induc
splitting of levels 2 and 3 is much larger thankBT, the gen-
eral expression for the thermodynamic currents is simplifi
The steady-state powerPss and heat flow from the cold bat
Q̇c

ss become a product of three terms, respectively

Pss5v0keff~nc
22nh

2!, ~7!

Q̇c
ss5keff~DE212«!~nc

22nh
2! ~8!

(nc
2>nh

2). The population difference term in Eqs.~7! and
~8! refers to the unnormalized lower dressed Boltzma
termsni

6

nh
65exp@2bh~DE316«!#, nc

65exp@2bc~DE216«!#,
~9!

wherebh51/(kBTh) andbc51/(kBTc).
The energy quanta of the transition arev0 for the power

input and (DE212«) for the heat flow.keff is an effective
rate of transition. For strong fields, defined by«@DE32

2v0 , only the lower level of the Rabi split levels 2 and 3
relevant to cooling, where the effective rate is given b14

keff5lh
2lc

2/@2(lh
21lc

2)#. The parametersl i are determined
by the bath correlation functionsl i

65C̃LL†
i (DE326«), with

C̃LL†
i (n) being the Fourier transform of the bath correlati

function corresponding to the system–bath coupling oper
L.14 Detailed balance implies the Kubo relationC̃LL†

i (n)

5C̃LL†
i (2n)exp(2bin). In the limits of ~1! a weak driving

field, ~2! «→0, and~3! zero detuning,v0 approachesDE32,
and the effective rate becomes

keff5F 4«2

lh
2lc

214«2GF lh
2lc

2

2~lh
21lc

2!G .
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As the cold bath grows colder, the population of level
nc

2 , decreases until the cooling stops. Eventually, the c
bath temperature reaches the limit of Eq.~3!, Tc5Th(DE21

2«)/(DE312«). To maintain cooling, one must lower leve
2 as the temperature of the cold bath decreases.

The position of level 2 is our control parameter: th
‘‘knob’’ we turn to vary the cooling rate. Shifting the effec
tive energy differenceDE21

eff5DE212« allows us to scan all
possible cooling rates, and thereby to determine the m
mum possible cooling rate. An effective scheme to low
level 2 is either to increase the field« or to change the po-
sition of the level via some external influence. This is a w
established strategy when extremely low temperatures n
to be reached.18 Lowering level 2 lessens the rate of coolin
since it decreases the quantum of energy exchange. A
result, the cooling rateQ̇c reaches a maximum between th
two points: ~1! whereQ̇c vanishes atDE21

eff50, and~2! the
equilibrium point wherenc

25nh
2 ~see Fig. 3!.

IV. CURRENT–VOLTAGE ANALOGY

The variables of our quantum refrigerator model can
cast in terms of the current and voltage of a simple analog
electrical device. The current~I! is the analog of the popula
tion differencenc

22nh
2 . The voltage~V! is the analog of the

energy level differenceDE32
eff5DE31

eff2DE21
eff , with its maxi-

mum value beingVmax5DE31
eff .

The formulas for the power input, cooling rate, heat
jection rate, and COP can then, respectively, be expresse

P5keffVI, ~10!

Q̇c5keff~Vmax2V!I , ~11!

Q̇h5keffVmaxI , ~12!

COP5~Vmax2V!/V. ~13!

The current–voltage characteristic is

FIG. 3. The efficiency-cooling rate characteristic of the modeled refrige

tion cycle, COP as a function ofQ̇c , plotted for parameter values:bh51,
bc51.5, Vmax51, andkeff51.
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I 5exp@2bc~Vmax2V!#2exp~2bhVmax!. ~14!

The minimum voltage~in the reversible limit of zero current!
is Vmin5Vmax(12Tc /Th), for which the COP approache
COPCarnot5Tc /(Th2Tc). At the other extreme of maximum
voltage ~and maximum current!, the COP vanishes. Th
efficiency-cooling rate relation for this refrigeration cycl
i.e., COP as a function ofQ̇c , is illustrated in Fig. 3.

In real molecular systems, the reversible limit cannot
realized due to additional irreversibility sources that are
incorporated in the simplified model offered here. For e
ample, a refined~future! model should include spontaneou
emission. These additional irreversibilities will militat
against low-current operation. Namely, COP will vanish
both the high and low current limits, and Fig. 3 will becom
a loop-shaped curve with distinct points of maximum co
ing rate and maximum COP~well below the Carnot limit and
at nonzero cooling rate!. This is comparable to the familia
cooling performance curve of the thermoelect
refrigerator.19

V. MODEL PREDICTIONS VIS-À -VIS THE SECOND
AND THIRD LAWS

Because entropy is a state function, cyclic operat
means that the cycle-averaged change in the entropy o
working medium is zero. Since no internal dissipation h
been introduced in the model, the entire entropy produc
resides solely at the interface between the system and
baths

Ṡ5
Q̇h

Th
2

Q̇c

Tc
5keff~bhDE31

eff2bcDE21
eff!@exp~2bcDE21

eff!

2exp~2bhDE31
eff!#>0. ~15!

Sincekeff is positive, the product in Eq.~15! is also positive,
as required by the second law.

The control variable for changing the cooling rate

Q̇c5keffDE21
eff@exp~2bcDE21

eff!2exp~2bhDE31
eff!# ~16!

is DE21
eff5DE212«. Namely, all other parameters in Eq.~16!

are viewed as fixed and known. From threshold scatte
laws at low temperature,keff is only weakly dependent on
DE21

eff ~Ref. 20!. In this model, no mechanism militate
against operation in the limit of the maximum permissib
DE21

eff . HenceṠ→0 ~and Q̇c→0! in the reversible limit of
DE21

eff5TcDE31
eff/Th , and COP→COPCarnot5Tc /(Th2Tc).

Figure 4 is a plot of cooling rate againstDE21
eff at as-

sorted cold bath temperatures as the absolute zero is
proached. From Eq.~16!, it follows that the maximum cool-
ing rate is of the form

Q̇c
max5~const.!Tc , ~17!

where the constant in Eq.~17! depends onkeff , Th , and
DE31

eff . Note that the validity of Eqs.~15!–~17! is not re-
stricted to the limitTc→0.

The maximum obtainable cooling rate vanishes precis
linearly with Tc , which, as noted in Sec. I, is the weake
functional dependence commensurate with the second
e
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third laws. Similarly, because the power input does not va
ish in the limit of the absolute zero, the COP of the quantu
refrigerator operating at maximum cooling rate also vanish
linearly in Tc ~as does the Carnot COP!.

Closed-form formulas emerge in the limit of vanishing
Tc , where the population differencenc

22nh
2 grows small

Q̇c
max5~keff/4!~DE31

eff/Th!2 exp~2bhDE31
eff!Tc , ~18!

COPQ̇c5Q̇
c
max5S DE31

eff

2v0Th
DTc , ~19!

ṠQ̇c5Q
c
max5

keff

4 S DE31
eff

Th
D 2

nh . ~20!

The third law is sometimes stated as the entropy of
system approaching zero at the absolute zero, provided
final state is completely ordered. Because the final state
our scheme is a pure state~and hence of zero entropy!, the
model and its predictions are commensurate with this alt
native formulation of the third law.

In summary, the basic result that, in nearing the absolu
zero, the maximum attainable cooling rate must vary at lea
proportionally to the cold bath temperature, is model ind
pendent. Only with a quantum-mechanical~as opposed to a
classical physics! model, however, can this limit be properly
explored. The simple dynamical three-level cyclic quantu
refrigerator is a rigorous example of a system for which th
fundamental bound on cooling imposed by the second a
third laws can be realized.

FIG. 4. Plot of cooling rateQ̇c as a function of the control parameter
DE21

eff5DE212« ~the effective energy quantum!, at different cold bath tem-
peratures (Tc51/bc). The other fixed parameters used areDE31

eff51 and

bh51. Note that the equilibrium point and the point of maximumQ̇c shift to
lower DE21

eff as the cold bath temperature is lowered.
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