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Quantum refrigerators in quest of the absolute zero
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The second and third laws of thermodynamics can be used to establish a fundamental bound for the
maximum possible cooling rate in approaching the absolute zero of temperature. In modeling the
behavior of the molecular refrigerators geared toward attaining ultralow temperatures, only quantum
mechanical, as opposed to classical physics, models can be admissible. As a simple model, we
analyze a three-level quantum refrigerator, and in particular its irreversible thermodynamic
performance as absolute zero is approached.2000 American Institute of Physics.
[S0021-897€00)05511-G

I. INTRODUCTION second law requires that the entropy production in the uni-
verse due to refrigerator operation must be nonnegative. Say

Part of the intrigue in cooling close to the absolute zeroye can expresg, as a function off.. Then in the limit of

of temperature is the unraveling of the quantum nature OLanishinch, the third law requires thad, must, at the very
matter and associated applications. Many methods have be?éhst be proportional to a positive powerT, i.e

invented which depend on the particulars of the system being
cooled. The theoretical analyses employed have been com- 'Qcoch, (D)
plex and often case specific. Our interest lies in searching for
simple, basic underlying principles that allow an analysis of/"!
these cooling processes yet obviate the need for specifls
mechani_sti_c det_ails. One fundamen'gal guestion is: What are S=(0n/Ty) = (QTy). )
the restrictions imposed on the cooling rate as absolute zero
is approached. Combining the fields of thermodynamics and ~ The second law insures that the negative entropy produc-
quantum mechanics is the key to such an endeavor. tion at the cold bath is more than offset by the positive en-
In the quest for temperatures approaching absolute zer&OPY production at the hot bath. Hence, if the entropy pro-
the second and third laws of thermodynamics provide fundaduction due to finite-rate heat exchange with the hot bath is
mental bounds on attainable cooling rates. Two schemes ofounded, the second law implies an even stronger condition:
ten considered arefa) evaporation andb) refrigeration Q. must increase at least linearly wilh, (i.e., «=1), inde-
cycles. The analysis of evaporative cooling near absolut@endent of the model invoked.
zero is reserved for a separate treatment. This article is lim- The problem in examining cooling to ultralow tempera-
ited to the study of the cooling characteristics of quantuntures with refrigeration models based on classical physics is
refrigerators. that in the limit of absolute zero, device behavior is domi-
As an illustration, consider a cyclic endoreversible re-nated by quantum-mechanical effects. This provides the in-
frigerator (illustrated schematically in Fig.)lthat is driven  centive to develop a simple quantum refrigerator model with
by a power inputP, removes heat at a ra®@, from a cold  Which these basic bounds can be explored rigorously.

reservoir of temperaturé,, and rejects heat at a ra@, to

th a>0. The rate of entropy production in the unive®e

a hot reservoir of temperatuf@,. The rates®, Q,, andQ,,  !l. AREVERSIBLE THREE-LEVEL QUANTUM
represent cycle-average quantities and are defined as po§EFRIGERATION CYCLE
tive. (Even if irreversibilities beyond finite-rate heat ex- An external driving fieldcoherent radiationis the work

change are introduced, the arguments expounded immedys, ¢ 15 the proposed quantum refrigeration cycle depicted

ately below remain valig.Our objective is to cool the cold  gchematically in Fig. 2. Heat is pumped from the cold to the

reservoir arb_ltrarlly close to the absolufce zero. hot bath (2-3). Heat rejection (3-1) results from the
One equivalent statement of the third law is that no sys¢qjing of levels 3 and 1 to the hot bath, while coolihgat

tem can be cooled to the absolute zero in finite time. Theg,oval 1-2) derives from the coupling of levels 1 and 2

to the cold bath. The hot and cold baths are macroscopic

dElectronic mail: jeff@menix.bgu.ac.il objects which maintain a constant temperature during the
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In principle, a thermodynamic cycle can be equally well
hot bath run in reverse. Namely, by reversing the direction of all en-
Th ergy flows, a refrigeration cycle is converted to a heat en-
gine. Although our major thrust is an examination of the
heat rejecti0n4 Qn unique aspects of the cooling mode, we digress momentarily

to note the operation of the three-level scheme portrayed in
Fig. 2 in heat engine mode.
Heat from the hot bath creates a population inversion by

P work input

cyclic

heat removal pumping the 1- 3 transition. The amplification or work pro-
(cooling) *QC duced is the stimulated emission of thes2 transition. Cou-
cold bath pling to the cold bath induces the-21 transition, and the
cycle is complete.
T. Population inversion requird$;>N,, which in turn im-
plies T./T,<AE,;/AE3;. Heat engine efficiency; can be
FIG. 1. Schematic of an endoreversible refrigeration cycle. viewed as the ratio of the photon work generatdsi;, to the

heat inputAE5,. From these observations, we arrive at the

familiar Carnot limit for heat engine efficiency:n
refrigeration cycle. Steady-staeather than transieptyclic ~ =AE,,/AE;;<1—(T./T;). This analogy between the
operation will be analyzed. Accordingly, the change in thequantum amplifier and the Carnot heat engine was recog-
state variables of the refrigerator itself is zero over the cyclepijzed in Refs. 1-4.
independent of operating details. Returning to consideration of the cooling operation, we

The second law requires that the population of level 3note that the reversible three-level quantum refrigerator is an

N3, not exceed that of level 2\,. A reversible mode of idealized model of the laser cooling of sofid&or of laser
operation is considered firgin the following section, an ir-  cooling of dyes’ Cooling is based on an anti-Stokes process
reversible dynamical mode will be analyzegquilibrium is  where the pump is identified as the-3 transition and fluo-
maintained between(a) levels 1 and 3 with the hot bath; rescence as the-31 transition. For reversible operation, the
and (b) levels 1 and 2 with the cold bath. Sind¢;/N;  cooling rate is zero. However, laser cooling proceeds at a
=exp(—AEz;/Ty) and N/N;=exp(-AE;/T.), the re- finite rate and is therefore inherently irreversible. This re-

quirement thalN; <N leads to a lower bound foF. quires a dynamical version of the model.
Tc=ThAE/AEs, ©)
whereAE;; denotes the energetic difference between levels

and;. IIl. DYNAMICAL MODEL OF THE QUANTUM

Refrigerator efficiency is commonly cited as the coeffi- REFRIGERATOR
cient of performancéCOP), defined as the cooling energy The dynamical model requires equations of motion for
delivered relative to the work input. In this instance the thermodynamic observables. A reduced description of

COP=AE/AEg=<T /(Ty—To), (4)  the dynamics in terms of the operators of the three-level
system is sufficient for identifying the quantum analogs
of the thermodynamic variables. Energy is associated
with the Hamiltonian of the working mediumH=H,
+V(t). It contains the bare level projectionkly=E;P;

where T./(T,,—T.) is the reversible limit or Carnot COP
and is the absolute upper bound fomy refrigeration cycle.

SR, +E,P,+E3sP; and a time-dependent interactiol (t)
hot bath =ePyzexplwot) +e*Py,exp(—iwgt), where Py=|i){j[(P;
Tn 3 =P;). This time-dependent interaction is responsible for the
r L coberent radiative energy transfer with an external power source.
g The dynamics are influenced by the heat transfer with
€ the baths, represented by the Heisenberg equation of motion
Al -
(rate down)| cold bath A= |ﬁ[H ,A] + Eh(A) + LC(A) (5)
Te o Lo
o\ whereL,, and L are the dissipative Liouville operators cor-
L (rate up) responding to the hot and cold baths, respectively.

The reduced dynamical description of the system is
FIG. 2. Schematic of a three-level quantum refrigeration cycle. The drivingbased ona th_ermOdyna,mIC perspective In_ WhICh,the bulk
input power is coherent radiation, which induces the transition from level 2t€rms are dominant relative to the surface interaction terms
to 3. Heat rejection from level 3 to 1 is effected by coupling levels 1 and 3with the bath. The interface between the system and the bath
to a hot bath of temperatui®, . Cooling (heat removalderives from cou-  pecomes a thermodynamically isothermal partition which al-
pling levels 1 and 2 to a cold bath of temperatdre. A denotes bath P -

pumping rate. The radiative input is coupled to levels 2 and 3 with couplingIOWS energy transfer, but does not deStroy t_he integrity of the
parametek and frequencyso=AEs,. (Units are used in whickg=1 and  System. That is, no quantum entanglement is created between

h=1) the system and the baths. This requirement has been shown



J. Appl. Phys., Vol. 87, No. 11, 1 June 2000 Kosloff, Geva, and Gordon 8095

to be equivalent to the conditions of the quantum weak-
coupling limit° for which explicit forms of the dissipative
superoperator£ have been derivetf:'?

The external periodic driving force causes a perturbation
in the energy level structure of the system. As a result, levels 137
2 and 3 are split by the field amplitude Thermodynamic
consistency requires accounting for this effect by dressinc ]
the system with the field prior to the weak coupling reduc- 1.0 L
tion proceduré? The result is field dependent expressions I
for coupling terms with the bathg,, and £.. These expres-
sions are completely determined by the bath correlatior
functions®1* 7 r

The quantum thermodynamic observables are identifiec
by substituting the Hamiltoniail in the Heisenberg equa-

2.0 1 1 I L 1 1 t

cop

tions of motion Eq(5), which leads to the time derivative of 0.0 . . . T x . . ,
the first law of thermodynamics O,'OO 002 004 0.06 008 010
cooling rate
d(H
% = <E> —(Ly(H))Y+{L(H)) (6)  FIG. 3. The efficiency-cooling rate characteristic of the modeled refrigera-

tion cycle, COP as a function dpc, plotted for parameter valueg,=1,
(recall that all energy flows are defined as posjtivehe — #e=1:5 Vma—1, andker=1.

power P is identified as{dV/dt), and the heat currents are
identified as Q,=(L,(H)) for the hot bath andQ,
=(Lc(H)) for the cold bath*~*" Since internal energy is a
state function and device operation is cydl&o transients

As the cold bath grows colder, the population of level 2,
n. , decreases until the cooling stops. Eventually, the cold
bath temperature reaches the limit of E8), T.=T,(AE,;

can be ignorey it follows thatP—Qp+Q.=0. —&)/(AEg;—¢). To maintain cooling, one must lower level
Under operating conditions where the field-induced? 35 the temperature of the cold bath decreases.
splitting of levels 2 and 3 is much larger th&gT, the gen- The position of level 2 is our control parameter: the

eral expression for the thermodynamic currents is simplified«knob” we turn to vary the cooling rate. Shifting the effec-
The steady-state pow&®*and heat flow from the cold bath tjye energy differenc\ ESf=AE,,~ ¢ allows us to scan all
** become a product of three terms, respectively possible cooling rates, and thereby to determine the maxi-
e - mum possible cooling rate. An effective scheme to lower
P**=woker(ne =Ny ), @) level 2 is either to increase the fieidor to change the po-
‘s - sition of the level via some external influence. This is a well
Qc"=Ke(AE21=2)(Ng — Ny ) ®) established strategy when extremely low temperatures need
(n.=n;). The population difference term in Eq&l) and  to be reached® Lowering level 2 lessens the rate of cooling
(8) refers to the unnormalized lower dressed Boltzmanrfince it decreases the quantum of energy exchange. As a
termsn;” result, the cooling rat€). reaches a maximum between the
. . two points: (1) whereQ, vanishes ahEST =0, and(2) the
Ny =exd —Bn(AEz1=e)], ng=exd —B(AEx* 8)]1(9) equilibrium point wheren, =n,, (see Figz_l'&

where B,=1/(kgTy) and B.=1/(kgT.).

The energy quanta of the transition asg for the power
input and AE,;—¢) for the heat flow kg4 is an effective The variables of our quantum refrigerator model can be
rate of transition. For strong fields, defined by>AE;,  castinterms of the current and voltage of a simple analogous
— wy, only the lower level of the Rabi split levels 2 and 3 is electrical device. The curreft) is the analog of the popula-
relevant to cooling, where the effective rate is givert*y tion differencen; —n, . The voltaggV) is the analog of the
Kett=A Ao [2(\ +))]. The parameters; are determined energy level difference\ ESf=AES] —AEST, with its maxi-
by the bath correlation functions™ =C', , i(AEg,* &), with ~ Mum value being/ma,=AE3; .

"CiAAT(v) being the Fourier transform of the bath correlation. 'The formulas for the power input, cpollng rate, heat re-
. . . dectlon rate, and COP can then, respectively, be expressed as
function corresponding to the system—bath coupling operator

IV. CURRENT-VOLTAGE ANALOGY

A Detailed balance implies the Kubo relati@, , +(») P=KerV1, (10
B (- 5 . o _
fCAM( v)exp(—gBv). In the I|m_|ts of (1) a weak driving O =Keif( Vi V)1, (11)
field, (2) e—0, and(3) zero detuningw, approachedEs,,
and the effective rate becomes Qh:keﬁvm ol (12)
o 4g? A Ao } COP=(V a— V)/V. (13
NN H4e2 ][ 200, TN The current—voltage characteristic is
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I=ex — Bc(Vmax— V)] =X~ BhVmax - (14) 0.15 4 ‘ : ' . .

The minimum voltagéin the reversible limit of zero current
IS Viin=Vmad{1—T./Ty), for which the COP approaches
COPR-amo= T /(Tr—T¢). At the other extreme of maximum | c
voltage (and maximum curreit the COP vanishes. The
efficiency-cooling rate relation for this refrigeration cycle,
i.e., COP as a function d@,, is illustrated in Fig. 3. 0107 " i
In real molecular systems, the reversible limit cannot be 1
realized due to additional irreversibility sources that are no
incorporated in the simplified model offered here. For ex- °© |
ample, a refinedfuture) model should include spontaneous | 12
emission. These additional irreversibilities will militate
against low-current operation. Namely, COP will vanish in
both the high and low current limits, and Fig. 3 will become
a loop-shaped curve with distinct points of maximum cool-
ing rate and maximum CO@vell below the Carnot limit and
at nonzero cooling raje This is comparable to the familiar
cooling performance curve of the thermoelectric
refrigeratort®
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V. MODEL PREDICTIONS VIS-A-VIS THE SECOND 2

AND THIRD LAWS FIG. 4. Plot of cooling rateQ. as a function of the control parameter

Anglf:AEZl—s (the effective energy quantyiat different cold bath tem-

Because entropy is a state function, cyclic Operatlonperatures T.=1/8,). The other fixed parameters used a&r&5 =1 and

means that the cycle-averaged change in the entropy of th,l?—l Note that the equilibrium point and the point of maxim@gshift to
working medium is zero. Since no internal dissipation haSowerAEeff as the cold bath temperature is lowered.

been introduced in the model, the entire entropy production

resides solely at the interface between the system and the

baths
) third laws. Similarly, because the power input does not van-
Qn Qe ish in the limit of the absolute zero, the COP of the quantum
S= T, T. = Ken( BnA E31 oA )[exq BAE; ) refrigerator operating at maximum cooling rate also vanishes
off linearly in T, (as does the Carnot CQP
—exp(— BrAE;) ]=0. (15 Closed-form formulas emerge in the limit of vanishing

Sincekgy is positive, the product in Eq15) is also positive, Tc. Where the population differenag; —n;, grows small
as required by the second law.

max 2 _ eff
The control variable for changing the cooling rate = (Ker/4)(AE3 /Th) exp(— BBz Te, (18)
ff
Qo= kerAESI exp(— BAES)) —exp(— BhAES])]  (16) coR, QWZ( AES ) 19
is AE21=AE21—8. Namely, all other parameters in Ed.6) e 2woTh
are viewed as fixed and known. From threshold scattering Ke AEeff 2
laws at low temperatureks is only weakly dependent on S _ gmax= _< ) h (20)
EST (Ref. 20. In this model, no mechanism militates ¢ 41 Ty

against operation in the limit of the maximum permissible  Tha third law is sometimes stated as the entropy of a

# HenceS—0 (and Q,—0) in the reversible limit of  system approaching zero at the absolute zero, provided the
1=TAES]/T,, and COP>COR:amor= Te/(Th— c) final state is completely ordered. Because the final state in
F|gure 4 is a plot of cooling rate againAESY at as-  our scheme is a pure statend hence of zero entropythe
sorted cold bath temperatures as the absolute zero is amodel and its predictions are commensurate with this alter-
proached. From Eq16), it follows that the maximum cool- pative formulation of the third law.
ing rate is of the form In summary, the basic result that, in nearing the absolute
maX—(const)T 17 zero, th_e maximum attainable cooling rate mqst vary at_ least
e proportionally to the cold bath temperature, is model inde-
where the constant in Eq17) depends orkes, Ty, and  pendent. Only with a quantum-mechani¢as opposed to a
Ang{. Note that the validity of Eqs(15)—(17) is not re- classical physigsmodel, however, can this limit be properly
stricted to the limitT,— 0. explored. The simple dynamical three-level cyclic quantum
The maximum obtainable cooling rate vanishes preciselyefrigerator is a rigorous example of a system for which the
linearly with T., which, as noted in Sec. |, is the weakestfundamental bound on cooling imposed by the second and
functional dependence commensurate with the second anbird laws can be realized.
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